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1 Introduction

We consider a generalized complementarity problem corresponding to C1 functions f

and g, denoted by GCP(f, g), which is to find a vector x∗ ∈ <n such that

f(x∗) ≥ 0, g(x∗) ≥ 0 and 〈f(x∗), g(x∗)〉 = 0 (1)

where f : <n → <n and g : <n → <n.

For the formulation, numerical methods, and applications of GCP(f, g), see [12], [14], [18]

and the references cited therein. Also GCP(f, g) covers some well known problems studied

in the literature in the last decade; for example, if g(x) = x, then GCP(f, g) reduces to the

nonlinear complementarity problem NCP(f). By taking in NCP(f) f(x) = Mx + q with

M ∈ Rn×n and a vector q ∈ Rn, then NCP(f) is called a linear complementarity problem

LCP(M, q). Also, if g(x) = x −W (x) with some W : Rn → Rn, then GCP(f, g) is known

as the quasi/implicit complementarity problem, see e.g., [14], [17], [19].

These problems have numerous applications in diverse fields such as optimization, en-

gineering, economics and other areas, see e.g., [4], [5], [8], [9], [11], [20], and the references

therein.

A function φ : R2 → R is called a GCP function if

φ(a, b) = 0⇔ ab = 0, a ≥ 0, b ≥ 0.

For the problem GCP(f, g), we define

Φ(x) =



φ(f1(x), g1(x))
...

φ(fi(x), gi(x))
...

φ(fn(x), gn(x))


(2)

and, call Φ(x) a GCP function for GCP(f, g).

Our goal from this paper is to study a generalized complementarity problem GCP(f, g)

based on the generalized Fisher-Burmeister function when the underlying functions f and

g are C1. By considering a GCP function Φ : Rn → Rn associated with GCP(f, g) and its

merit function

Ψ(x) :=
1

2
‖Φ(x)‖2. (3)
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so that

x̄ solves GCP(f, g) ⇔ Φ(x̄) = 0⇔ Ψ(x̄) = 0.

If we assume GCP(f, g) has at least one solution, then a vector x̄ ∈ Rn solves GCP(f, g)

if and only if it is a global/local minimizer (a stationary point) of the unconstrained mini-

mization problem

min
x∈Rn

Ψ(x).

In this paper, we show how, under appropriate P0(P), positive definite (semidefinite)-

conditions on H-differentials of f and g, finding local/global minimum of Ψ (or a ‘stationary

point’ of Ψ) leads to a solution of the given generalized complementarity problem. Further,

we show that how our results unify/extend various similar results proved in the literature

for nonlinear complementarity problem when the underlying functions are C1.

2 Preliminaries

Throughout this paper, we regard vectors in Rn as column vectors. We denote the inner-

product between two vectors x and y in Rn by either xTy or 〈x, y〉. Vector inequalities are

interpreted componentwise. For a matrix A, Ai denotes the ith row of A. For a differentiable

function f : Rn → Rm, ∇f(x̄) denotes the Jacobian matrix of f at x̄.

We need the following definition from [4].

Definition 2.1 [(i)] A matrix A ∈ <n×n is called semimonotone (E0) (strictly semimono-

tone (E))-matrix if

∀x ∈ <n+, x 6= 0, there exists i such that xi 6= 0and xi(Ax)i ≥ 0(> 0).

[(ii)] A matrix A ∈ <n×n is called P0 (P))-matrix if

∀x ∈ <n, x 6= 0, there exists i such that xi 6= 0and xi(Ax)i ≥ 0(> 0).

In [21], the author generalized the concepts of monotonicity, P0-property and their vari-

ants for functions and use them to establish some conditions to get a solution for generalized

complementarity problem when the underlying functions f and g are H-differentiable. .

Let us recall the following definitions from [21].
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Definition 2.2 For functions f, g : <n → <n, we say that f and g are:

(a) Relatively monotone if

〈f(x)− f(y), g(x)− g(y)〉 ≥ 0 for all x, y ∈ <n.

(b) Relatively strictly monotone if

〈f(x)− f(y), g(x)− g(y)〉 > 0 for all x, y ∈ <n.

(c) Relatively strongly monotone if there exists a constant µ > 0 such that

〈f(x)− f(y), g(x)− g(y)〉 ≥ µ‖x− y‖2 for all x, y ∈ <n.

(d) Relatively P0 (P)-functions if for any x 6= y in <n,

max
i:xi 6=yi

[f(x)− f(y)]i[g(x)− g(y)]i ≥ (>)0.

(e) Relatively uniform (P)-functions if there exists a constant η > 0 such that for any

x, y ∈ <n,

max
1≤i≤n

[f(x)− f(y)]i[g(x)− g(y)]i ≥ η‖x− y‖2.

Note that relatively strongly monotone functions are relatively strictly monotone, and

relatively strictly monotone functions are relatively monotone. Also we note that every

relatively monotone (strictly monotone) function is a relatively P0(P)-function.

There are some relations between f, g and f ◦ g−1 when g is one-to-one and onto, which

are given in [21].

Lemma 2.1 Suppose that f, g : <n → <n and g is one-to-one and onto. Define h : <n →
<n where h := f ◦ g−1. The following hold:

(a) f and g are relatively (strictly) monotone if and only if h is (strictly) monotone.

(b) If g is Lipschitz-continuous, and f and g are relatively strongly monotone then h is

strongly monotone.

(c) f and g are relatively P0 (P))-functions if and only if h is P0 (P))-function.

(d) If g is Lipschitz-continuous, and f and g are relatively uniform (P))-functions, then h

is uniform (P))-function.

The following result is from [16].
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Theorem 2.1 Under the following conditions, f : Rn → Rn is a P0(P)-function. f is

Fréchet differentiable on Rn and for every x ∈ Rn, the Jacobian matrix ∇f(x) is a P0(P)-

matrix.

Remark 2.1 Based on some results in [16], we note the following. For P-conditions, the

the converse statements in the above theorem are usually false.

3 Minimizing the merit function

Over the past two decades, a variety of NCP-functions have been studied, see [10] and

references therein. Among which, some families of NCP functions [2, 1, 13] based on the

Fisher-Burmeister function with p-norm are proposed. The family NCP functions are pro-

posed in [2]:

φp(a, b) := a+ b− ‖(a, b)‖p (4)

where p is any fixed real number in the interval (1,+∞) and ‖(a, b)‖p denotes the p-norm of

(a, b), i.e., ‖(a, b)‖p = p
√
|a|p + |b|p. Based on the functions (4), some more NCP functions

are introduced in [1]:

φ1(a, b) := φp(a, b) + αa+b+, α > 0. (5)

φ2(a, b) := φp(a, b) + α(ab)+, α > 0. (6)

φ3(a, b) :=
√

[φp(a, b)]2 + α(a+b+)2, α > 0. (7)

φ4(a, b) :=
√

[φp(a, b)]2 + α[(ab)+]2, α > 0. (8)

Our objective in this article is to study GCP functions based on these NCP functions.

For given C1- functions f : Rn → Rn and g : Rn → Rn, we consider the associated GCP

function Φ and the corresponding merit function

Ψ∗(x̄) :=
1

2
‖Φ∗(x̄)‖2 =

n∑
i=1

ψ∗(fi(x̄), gi(x̄)), (9)
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where

Φ∗(x̄) :=


φ∗(f1(x̄), g1(x̄))

...

φ∗(fn(x̄), gn(x̄))

 , (10)

and

ψ∗(a, b) :=
1

2
φ∗(a, b)

2, (11)

with ∗ ∈ {{1, p}, 1, 2, 3, 4}.
It should be recalled that

Ψ∗(x̄) = 0⇔ Φ∗(x̄) = 0⇔ x̄ solves GCP(f, g).

In the following proposition, we give favorable properties for ψ.

Proposition 3.1 Let ψ ∈ {ψ1,p, ψ1, ψ2, ψ3, ψ4} be defined in (9). Then ψ has the following

favorable properties:

(a) ψ is a nonnegative, i.e., ψ(a, b) ≥ 0 for all (a, b) ∈ <2.

(b) ψ is continuously differentiable everywhere.

(c) ∇aψ(a, b) · ∇bψ(a, b) ≥ 0 for all (a, b) ∈ <2.

(d) ψ(a, b) = 0⇔ ∇ψ(a, b) = 0⇔ ∇aψ(a, b) = 0⇔ ∇bψ(a, b) = 0.

Proof. When ψ = ψ1,p, the results (a)-(d) can be obtained from [2, Proposition 3.2

(a)-(e)] respectively. When ψ ∈ {ψ1, ψ2, ψ3, ψ4}, the results (a)-(d) can be obtained from

[1, Proposition 3.3 (a)-(d)] respectively. �

Now we minimize the merit function under P0-conditions.

Theorem 3.1 Suppose f : <n → <n and g : <n → <n are continuously differentiable.

Assume g is one-to-one, onto, and ∇g(x) is nonsingular for all x ∈ Rn. Suppose Φ is a

GCP function of f and g and Ψ := 1
2
‖Φ‖2 :

(i) Ψ is continuously differentiable,

(ii) (∇aΨ(f(x), g(x)))i(∇bΨ(f(x), g(x)))i ≥ 0, for any x ∈ <n,

(iii) (∇aΨ(f(x), g(x)))i(∇bΨ(f(x), g(x)))i 6= 0 whenever Φi(x) 6= 0,
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(iv) (∇aΨ(f(x), g(x)))i = 0⇔ (∇bΨ(f(x), g(x)))i = 0⇔ Φi(x) = 0.

Suppose that ∇g(x)−1∇f(x) is a P0-matrix for any x ∈ <n, then x∗ is a stationary point

of Ψ if and only if x∗ is a solution of GCP (f, g).

Proof. “⇐” Suppose that x∗ is a solution of GCP (f, g), then Φ(x∗) = 0, and from the

property (iv), we have

∇Ψ(x∗) = ∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇g(x∗)∇bΨ(f(x∗), g(x∗)) = 0,

that is, x∗ is a stationary point of Ψ.

“⇒”

Suppose that x∗ is a stationary point of Ψ, i.e.,

∇Ψ(x∗) = ∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇g(x∗)∇bΨ(f(x∗), g(x∗)) = 0,

then

∇g(x∗)−1∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇bΨ(f(x∗), g(x∗)) = 0. (12)

We want to prove that x∗ is a solution of GCP (f, g), i.e., Φ(x∗) = 0. Suppose not, i.e.,

Φ(x∗) 6= 0, then ∃U 6= ∅ and U ⊆ I := {1, 2, . . . , n} such that Φi(x
∗) 6= 0,∀i ∈ U , and

Φi(x
∗) = 0,∀i ∈ I\U . We have

(∇aΨ(f(x∗), g(x∗)))i 6= 0, (∇bΨ(f(x∗), g(x∗)))i 6= 0, ∀i ∈ U (13)

and (∇aΨ(f(x∗), g(x∗)))i = 0, (∇bΨ(f(x∗), g(x∗)))i = 0,∀i ∈ I\U from the property (iv).

Since ∇g(x∗)−1∇f(x∗) is a P0-matrix, then for ∇aΨ(f(x∗), g(x∗)) 6= 0, ∃i0 ∈ U such that

(∇aΨ(f(x∗), g(x∗)))i0∇g(x∗)−1∇f(x∗)(∇aΨ(f(x∗), g(x∗)))i0 ≥ 0. (14)

From (12) and (14),

(∇aΨ(f(x∗), g(x∗)))i0(∇bΨ(f(x∗), g(x∗)))i0

= −(∇aΨ(f(x∗), g(x∗)))i0∇g(x∗)−1∇f(x∗)(∇aΨ(f(x∗), g(x∗)))i0

≤ 0.

By the property (ii), then we have

(∇aΨ(f(x∗), g(x∗)))i0(∇bΨ(f(x∗), g(x∗)))i0 = 0.

which contradicts (13). Hence, the proof is complete. �
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Remark 3.1 • From Proposition 3.1, we note that Theorem 3.1 is applicable to GCP func-

tions in (4)-(8).

• If we state the above results for GCP function based on the generalized Fischer-Burmeister

function (4) and replace the p-norm to 2-norm, then Theorem 3.1 reduces to Theorem 3.2

in [15]. And, when g(x) = x, GCP(f, g) reduces to NCP(f) and Theorem 3.1 reduces to

Prop. 3.4 in [7]. Also, When g(x) = x, our result extends/generalizes a result obtained by

Geiger and Kanzow [6] for NCP(f) under monotonicity of a function.

• In Theorem 3.1, if we consider GCP functions in (5)-(8) and g(x) = x, GCP(f, g) reduces

to NCP(f) and Theorem 3.1 reduces to Prop. 3.4 in [1].

Since every positive semidefinite matrix is also a P0-matrix, the proof of the following

theorem will follow from Theorem 3.1.

Theorem 3.2 Suppose f : <n → <n and g : <n → <n are continuously differentiable.

Assume g is one-to-one, onto, and ∇g(x) is nonsingular for all x ∈ Rn. Suppose Φ is a

GCP function of f and g and Ψ := 1
2
‖Φ‖2 satisfies:

(i) Ψ is continuously differentiable,

(ii) (∇aΨ(f(x), g(x)))i(∇bΨ(f(x), g(x)))i ≥ 0, for any x ∈ <n,

(iii) (∇aΨ(f(x), g(x)))i(∇bΨ(f(x), g(x)))i 6= 0 whenever Φi(x) 6= 0,

(iv) (∇aΨ(f(x), g(x)))i = 0⇔ (∇bΨ(f(x), g(x)))i = 0⇔ Φi(x) = 0.

Suppose that ∇g(x)−1∇f(x) is a positive semidefinite-matrix for any x ∈ <n, then x∗ is a

stationary point of Ψ if and only if x∗ is a solution of GCP (f, g).

From Lemma 2.1 and view of Theorem 2.1, we now state two consequences of the above

theorems

Corollary 3.1 Suppose f : <n → <n and g : <n → <n are continuously differentiable.

Assume g is one-to-one, onto, and ∇g(x) is nonsingular for all x ∈ Rn. Suppose Φ is a

GCP function of f and g and Ψ := 1
2
‖Φ‖2 satisfies:

(i) Ψ is continuously differentiable,

(ii) (∇aΨ(f(x), g(x)))i(∇bΨ(f(x), g(x)))i ≥ 0, for any x ∈ <n,

(iii) (∇aΨ(f(x), g(x)))i(∇bΨ(f(x), g(x)))i 6= 0 whenever Φi(x) 6= 0,

(iv) (∇aΨ(f(x), g(x)))i = 0⇔ (∇bΨ(f(x), g(x)))i = 0⇔ Φi(x) = 0.
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Suppose that f and g are relatively P0-functions. Then x∗ is a stationary point of Ψ if and

only if x∗ is a solution of GCP (f, g).

Proof. Since g is a one-to-one and onto, and f and g are relatively P0-functions, by Lemma

2.1, the mapping f ◦ g−1 is P0-function which implies ∇f(x∗)∇g(x∗)−1 is P0-matrix, see

Theorem 2.1. The proof follows from Theorem 3.1. �

Corollary 3.2 Suppose f : <n → <n and g : <n → <n are continuously differentiable.

Assume g is strongly monotone. Suppose Φ is a GCP function of f and g and Ψ := 1
2
‖Φ‖2

satisfies:

(i) Ψ is continuously differentiable,

(ii) (∇aΨ(f(x), g(x)))i(∇bΨ(f(x), g(x)))i ≥ 0, for any x ∈ <n,

(iii) (∇aΨ(f(x), g(x)))i(∇bΨ(f(x), g(x)))i 6= 0 whenever Φi(x) 6= 0,

(iv) (∇aΨ(f(x), g(x)))i = 0⇔ (∇bΨ(f(x), g(x)))i = 0⇔ Φi(x) = 0.

Suppose that f and g are relatively P0-functions. Then x∗ is a stationary point of Ψ if and

only if x∗ is a solution of GCP (f, g).

Proof. Since g is a strongly monotone and C1, then it is a homeomorphism from Rn onto

itself and the ∇g(x∗) is positive definite matrix (see [16]). Thus ∇g(x∗) is nonsingular and

the proof follows from Corollary 3.1. �

Remark 3.2 If we state the above results for GCP function based on the generalized Fischer-

Burmeister function (4), and g(x) = x, GCP(f, g) reduces to NCP(f) and Corollary 3.1

reduces to Prop. 3.4 in [2].

Theorem 3.3 Suppose f : <n → <n and g : <n → <n are continuously differentiable.

Assume g is one-to-one, onto, and ∇g(x) is nonsingular for all x ∈ Rn. Suppose Φ is a

GCP function of f and g and Ψ := 1
2
‖Φ‖2 satisfies:

(i) Ψ is continuously differentiable,

(ii) (∇aΨ(f(x), g(x)))i(∇bΨ(f(x), g(x)))i ≥ 0, for any x ∈ <n,

(iii) (∇aΨ(f(x), g(x)))i 6= 0 whenever Φi(x) 6= 0,

(iv) (∇aΨ(f(x), g(x)))i = (∇bΨ(f(x), g(x)))i = 0 whenever Φi(x) = 0.
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Suppose that ∇g(x)−1∇f(x) is a P-matrix for any x ∈ <n, then x∗ is a stationary point of

Ψ if and only if x∗ is a solution of GCP (f, g).

Proof.“⇐” Suppose that x∗ is a solution of GCP (f, g), then Φ(x∗) = 0, and from the

property (iv), we have

∇Ψ(x∗) = ∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇g(x∗)∇bΨ(f(x∗), g(x∗)) = 0,

i.e., x∗ is a stationary point of Ψ.

“⇒” Suppose that x∗ is a stationary point of Ψ, i.e.,

∇Ψ(x∗) = ∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇g(x∗)∇bΨ(f(x∗), g(x∗)) = 0,

then

∇g(x∗)−1∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇bΨ(f(x∗), g(x∗)) = 0. (15)

We want to prove that x∗ is a solution of GCP (f, g), that is, Φ(x∗) = 0. Suppose not,

i.e., Φ(x∗) 6= 0, then ∃U 6= ∅ and ⊆ I := {1, 2, . . . , n} such that Φi(x
∗) 6= 0, ∀i ∈ U , and

Φi(x
∗) = 0,∀i ∈ I\U . From the property (iii), we get

(∇aΨ(f(x∗), g(x∗)))i 6= 0,∀i ∈ U. (16)

Since ∇g(x∗)−1∇f(x∗) is a P-matrix, then for ∇aΨ(f(x∗), g(x∗)) 6= 0, ∃i0 ∈ U such that

(∇aΨ(f(x∗), g(x∗)))i0∇g(x∗)−1∇f(x∗)(∇aΨ(f(x∗), g(x∗)))i0 > 0. (17)

From (15) and (17),

(∇aΨ(f(x∗), g(x∗)))i0(∇bΨ(f(x∗), g(x∗)))i0

= −(∇aΨ(f(x∗), g(x∗)))i0∇g(x∗)−1∇f(x∗)(∇aΨ(f(x∗), g(x∗)))i0

< 0,

which contradicts the property (ii). Thus, the proof is complete. �

Remark 3.3 Note that Theorem 3.1 is applicable to GCP functions in (4)-(8) in view of

Proposition 3.1.

Theorem 3.4 Suppose f : <n → <n and g : <n → <n are continuously differentiable.

Assume g is one-to-one, onto, and ∇g(x) is nonsingular for all x ∈ Rn. Suppose Φ is a

GCP function of f and g and Ψ := 1
2
‖Φ‖2 satisfies:
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(i) Ψ is continuously differentiable,

(ii) (∇aΨ(f(x), g(x)))i(∇bΨ(f(x), g(x)))i ≥ 0, for any x ∈ <n,

(iii) (∇aΨ(f(x), g(x)))i 6= 0 whenever Φi(x) 6= 0,

(iv) (∇aΨ(f(x), g(x)))i = (∇bΨ(f(x), g(x)))i = 0 whenever Φi(x) = 0.

Suppose that ∇g(x)−1∇f(x) is a positive definite-matrix for any x ∈ <n, then x∗ is a

stationary point of Ψ if and only if x∗ is a solution of GCP (f, g).

Proof. Since every positive definite matrix is also a P-matrix, the proof of Theorem 3.4

follows from Theorem 3.3. �

Before stating the results of the subsequent theorems, we need the following definition.

Definition 3.1 A vector x̄ is said to be feasible (strictly feasible) for GCP(f, g) if f(x̄) ≥
0(> 0), and g(x̄) ≥ 0(> 0).

In the following theorems, we minimize the merit function under semi-monotone (E0)-

conditions and strictly semi-monotone (E)-conditions, respectively.

Theorem 3.5 Suppose f : <n → <n and g : <n → <n are continuously differentiable.

Assume g is one-to-one, onto, and ∇g(x) is nonsingular for all x ∈ Rn. Suppose Φ is a

GCP function of f and g and Ψ := 1
2
‖Φ‖2 satisfies:

(i) Ψ is continuously differentiable,

(ii) (∇aΨ(f(x), g(x)))i(∇bΨ(f(x), g(x)))i ≥ 0, for any x ∈ <n,

(iii) (∇aΨ(f(x), g(x)))i > 0, (∇bΨ(f(x), g(x)))i > 0, whenever fi(x) > 0, gi(x) > 0,

(iv) (∇aΨ(f(x), g(x)))i = (∇bΨ(f(x), g(x)))i = 0 whenever Φi(x) = 0.

Suppose that ∇g(x)−1∇f(x) is a E0-matrix for any x ∈ <n and x∗ is a feasible point of

GCP(f, g). Then x∗ is a stationary point of Ψ if and only if x∗ is a solution of GCP (f, g).

Proof.“⇐” Suppose that x∗ is a solution of GCP (f, g), then Φ(x∗) = 0, and from the

property (iv), we have

∇Ψ(x∗) = ∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇g(x∗)∇bΨ(f(x∗), g(x∗)) = 0,

that is, x∗ is a stationary point of Ψ.
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“⇒” Suppose that x∗ is a stationary point of Ψ, i.e.,

∇Ψ(x∗) = ∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇g(x∗)∇bΨ(f(x∗), g(x∗)) = 0,

then

∇g(x∗)−1∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇bΨ(f(x∗), g(x∗)) = 0. (18)

We want to prove that x∗ is a solution of GCP (f, g), that is, Φ(x∗) = 0. Suppose not, i.e.,

Φ(x∗) 6= 0, then ∃U 6= ∅ and U ⊆ I := {1, 2, . . . , n} such that Φi(x
∗) 6= 0,∀i ∈ U , and

Φi(x
∗) = 0,∀i ∈ I\U . We have fi(x) > 0, gi(x) > 0,∀i ∈ U , by x∗ is a feasible point of

GCP(f, g) and the definition of GCP function. From the properties (iii) and (iv), we get

(∇aΨ(f(x∗), g(x∗)))i > 0, ∀i ∈ U and (∇aΨ(f(x∗), g(x∗)))i = 0,∀i ∈ I\U. (19)

Since∇g(x∗)−1∇f(x∗) is an E0-matrix, then for∇aΨ(f(x∗), g(x∗)) ≥ 0 and∇aΨ(f(x∗), g(x∗)) 6=
0, ∃i0 ∈ U such that

(∇aΨ(f(x∗), g(x∗)))i0∇g(x∗)−1∇f(x∗)(∇aΨ(f(x∗), g(x∗)))i0 ≥ 0. (20)

From (18) and (20),

(∇aΨ(f(x∗), g(x∗)))i0(∇bΨ(f(x∗), g(x∗)))i0

= −(∇aΨ(f(x∗), g(x∗)))i0∇g(x∗)−1∇f(x∗)(∇aΨ(f(x∗), g(x∗)))i0

≤ 0,

which contradicts the property (iii). Hence, the proof is complete. �

Remark 3.4 In view Proposition 3.1, Theorem 3.5 is applicable to GCP functions in (4)-

(8).

Theorem 3.6 Suppose f : <n → <n and g : <n → <n are continuously differentiable.

Assume g is one-to-one, onto, and ∇g(x) is nonsingular for all x ∈ Rn. Suppose Φ is a

GCP function of f and g and Ψ := 1
2
‖Φ‖2 satisfies:

(i) Ψ is continuously differentiable,

(ii) (∇aΨ(f(x), g(x)))i > 0, (∇bΨ(f(x), g(x)))i ≥ 0, when fi(x) > 0, gi(x) > 0,

(iii) (∇aΨ(f(x), g(x)))i = (∇bΨ(f(x), g(x)))i = 0 whenever Φi(x) = 0.
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Suppose that ∇g(x)−1∇f(x) is a E-matrix for any x ∈ <n and x∗ is a strictly feasible point

of GCP(f, g). Then x∗ is a stationary point of Ψ if and only if x∗ is a solution of GCP (f, g).

Proof.“⇐” Suppose that x∗ is a solution of GCP (f, g), then Φ(x∗) = 0, and from the

property (iii), we have

∇Ψ(x∗) = ∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇g(x∗)∇bΨ(f(x∗), g(x∗)) = 0,

that is, x∗ is a stationary point of Ψ.

“⇒” Suppose that x∗ is a stationary point of Ψ, i.e.,

∇Ψ(x∗) = ∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇g(x∗)∇bΨ(f(x∗), g(x∗)) = 0,

then

∇g(x∗)−1∇f(x∗)∇aΨ(f(x∗), g(x∗)) +∇bΨ(f(x∗), g(x∗)) = 0. (21)

We want to prove that x∗ is a solution of GCP (f, g), that is, Φ(x∗) = 0. Suppose not, i.e.,

Φ(x∗) 6= 0, then ∃U 6= ∅ and U ⊆ I := {1, 2, . . . , n} such that Φi(x
∗) 6= 0,∀i ∈ U , and

Φi(x
∗) = 0,∀i ∈ I\U . Since x∗ is a feasible point of GCP(f, g) and using the definition of

GCP function, we have fi(x) > 0, gi(x) > 0,∀i ∈ U . From the properties (ii) and (iii), it is

implied that

(∇aΨ(f(x∗), g(x∗)))i > 0,∀i ∈ U and (∇aΨ(f(x∗), g(x∗)))i = 0,∀i ∈ I\U. (22)

Since∇g(x∗)−1∇f(x∗) is an E-matrix, then for∇aΨ(f(x∗), g(x∗)) ≥ 0 and∇aΨ(f(x∗), g(x∗)) 6=
0, ∃i0 ∈ U such that

(∇aΨ(f(x∗), g(x∗)))i0∇g(x∗)−1∇f(x∗)(∇aΨ(f(x∗), g(x∗)))i0 > 0. (23)

From (21) and (23),

(∇aΨ(f(x∗), g(x∗)))i0(∇bΨ(f(x∗), g(x∗)))i0

= −(∇aΨ(f(x∗), g(x∗)))i0∇g(x∗)−1∇f(x∗)(∇aΨ(f(x∗), g(x∗)))i0

< 0,

which contradicts the property (ii). The proof is complete. �

Remark 3.5 We note that Theorem 3.6 is applicable to the GCP functions (4)-(8).
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Concluding Remarks

In this paper, we considered a generalized complementarity problem corresponding to

C1-differentiable functions, with an associated GCP function Φ and a merit function Ψ =
1
2
||Φ||2, we showed under certain conditions the global/local minimum or a stationary point

of Ψ is a solution of GCP(f, g).

Our results recover/extend various well known results stated for nonlinear complemen-

tarity problem based on the generalized on generalized Fisher-Burmeister functions.

We note here that similar methodologies can be carried out for the following GCP

functions:

(1) φθ,p(a, b) := a+ b− p
√
θ(|a|p + |b|p) + (1− θ)|a− b|p, θ ∈ (0, 1],

based on NCP proposed in [13].

(2) It is clear that when θ = 1, φθ,p(a, b) will reduce to (4) and denote it by

φ1,p(a, b) = φp(a, b) = a+ b− ‖(a, b)‖p.

(3) φα,θ,p(a, b) := α
2
[(ab)+]2 + 1

2
φθ,p(a, b)

2, α ≥ 0

where φα,θ,p(a, b) : R2 → R+. This GCP function based on NCP function suggested

in [3].
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