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Abstract. This paper is concerned with the change point detection in
the linear regression models. Test procedures considered are the incomplete
U-process and the quasi-Bayesian test procedures. The asymptotic null distri-
bution of test statistics are proposed in terms of supremum of the Guassian
process and the stochastic integral with respect to the Kiefer process.
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1 Introduction. Let X1, · · ·, Xn be realizations of the following linear
regression model

Xi = αγ(
i

n
) + εi,

i = 1, 2, · · ·, n where α, the regression coefficient, is an unknown parameter and
function γ(·) has known functional form with

∫ 1

0
γ2(t)dt = c ∈ (0,∞). Define

function λγ(t) as follows

λγ(t) =
∫ t

0

γ(u)du− t

∫ 1

0

γ(u)du.

It is assumed that the residuals ε1, · · ·, εn are independent zero mean random
variables whose distribution functions are Fi(·), i = 1, 2, · · ·, n. The null hypoth-
esis of no change point H0 specifies the assumption

H0 : F1 = · · · = Fn = F,

(F unknown) which under the local alternative hypothesis there exists an un-
known change point t0 ∈ (0, 1) such that

H1 : Fi =
{
F i = 1, 2, · · ·, [nt0],
(1− δ√

n
)F + δ√

n
G i = [nt0] + 1, · · ·, n,

for some distribution function G such that F 6= G and δ ∈ (0, 1). That is, under
H1, the random variables εi, i ≥ [nt0] + 1 have a mixture distribution. Let
σ2 =

∫
x2dF (x) <∞. The least square estimate of α, α̂, is given by

α̂− α =
∑n

i=1 γ(
i
n )εi∑n

i=1 γ
2( i

n )
.
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It can be shown that, under H0, as n→∞, then α̂− α = Op(n−1/2), that is

v̂n =
√
n(α̂− α) d→ U = c−1

∫ 1

0

γ(t)dW (t),

where W (·) is the standard Brownian motion on [0, 1] and U is distributed as
N(0, c−1).

During the last four decades, we have witnessed many exciting developments
to check the stability of a parametric models over a period of time. Chernoff
and Zacks (1964) introduced the quasi-Bayesian test statistics for detecting
shifts in the mean of normal observations. Their results were extended to the
exponential family by Kander and Zacks (1966). Haccou, Meelis and van de
Geer (1988) considered the likelihood ratio test for a change in a sequence of
independent exponentially distributed random variables. Csörgő and Horváth
(1986) proposed a test based on supremum of U-statistics. The prototypical
Kolmogorov-Smirnov test statistics can be found in Carlstein (1988) and Csörgő
and Horváth (1987). Einmahl and McKeague (2003) used empirical likelihood
to introduce a test for a change in distribution function. Zarepour and Habibi
(2006) extended Kander and Zacks (1966) results in exponential family to a
general class of distributions. An excellent reference in the change point analysis
is Csörgő and Horváth (1997). The purpose of this paper is to provide tools
for the instability in linear regressions. This paper is organized as follows.
Section 2 contains the incomplete U-process test procedure. The test statistic is
represented and its asymptotic null distribution is proposed as supremum of a
Gaussian process. In section 3, the quasi-Bayesian test procedure is considered.
It is shown that the limiting null distribution of the quasi-Bayesian test statistic
is a stochastic integral with respect to Kiefer process.

2 U-Process Procedure. Csörgő and Horváth (1986) constructed a test
procedure based on the supremum of the following incomplete U-process

[nt]∑
i=1

n∑
j=[nt]+1

h(εi, εj),

where h(·, ·) is a symmetric kernel. They showd that, under H0, as n → ∞,
then

n−1/2 sup
0<t<1

[nt]∑
i=1

n∑
j=[nt]+1

{h(εi, εj)− θ} d→ sup
0<t<1

Γ(t),

where θ = EH0(h(ε1, ε2)) and Γ(t) is a Guassian process. During this paper, it
is assumed that h(x, y) = ρ(x−y), for some even loss function ρ(·). Some selects
for ρ(x) are |x| and I(x ≤ s) and x2. The residuals εi are unobservable in
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practice and so they are replaced by estimated residuals ei = εi−n−1/2v̂nγ( i
n ),

and the estimated U-process test statistic is given by

sup
0<t<1

[nt]∑
i=1

n∑
j=[nt]+1

{ρ(eij)− θ},

where eij = ei − ej . The difference stochastic process Λn(t) is defined by ¿

Λn(t) =
[nt]∑
i=1

n∑
j=[nt]+1

{ρ(eij)− ρ(εij)} = Λn(t, v̂n),

where

Λn(t, v) =
[nt]∑
i=1

n∑
j=[nt]+1

ρ(εij − n−1/2γijv)− ρ(εij).

where εij = εi − εj and γij = γ( i
n ) − γ( j

n ). Sometimes, as n → ∞, under H0,

it can be shown that Λn(·, ·) d→ Λ(·, ·), for some two parameters convergent
process Λ(t, v), then the continuous mapping theorem can be applied to show
that the U-process test statistic and estimated U-process test statistic have the
same asymptotic null distributions. Suppose that the distribution function F
admits a density function f (f > 0) and let f∗ = f ∗ f be the convulsion of f.

For more illustration, for example, suppose that ρ(x) = |x|. Using the
identity that for x 6= 0

|x− y| − |x| = −ysgn(x) + 2
∫ y

0

[I(x ≤ s)− I(x ≤ 0)]ds,

(see Knight (1998)) then

Λn(t, v) =
[nt]∑
i=1

n∑
j=[nt]+1

Γij(v),

where

Γij(v) = 2
∫ n−1/2γijv

0

[I(εij ≤ s)− I(εij ≤ 0)]ds− n−1/2γijsgn(εij)v.

It can be shown that the convergent process Λ(t, v) is given by

Λ(t, v) = 2f∗(0)λγ(t)v −
∫ t

0

∫ 1

t

γ(x, y)W ∗(dx, dy)v,

with W ∗(x, y) = ··· and γ(x, y) = γ(x)−γ(y). Another example of the loss func-
tion is ρ(x) = I(x ≤ s) for some s. It can be shown that Λ(t, v) = f∗(s)λγ(t)v.
Facing with the smooth functions ρ(·), for example, when ρ(x) = x2 then the
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estimated U-process statistic can be applied to detect the change in variance of
εi. One can show that the convergent process Λ(t, v) can be expressed as

{
∫ t

0

∫ 1

t

γ2(x, y)dxdy}v2 − 2σ{
∫ t

0

∫ 1

t

γ(x, y)dW ∗(x, y)}v.

As follows, we suppose that ρ(·) is a convex, differentiable loss function with
derivative function ψ(·) which satisfies the conditions

A1) E(ψ(ε1)) = 0.

A2) E(ψ2(ε1)) = σ2 <∞.

A3) ψ has Lipschitz-continuous derivative ψ′, i.e., there exists a nonnegative
constant k such that for all x and y,

|ψ′(x)− ψ′(y)| ≤ k|x− y|.

A4) 0 < |Eψ′(ε1)| = |η| <∞.

As follows, mimicking Knight (1989), we show that the Λ(t, v) is

η2

2
{
∫ t

0

∫ 1

t

γ2(x, y)dxdy}v2 − σ{
∫ t

0

∫ 1

t

γ(x, y)dW ∗(x, y)}v.

3 Quasi-Bayesian Procedure. Here, based on the quasi-Bayesian method
of Kander and Zacks (1966) in Bernoulli distribution, we derive new version of
weighted Kolmogorov-Smirnov type test statistic to test the null hypothesis
of no change point. To do so, for any fixed x, let ζi = I(εi ≤ x), pi = Fi(x),
i = 1, 2, ..., n and assume that p = F (x) and p0 = G(x). The ζis are independent
Bernoulli random variables with parameter of success pi. The hypothesis testing
problem reduces to

H0 : p1 = · · · = pn = p,

(p unknown) against the local alternative

H1 : pi =
{
p i = 1, 2, · · ·, [nt0],
(1− δ√

n
)p+ δ√

n
p0 i = [nt0] + 1, · · ·, n.

Consider t0 as a random variable with the prior density π(·) on (0, 1) and let
Π(t) =

∫ t

0
π(x)dx with Π(0) = 0 and Π(1) = 1. As δ(p − p0) → 0, the quasi-

Bayesian test statistic (Zarepour and Habibi (2006)) is given by
∑n

i=1 Π( i−1
n )(ζi−

ζn), which is
n∑

i=1

Π(
i− 1
n

){I(εi ≤ x)− Fn(x)}.
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To remove the effect of x, the weighted Kolmogorov-Smirnov type test statistic
is given as follows

Tn = sup
x

n∑
i=1

Π(
i− 1
n

){I(εi ≤ x)− Fn(x)}.

To study the null limiting behavior of Tn, let

Kn(t, x) = n−1/2

[nt]∑
i=1

(I(εi ≤ x)− Fn(x)),

and notice that

n−1/2Tn = sup
x

∫ 1

0

Π(t)Kn(dt, x).

One can show that, as n→∞, under H0,

Kn(·, ·) d→ K(·, F (·)),

where K(t, x) is the Kiefer bridge defined based on the Kiefer process K(t, x)
as follows

K(t, x) = K(t, x)− tK(1, x).

The continuous mapping theorem implies that

n−1/2Tn
d→ sup

x

∫ 1

0

Π(t)K(dt, F0(x)).

The Darling-Anderson type test statistic is given by
∫∞
−∞

∫ 1

0
Π(t)Kn(dt, x)dx,which

as n→∞ , converges to the
∫∞
−∞

∫ 1

0
Π(t)K(dt, F0(x))dx.

Remark 1. Test Procedures can be obtained under the random exchange-
able weights (Zarepour and Habibi (2006)). For example, for i = 1, · · ·, n − 1
let

Π(
i

n
)−Π(

i− 1
n

) =
Gi(n−1)∑n
i=1Gi(n−1)

,

for a sequence of iid random variables {Gin} satisfying

nP (G1n ∈ dx)
v→ α

e−x

x
dx,

and then the test statistic is given by

Tn =

∑n
i=1(

∑i−1
j=1Gi(n−1)){I(εi ≤ x)− Fn(x)}∑n

i=1Gi(n−1)
,

431



REZA HABIBI

and as n→∞, then

n−1/2Tn
d→ sup

x

∫ 1

0

S(t)
S(1)

K(dt, F0(x)),

where S(t) is gamma process (Ferguson and Klass (1972)). On the other hand,
let {Gi} be a sequence of iid random variables such that there exists a sequence
of positive constants an such that

nP (a−1
n Gi ∈ dx)

v→ αx−α−1I(x > 0)dx,

and let Gin = Gi

an
, and n−1/2 times the test statistic converges to the

sup
x

∫ 1

0

S(t)
S(1)

K(dt, F0(x)),

where S(t) is stable process (Resnick (1987)). Another choice for Π( i
n ) is

Π(
i

n
) = Ui:n,

where Ui:n are the order statistics of a size of n sample of iid uniform random
variables on (0, 1) with U0:n = 0 and Un:n = 1 (see Rubin (1981) and Lo (1987)
and Shao (1995) in the Bayesian bootstrap setting). Notice that

(U1:n, U2:n, · · ·, Un−1:n) d= (
S1

Sn
,
S2

Sn
, · · ·, Sn−1

Sn
),

where Si =
∑i

j=1Ej for E1, · · ·, En a sequence of iid random variables with
exp(1) distribution. It is easy to show that

n−1/2Tn
d→ sup

x

∫ 1

0

tK(dt, F0(x)),

which corresponds to the result when Π(t) = t.

Remark 2. Einmahal and Mckeague (2003) tested the change point using
the empirical likelihood. One can show that the quasi-Bayesian empirical likeli-
hood test statistic would reject the null hypothesis of no change point whenever

T ∗∗n = −2
∫ ∞

−∞
Π(t) logR(t, x)dt,

is large (see Einmahal and Mckeague (2003)). It can be shown that under the
null hypothesis as n→∞,

T ∗∗n
d→

∫ 1

0

∫ 1

0

Π(t)
W0(t, y)

t(1− t)y(1− y)
dydt,
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where
W0(t, y) = W (t, y)− tW (1, y)− yW (t, 1) + tyW (1, 1),

which W (·, ·) is a standard Bivariate Wienner process.

In practice, using the estimated residuals ei, the estimated quasi-Bayes test
statistic T̂n is given by

T̂n = sup
x

n∑
i=1

Π(
i− 1
n

){I(ei ≤ x)− Fn(x)}.

It can be shown that under H0

n−1/2 sup
x,t

|
[nt]∑
i=1

{I(ei ≤ x)− I(εi ≤ x)− (α̂− α)γ(
i

n
)f(x)| = op(1),

as n→∞. Then

n−1/2{
[nt]∑
i=1

I(ei ≤ x)− F0(x)}
d→ U∗(t, x),

where

U∗(t, x) = K(t, F0(x)) +

∫ 1

0
γ(t)dW (t)∫ 1

0
γ2(t)dt

∫ t

0

γ(x)dx,

and let
V (t, x) = U∗(t, x)− tU∗(1, x).

One can show that

n−1/2T̂n
d→ sup

x

∫ 1

0

Π(t)V (dt, x).

This event happens in the other statistical models. Let us consider the following
example.

Example. In the ARMA time series models, Bai (1994) proved that, under
the some mild conditions,

n−1/2 sup
x,s

|
[ns]∑
i=1

I(ei ≤ x)− I(εi ≤ x)| = op(1),

as n → ∞, where {ei} and {εi} are the estimated residuals and residuals of
ARMA models. The the limiting behavior of T̂n, obtained by substituting Xi

by ei, is the same as Tn, that is

n−1/2T̂n
d→ sup

x

∫ 1

0

Π(t)K(dt, F0(x)).
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Ling (1998) proved that in the unit root models Xi = Xi−1 + εi, then

n−1/2 sup
x,t

|
[nt]∑
i=1

I(ei ≤ x)− I(εi ≤ x)− (α̂− 1)Xi−1f(x)| = op(1),

where f(x) is the density function of εi and α̂ is the least square estimation of
α in Xi = αXi−1 + εi, that is

α̂ =
∑n

i=2Xi−1Xi∑n
i=2X

2
i−1

.

Then

n−1/2T̂n
d→ sup

x

∫ 1

0

Π(t)K∗(dt, x),

where
K∗(t, x) = K(t, F0(x)) + U(t, x),

with

U(t, x) =

∫ 1

0
W (t)dW (t)∫ 1

0
W 2(t)dt

(
∫ t

0

W (u)du− t

∫ 1

0

W (u)du)f(x).

4 Application : Change detection in distribution. By applying the
quasi-Bayesian method of Kander and Zacks (1966) in Bernoulli distribution, we
derive new version of weighted Kolmogorov-Smirnov type test statistic to test
the null hypothesis of no change point in distribution. To do so, for any fixed
x, let ζi = I(εi ≤ x), pi = Fi(x), i = 1, 2, ..., n and assume that p = F (x) and
p0 = G(x). The ζis are independent Bernoulli random variables with parameter
of success pi. The hypothesis testing problem reduces to

H0 : p1 = · · · = pn = p,

(p unknown) against the local alternative

H1 : pi =
{
p i = 1, 2, · · ·, [nt0],
(1− δ√

n
)p+ δ√

n
p0 i = [nt0] + 1, · · ·, n.

Consider t0 as a random variable with the prior density π(·) on (0, 1) and let
Π(t) =

∫ t

0
π(x)dx with Π(0) = 0 and Π(1) = 1. As δ(p − p0) → 0, the quasi-

Bayesian test statistic (Zarepour and Habibi (2006)) is given by
∑n

i=1 Π( i−1
n )(ζi−

ζn), which is
n∑

i=1

Π(
i− 1
n

){I(εi ≤ x)− Fn(x)}.
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To remove the effect of x, the weighted Kolmogorov-Smirnov type test statistic
is given as follows

Tn = sup
x

n∑
i=1

Π(
i− 1
n

){I(εi ≤ x)− Fn(x)}.

To study the null limiting behavior of Tn, let

Kn(t, x) = n−1/2

[nt]∑
i=1

(I(εi ≤ x)− Fn(x)),

and notice that

n−1/2Tn = sup
x

∫ 1

0

Π(t)Kn(dt, x).

One can show that, as n→∞, under H0,

Kn(·, ·) d→ K(·, F (·)),

where K(t, x) is the Kiefer bridge defined based on the Kiefer process K(t, x)
as follows

K(t, x) = K(t, x)− tK(1, x).

The continuous mapping theorem implies that

n−1/2Tn
d→ sup

x

∫ 1

0

Π(t)K(dt, F0(x)).

The Darling-Anderson type test statistic is given by
∫∞
−∞

∫ 1

0
Π(t)Kn(dt, x)dx,which

as n→∞ , converges to the
∫∞
−∞

∫ 1

0
Π(t)K(dt, F0(x))dx.

Remark 3. Test Procedures can be obtained under the random exchange-
able weights (Zarepour and Habibi (2006)). For example, for i = 1, · · ·, n − 1
let

Π(
i

n
)−Π(

i− 1
n

) =
Gi(n−1)∑n
i=1Gi(n−1)

,

for a sequence of iid random variables {Gin} satisfying

nP (G1n ∈ dx)
v→ α

e−x

x
dx,

and then the test statistic is given by

Tn =

∑n
i=1(

∑i−1
j=1Gi(n−1)){I(εi ≤ x)− Fn(x)}∑n

i=1Gi(n−1)
, >
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and as n→∞, then

n−1/2Tn
d→ sup

x

∫ 1

0

S(t)
S(1)

K(dt, F0(x)),

where S(t) is gamma process (Ferguson and Klass (1972)). On the other hand,
let {Gi} be a sequence of iid random variables such that there exists a sequence
of positive constants an such that

nP (a−1
n Gi ∈ dx)

v→ αx−α−1I(x > 0)dx,

and let Gin = Gi

an
, and n−1/2 times the test statistic converges to the

sup
x

∫ 1

0

S(t)
S(1)

K(dt, F0(x)),

where S(t) is stable process (Resnick (1987)). Another choice for Π( i
n ) is

Π(
i

n
) = Ui:n,

where Ui:n are the order statistics of a size of n sample of iid uniform random
variables on (0, 1) with U0:n = 0 and Un:n = 1 (see Rubin (1981) and Lo (1987)
and Shao (1995) in the Bayesian bootstrap setting). Notice that

(U1:n, U2:n, · · ·, Un−1:n) d= (
S1

Sn
,
S2

Sn
, · · ·, Sn−1

Sn
),

where Si =
∑i

j=1Ej for E1, · · ·, En a sequence of iid random variables with
exp(1) distribution. It is easy to show that

n−1/2Tn
d→ sup

x

∫ 1

0

tK(dt, F0(x)),

which corresponds to the result when Π(t) = t.
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