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Abstract  In this study, we give some characterization of Bertrand curves in Galilean and 

pseudo-Galilean space. We obtain representation formulae for Bertrand curves in Galilean 

and pseudo-Galilean space. Then we find that this Bertrand curves are also circular helices. 
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1.Introduction 

 

The notion of Bertrand curves was discovered by J. Bertrand in 1850, then they play an 

important role in classical differential geometry. Two curves which, at any point, have a 

common principal normal vector are called Bertrand curves. Bertrand curves are characterized 

as special curves whose curvature and torsion are in linear relation. Thus Bertrand curves may 

be regarded as 1-dimensional analogue of Weingarten surfaces. Throughout the years many 

mathematicians have studied Bertrand curves in different areas. 

A Galilean space may be considered as the limit case of a pseudo-Euclidean space in 

which the isotropic cone degenerates to a plane. This limit transition corresponds to the limit 

transition from the special theory of relativity to classical mechanics. The fundamental 

concepts of Galilean geometry are expressed in [7], the pseudo-Galilean geometry like 

Galilean geometry which described in [3,14]. A necessary and sufficient condition that a 

curve to be Bertrand curve in Galilean 3-space 3G  is that the curve has constant torsion [2]. 
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A curve of constant slope or general helix is defined by the property that the tangent lines 

make a constant angle with a fixed direction. Indeed, a helix is a special case of the general 

helix; if both the curvature  s  and torsion  s  are non-zero constants, it is called a  

circular helix or simply a W-curve [9,11,13]. In fact, a circular helix is the simplest three-

dimensional spiral.  

Izumiya and Takeuchi have introduced the concept of Slant helix in Euclidean space by 

saying that the principal normal lines make a constant angle with a fixed direction [16]. A 

necessary and sufficient condition for a curve to be general helix in Galilean space is that ratio 

of curvature to torsion be constant [1]. 

In this paper we study representation formulae for Bertrand curves in Galilean and pseudo-

Galilean space. 

 

2.Preliminaries 

 

The Galilean space 3G  is a Cayley-Klein space equipped with the projective metric of 

signature (0,0,+,+) as in [5,17]. The absolute figure of Galilean geometry consist of an 

ordered triple  , ,w f I , where w is the ideal (absolute) plane, f  is the line  (absolute line) in 

w  and I is the fixed elliptic involution of points of f . 

Galilean scalar product can be written as  

 
1 2 1 2

1 2

1 2 1 2 1 2

, 0 0
,

, 0 0

x x if x x
v v

y y z z if x x

  
 

   
 (2.1) 

where  1 1 1 1, ,v x y z  and  2 2 2 2, ,v x y z . It leaves invariant the Galilean norm of the vector 

 , ,v x y z  defined by  

 
2 2

, 0

, 0

x if x
v

y z if x


 

 

 (2.2) 

[14]. 

If a curve C of the class 
rC  3r   is given by the parametrization  

     , ,r r x y x z x  (2.3) 

then x is a Galilean invariant the arc length on C . 



 373 

 

Representation formulae for Bertrand curves in Galilean and pseudo-Galilean 3-space 

 

The curvature is 

   2 2x y z     (2.4) 

and torsion  

  
 

      2

1
det , ,x r x r x r x

x



    (2.5) 

The orthonormal trihedron is defined 

 

      

 
 

    

 
 

    

1, ,

1
0, ,

1
0, ,

t x y x z x

n x y x z x
x

b x z x y x
x





 

 

  

 (2.6) 

The vectors , ,t n b  are called the vectors of tangent, principal normal and binormal line of, 

respectively. For their derivatives the following Frenet formulas hold 

 

     

     

     

t x x n x

n x x b x

b x x n x







 

 

  

 (2.7) 

[8]. 

 

Definition 2.1. Let  be a curve in Galilean 3-space and  , ,t n b be the Frenet frame in 

Galilean 3-space along . If   and  are positive constants along  , then   is called a 

circular helix with respect to Frenet frame [1]. 

 

Definition 2.2. Let  be a curve in Galilean 3-space and  , ,t n b be the Frenet frame in 

Galilean 3-space along . A curve   such that  

const



  

is called general helix with respect to Frenet frame [1]. 

 

Theorem 2.3. Let  be a curve in Galilean 3-space. Then  is a Bertrand curve if and only if 

  is a curve with constant torsion   [2]. 
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Remark 2.4. Similar definitions can be given in the pseudo-Galilean space. 

The pseudo-Galilean geometry is one of the real Cayley-Klein geometries of projective 

signature (0,0,+,-), explained in [3]. The absolute of pseudo-Galilean geometry is an ordered 

triple  , ,w f I , where w is the ideal (absolute) plane, f  is the line  (absolute line) in w  and 

I is the fixed hyperbolic involution of points of f .  

 

As in [3], pseudo-Galilean inner product can be written as 

 
1 2 1 2

1 2

1 2 1 2 1 2

, 0 0
,

, 0 0

x x if x x
v v

y y z z if x x

  
 

   
 (2.8) 

where  1 1 1 1, ,v x y z  and  2 2 2 2, ,v x y z . It leaves invariant the pseudo-Galilean norm of the 

vector  , ,v x y z  defined by   

 
2 2

, 0

, 0

x if x
v

y z if x


 

 

 (2.9) 

In pseudo-Galilean space a curve is given by 1

3: I G      

         , ,t x t y t z t   (2.10) 

where I   and       3, ,x t y t z t C  . A curve   given by (2.10) is admissible if   0x t   

[3]. 

The curves in pseudo-Galilean space are characterized as follows [4] 

An admissible curve in 1

3G  can be parametrized by arc length t s , given in coordinate 

form 

       , ,s s y s z s   (2.11) 

For an admissible curve 1

3: I G   , the curvature  s  and the torsion  s  are 

defined by  

   2 2x y z     (2.12) 

  
 

      2

1
det , ,s s s s

s
   


    (2.13) 

The associated trihedron is given by  
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        

 
 

 
 

    

 
 

    

1, ,

1 1
0, ,

1
0, ,

t s s y s z xs

n s s y s z s
s s

b s z s y s
s




 



   

   

 

 (2.14) 

The vectors  t s ,  n s  and  b s  are called the vectors of tangent, principal normal and 

binormal line of  , respectively. The curve  given by (2.11) is timelike if  n s  is spacelike 

vector. For derivatives of tangent vector  t s , principal normal vector  n s and binormal 

vector  b s , respectively, the following Frenet formulas hold  

 

     

     

     

t s s n s

n s s b s

b s s n s







 

 

 

 (2.15) 

If the admissible curve   is given by     , ,0x x y x   and for this admissible curve the 

curvature  s  and the torsion  s  are defined by  

    x y x   (2.16) 

  
 

 
2

3

a x
x

a x



  (2.17) 

where       2 30, ,a x a x a x . The associated trihedron is given by   

 

    

      

      

2 3

3 2

1, ,0

0, ,

0, ,

t x y x

n x a x a x

b x a x a x







 (2.18) 

For derivatives of  tangent vector  t s , principal normal vector  n s and binormal vector 

 b s , respectively, the following Frenet formulas hold  

 

            

     

     

cosh sinht x x x n x x b x

n x x b x

b x x n x

  





  

 

 

 (2.19) 

where   is the angle between  a x and the plane 0z   . 
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The unit pseudo-Galilean sphere is defined by 

 2 1

3 : , 1S u G u u   . 

More information about pseudo-Galilean geometry can be found in [3]. 

 

3. Spherical curves and Bertrand curves in Galilean and pseudo-Galilean 3-space 

 

In this section we give the method to construct Bertrand curves from spherical curves in 

Galilean and pseudo-Galilean 3-space. 

Let 
2: I S   be a unit speed spherical curve. In this section we denote  as the arc-

length parameter of  . Let us denote    t    , and we call  t   a unit tangent vector of 

  at  , where
d

d





 . We now set a vector      s t      . By definition we have an 

orthonormal frame       , ,t s     along  . This frame is called Sabban frame of  [10]. 

Theorem 3.1. Let 2: GI S   be a unit speed spherical curve in Galilean 3-space. We denote 

 as the arc-length parameter of  . Then we have the following spherical Frenet-Serret 

formulae of  : 

 

   

       

     

g

g

t

t s

s t

  

     

   



  

 

 (3.1) 

where  g   is the geodesic curvature of the curve   in 2

GS  which is given 

by         det , ,g t t        or 

 

        

     

   

det , ,

,

,

g t t

t t

s t

     

   

 



 



 (3.2) 

Also    , 1t    . 

Theorem 3.2. Let 2: GI S   be a unit speed spherical curve in pseudo-Galilean 3-space. We 

denote  as the arc-length parameter of  . Then we have the following spherical Frenet-

Serret formulae of  : 
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If     , 1     ,    , 1t t    and    , 1s s     

 

   

       

     

g

g

t

t s

s t

  

     

   



  

 

 (3.3) 

If    , 1     ,    , 1t t     and    , 1s s    

 

   

       

     

g

g

t

t s

s t

  

     

   

 

 



 (3.4) 

If    , 1      ,    , 1t t    and    , 1s s    

 

   

       

     

g

g

t

t s

s t

  

     

   



 

 

 (3.5) 

Theorem 3.3. Let 2: GI S   be a unit speed spherical curve . Then 

      
0 0

tana u du a s u du c

 

 

        (3.6) 

is a Bertrand curve, where a ,   are constant numbers and c  is constant vector.  

 

Proof.  By using the method in [15] we calculate the curvature and torsion of    .  

In Galilean 3-space if we take the derivative of equation (3.6) with respect to , we have 

 

      

     

         

tan

tan

tan tan

g

g g g

a s

a a t

a a a a s

     

    

         

  

  

    

 (3.7) 

where  g   is the constant geodesic curvature of the curve   in 2

GS . Then, by (2.4) and 

(2.5)  

  tanga a       and    tanga      

so that   
 
is a Bertrand curve and also it is a circular helix. 
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In pseudo-Galilean 3-space if we take the derivative of equation (3.6) with respect to , we 

have 

Case I. 

 

      

     

         

tan

tan

tan tan

g

g g g

a s

a a t

a a a a s

     

    

         

  

  

    

 (3.8) 

where  g   is the constant geodesic curvature of the curve   in 2

GS . Then, by (2.12) and 

(2.13) 

  tanga a      and    tan ga      

so that   
 
is a Bertrand curve and also it is a circular helix. 

Case II. 

 

      

     

         

tan

tan

tan tan

g

g g g

a s

a a t

a a a a s

     

    

         

  

  

    

 (3.9) 

where  g   is the constant geodesic curvature of the curve   in 2

GS . Then, by (2.12) and 

(2.13) 

  tanga a      and    tanga      

so that   
 
is a Bertrand curve and also it is a circular helix. 

Case III.  

 

      

     

         

tan

tan

tan tan

g

g g g

a s

a a t

a a a a s

     

    

         

  

  

    

 (3.10) 

where  g   is the constant geodesic curvature of the curve   in 2

GS . Then, by (2.12) and 

(2.13) 

  tanga a      and    tanga      

so that   
 
is a Bertrand curve and also it is a circular helix. 
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4. Representation formulae for Bertrand curves in Galilean and pseudo-Galilean 3-

space 

 

Lemma 4.1. If a spatial curve  has constant nonzero curvature   and torsion  , then the 

curve 

        2

1
s a s b n s b s ds



 


 
    

 
  (4.1) 

is a Bertrand curve in Galilean and pseudo-Galilean 3-space. 

 

 

Proof. In Galilean 3-space direct computations show that 

     

      

      

1
1

1

1

s at s b b s

s a b n s

s a b b s



 

  




  

   

 
     

 

   

   

 

From these 

 1a b        

a    

So  s  is a Bertrand curve in Galilean 3-space.  

Now we show that  s  is also a Bertrand curve in pseudo-Galilean 3-space, 

Case I.  

   , 1n s n s   and    , 1b s b s    

Direct computations show that 

     

      

      

1
1

1

1

s at s b b s

s a b n s

s a b b s



 

  




  

   

 
     

 

   

   
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From these  

 1a b      
 

a    

So  s  is a Bertrand curve in pseudo-Galilean 3-space. 

Case II.  

   , 1n s n s    and    , 1b s b s   

Direct computations show that 

     

      

      

1
1

1

1

s at s b b s

s a b n s

s a b b s



 

  




  

   

 
     

 

   

   

 

From these  

 1a b         

a    

So  s  is a Bertrand curve in pseudo-Galilean 3-space. Also this curve is a circular helix in 

Galilean and pseudo-Galilean 3-space. 

 

Theorem 4.2. (Representation formulae) Let  u  be a curve in the Galilean 3-space 

parametrised by arclength. Then define three spatial curves  ,   and   by  a u d    , 

 cota u du     and      . Then   is constant curvature curve,   is constant 

torsion curve and  is a Bertrand curve. 

 

Proof. Let  u u  be a curve in 3G  parametrised by the arclength  . Then 

 , ,u u u u      is a positive orthonormal frame field along u .  

If  1, ,u y z
 
then 2 2 1y z    and 

u u      and u u u        

for some function   and . From the definition of  , we get 
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 

 

    2

cot

cot cot

cot cot cot cot

a u

a a a

a a u a a a a

 

     

          

  

   

      

 

Using these, 

 
2 2 2 2cot cota a a        

    
 

2 2 2 3 2 2

2 2 2 2

cot cot cot cot cot

cot cot

a a a a a a a a a a

a a a

          


   

      
 
 

. 

Then  is a Bertrand curve. 

Next, we compute the curvature of   and torsion of  . 

Direct computations show that 

au

a



 

 

 
 

and  

 2 2

cot

cot cot

cot cot cot cot

a

a u a

a u a u a a

 

    

         

 

   

    

 

Hence 

a   

2

2 2

cota


 


 



 

Theorem 4.3. ( Representation formulae ) Let  u  be a curve in the pseudo-Galilean 3-

space parametrised by arclength. Then define three spatial curves  ,   and   by 

 a u d    ,  cota u du     and      . Then   is constant curvature curve, 

  is constant torsion curve and  is a Bertrand curve. 

 

Proof. Let  u u  be a curve in 1

3G  parametrised by the arclength  . Then 

 , ,u u u u      is a positive orthonormal frame field along u .  

 



 382 

 

Mahmut ERGÜT, Handan ÖZTEKİN and Hülya GÜN BOZOK 

 

Case I.  

If  1, ,u y z , , 1u u u u     and , 1u u     then  2 2 1y z    and 

u u    and u u u       

for some function   and . From the definition of  , we get 

 

 

    2

cot

cot cot

cot cot cot cot

a u

a a a

a a u a a a a

 

     

          

  

   

      

 

Using these, 

 
2 2 2 2cot cota a a         

    
 

2 2 2 3 2 2

22 2

cot cot cot cot cot

cot cot

a a a a a a a a a a

a a a

          


   

       
 

 
. 

Then  is a Bertrand curve. 

Next, we compute the curvature of   and torsion of  . 

Direct computations show that 

au

a



 

 

 
 

and  

 2 2

cot

cot cot

cot cot cot cot

a

a u a

a u a u a a

 

    

         

 

  

    

 

Hence 

a   

2

2 2

cota


 


 
 


 

Case II.  

If  1, ,u y z , , 1u u u u      and , 1u u    then  2 2 1y z    and 

u u      and u u u         
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for some function   and . From the definition of  , we get 

 

 

    2

cot

cot cot

cot cot cot cot

a u

a a a

a a u a a a a

 

     

          

  

   

       

 

Using these, 

 
2 2 2 2cot cota a a        

    
 

2 2 2 3 2 2

2 2 2 2

cot cot cot cot cot

cot cot

a a a a a a a a a a

a a a

          


   

       
 

 
. 

Then  is a Bertrand curve. 

Next, we compute the curvature of   and torsion of  . 

Direct computations show that 

au

a



 

 

 
 

and  

 2 2

cot

cot cot

cot cot cot cot

a

a u a

a u a u a a

 

    

         

 

   

    

 

Hence 

a   

2

2 2

cota


 


 



. 

Corollary 4.4. The representation formulae for Bertrand curves in Galilean and pseudo-

Galilean 3-space obtained in theorem 4.2. and theorem 4.3. show that this Bertrand curves are 

also circular helix. 
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