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Abstract. This paper presents a modified feasible SQP algorithm for solving constrained

minimax optimization problems. At each iteration of the proposed algorithm in this paper,

the descent direction is yielded by solving only one quadratic programming through intro-

ducing an auxiliary variable. A height-order correction direction is obtained by solving a

corresponding quadratic programming. Furthermore, under some mild conditions, the global

convergence and superlinear properties are proved. Finally, some numerical results reported

show that the algorithm is successful.
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1. Introduction

In the last few decades, optimization has been a basic tool in all areas of applied math-

ematics, economics, medicine, engineering and other sciences(such as [1],etc). The minimax

problem is a typical non-differentiable nonlinear programming in optimization problems,which

wants to obtain the objection functions minimum under conditions of the maximum of the func-

tions, and it can be widely applied in many fields, for example engineering, finance, economics,

management and other fields, can be stated as a minimax optimization problem.

In this paper, we consider the following inequality constrained optimization problems:

min
x∈Rn

F (x)

s.t. gj(x) ≤ 0, j ∈ J = {1, 2, · · · ,m′},
(1.1)

where F (x) = max{fi(x)|i ∈ I = {1, 2, · · · ,m}}, fi : Rn → R, and gj : Rn → R, are contin-

uously differentiable. Since the objective function F (x) is non-differentiable, we cannot use

the classical methods for smooth optimization problems directly to solve such constrained op-

timization problems.

The problem (1.1) can be transformed into a smooth constrained optimization problem in

Rn+1 as follows:

min z

s.t. fi(x) ≤ z, i ∈ I,

gj(x) ≤ 0, j ∈ J.

(1.2)

Obviously, from the problem (1.2), the K-T condition of (1.1) is defined as follows:
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∑
i∈I

λi∇fi(x) +
∑
j∈J

µj∇gj(x) = 0∑
i∈I

λi = 1

λi ≥ 0, fi(x)− F (x) ≤ 0, λi(fi(x)− F (x)) = 0, i ∈ I

µj ≥ 0, gj(x) ≤ 0, µjgj(x) = 0, j ∈ J,

(1.3)

where λi, µj are the corresponding vector. Based on the equivalent relationship between the

K-T point of(1.2) and the stationary point of (1.1), a lot of methods focus on finding the K-T

point of (1.1), namely solving (1.3). And many algorithms have been proposed to solve minimax

problem[2]-[8]. Such as Refs.[3]-[4], the minimax problems are discussed with nonmonotone line

search, which can effectively avoids Maratos effect. Combine the trust-region methods with the

line-search methods and curve-search methods, Wang and Zhang [5] propose A hybrid algorithm

for linearly constrained minimax problems. Many other effective algorithms for solving the

minimax problems are presented, such as Refs [6]-[8] etc.

Sequential quadratic programming (SQP)method has fast convergence rate, and it is one

of the efficient algorithm for solving constrained optimization problems and is studied deeply

and widely(see such as [9]-[13] etc). Recently, many researches have extended the popular SQP

scheme to the minimax problems (see [14]-[18] etc). For typical SQP method, the standard

search direction d should be obtained by solving the following quadratic programming:

min ∇F (x)T d+ 1
2d

THd

s.t. gj (x) +∇gj (x)
T d ≤ 0, j ∈ J,

(1.4)

where H is a symmetric positive definite matrix. Since the objective function F (x) contains

the max operator, it is continuous but non-differentiable even if every constrained function

fi(x)(i ∈ I) is differentiable. Therefore this method may fail to reach an optimum for the

minimax problem. In view of this, and combining with (1.2), one considers the following

quadratic programming through introducing an auxiliary variable z

min z + 1
2d

THd

s.t. fi(x) +∇fi(x)
T d ≤ z, i ∈ I,

gj (x) +∇gj (x)
T d ≤ 0, j ∈ J.

(1.5)

However, it is well known that the solution d of (1.5) may not be a feasible descent direction

and can not avoid the Maratos effect.

In this paper, an effective sequential quadratic programming method for solving the con-

strained minimax optimization problems(1.1) is proposed. Suppose xk is the current iteration

point, the descent direction dk is obtained by solving quadratic programming as following:

min z + 1
2d

THkd

s.t. fi(x
k) +∇fi(x

k)T d− F (xk) ≤ z, i ∈ I,

gj (x
k) +∇gj (x

k)T d ≤ ηkz, j ∈ J.

(1.6)

where Hk is a symmetric positive definite matrix, ηk is nonnegative auxiliary variable. In

order to avoid Maratos effect, a height-order correction direction is computed by corresponding

quadratic programming. Under suitable conditions, the theoretical analysis shows that the

convergence of our Algorithm can be obtained.
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2. Algorithm

For convenience, we denote sets

I(x) = {i ∈ I|fi(x) = F (x)}, J(x) = {j ∈ J |gj(x) = 0}.

Now we state our algorithm as follows.

Algorithm :

Step 0 : Given initial point x0 ∈ Rn, a symmetric positive definite matrix H0 ∈ Rn×n.

Choose parameters α ∈ (0, 1
2 ), η0 > 0. Set k = 0;

Step 1 : Compute (dk, zk) by the quadratic problem(1.6) at xk. Let (λk, µk) be the

corresponding vector. If dk = 0 then STOP;

Step 2 : Compute (d̃k, z̃k) by the following quadratic problem:

min z + 1
2 (d

k + d)THk(d
k + d)

s.t. fi(x
k + dk) +∇fi(x

k + dk)T d− F (xk + dk) ≤ z, i ∈ I,

gj (x
k + dk) +∇gj (x

k + dk)T d ≤ −ηk, j ∈ J.

(2.7)

(λ̃k, µ̃k) is the corresponding vector. If ∥d̃k > ∥dk∥, set d̃k = 0.;

Step 3 : The line search ; Compute tk, the first number t in the sequence {1, 1
2 ,

1
4 ,

1
8 , · · · }

satisfying:

F (xk + tdk + t2d̃k) ≤ F (xk)− αt(dk)THkd
k (2.8)

gj(x
k + tdk + t2d̃k) ≤ 0, j ∈ J (2.9)

Step 4 : Update; Obtain Hk+1 by updating the positive definite matrix Hk using some

quasi-Newton formulas. Set xk+1 = xk + tdk + t2d̃k , ηk+1 = min{η0, ∥dk∥γ}. Set k := k + 1.

Go back to Step 1.

3. Convergence of Algorithm

In this section, we analyze the convergence of the Algorithm. The following general

assumptions are true throughout this paper.

H 3.1. The functions fi(x), i ∈ I, gj(x), j ∈ J are continuously differentiable.

H 3.2. ∀x ∈ Rn,the set of vectors{(
−1

∇fi(x)

)
, i ∈ I(x);

(
0

∇gj(x)

)
, j ∈ J(x)

}
is linearly independent.

H 3.3. There exist a, b > 0, such that a∥d∥2 ≤ dTHkd ≤ b∥d∥2, for all k ∈ R and d ∈ Rn.

Lemma 3.1. Suppose that H 3.1-H 3.3 hold, matrix Hk is symmetric positive definite and

(dk, zk) is an optimal solution of (1.6). Then

(1) zk + 1
2 (d

k)THkd
k ≤ 0, zk ≤ 0 .

(2) If dk = 0, then xk is a K-T point of problem (1.1).

(3) If dk ̸= 0,then zk < 0, moreover, dk is a feasible direction of descent for (1.1) at point xk.
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proof : (1)For (0, 0) ∈ Rn+1is a feasible solution of (1.6) and Hk is positive definite, one

has

zk +
1

2
(dk)THkd

k ≤ 0, zk ≤ −1

2
(dk)THkd

k ≤ 0. (3.10)

(2)Firstly, we prove dk = 0 ⇔ zk = 0. If zk = 0, then 1
2 (d

k)THkd
k = 1

2 (d
k)THkd

k + zk ≤ 0.

For the positive definite property of Hk, it has dk = 0. On the other hand, If dk = 0, in view

of the constraints

fi(x
k) +∇fi(x

k)T dk − F (xk) ≤ zk, i ∈ I(xk),

we have zk ≥ 0. Combining zk ≤ 0, we have zk = 0.

Secondly, we show that xk is a K-T point of problem (1.1) when dk = 0. From the problem

(1.6), the K-T condition at xk is defined as follows:

Hkd
k +

∑
i∈I

λk
i∇fi(x

k) +
∑
j∈J

µk
j∇gj(x

k) = 0;∑
i∈I

λk
i + ηk

∑
j∈J

µk
j = 1;

λi ≥ 0, 0 ≤ λk
i ⊥ (fi(x

k) +∇fi(x
k)T dk − F (xk)− zk) ≤ 0, i ∈ I;

µj ≥ 0, 0 ≤ µk
j ⊥ (gj(x

k) +∇gj(x
k)T dk − ηkzk) ≤ 0, j ∈ J.

(3.11)

If dk = 0, then zk = 0, and according to the definition of ηk in the Step 4, we have ηk = 0.

Furthermore, it holds that

∑
i∈I

λi∇fi(x) +
∑
j∈J

µj∇gj(x) = 0∑
i∈I

λi = 1

λi ≥ 0, fi(x)− F (x) ≤ 0, λi(fi(x)− F (x)) = 0, i ∈ I

µj ≥ 0, gj(x) ≤ 0, µjgj(x) = 0, j ∈ J.

That is to see the results holds.

(3) If dk ̸= 0, together with the positive definite property of the matrix Hk, it is easy to show

that zk < 0. On the other hand, the directional derivative F
′
(x; d) of F (x) at point x along

direction d can be expressed as

F ′(x; d) = lim
λ→0+

F (x+ λd)− F (x)

λ
= max{∇fi(x)

T d : i ∈ I(x).}

Therefore, F ′(xk; dk) ≤ zk < 0, i.e., dk is a descent direction of F (x) at point xk.

For any j ∈ J(xk), it follows that

gj(x
k + tdk) = gj(x

k) + tgj(x
k)T dk + o(t) ≤ tηkzk + o(t) ≤ 0

for t > 0 small enough, i.e., dk is a feasible direction.

From Lemma 3.1, it is obvious, if dk ̸= 0, that the line search in step 3 yields is always

completed.

Lemma 3.2. If dk ̸= 0, the line search in Step 3 of Algorithm is well defined.
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proof : Similar to the proof of Lemma 3.1(3), we get that gj(x
k + tdk + t2d̃k) ≤ 0, j ∈ J

for t > 0 small enough. For i ∈ I, together with(3.10) we have

αk
△
= fi(x

k + tdk + t2d̃k)− F (xk) + αt(dk)THkd
k

≤ fi(x
k) + t∇fj(x

k)T (dk + td̃k) + o(t)− F (xk) + αt(dk)THkd
k

≤ t(fi(x
k) +∇fi(x

k)T dk − F (xk)) + (1− t)(fi(x
k)− F (xk)) + αt(dk)THkd

k + o(t)

≤ tzk + αt(dk)THkd
k + o(t)

≤ (α− 1

2
)t(dk)THkd

k + o(t).

This implies that there exists some t > 0 such that αk ≤ 0. It is clear that the line search

condition (2.8)is satisfied.

In the following of this section, we will show the global convergence of Algorithm. Since

{dk, zk, λk, µk} is bounded under all above-mentioned assumptions, we can assume without loss

of generality that there exist an infinite index set K and a constant η∗ such that

xk −→ x∗, Hk −→ H∗, ηk −→ η∗, dk −→ d∗, zk −→ z∗, λk −→ λ∗, µk −→ µ∗, k ∈ K.

(3.12)

Theorem 3.1. The algorithm either stops at the K-T point xk of the problem (1.1)in finite

number of steps, or generates an infinite sequence {xk} any accumulation point x∗ of which is

a K -T point of the problem (1.1).

proof : The first statement is obvious, the only stopping point being in step 1. Thus,

assume that the algorithm generates an infinite sequence {xk} and (3.12)holds.The cases η∗ = 0,

and η∗ > 0are considered separately.

Case A η∗ = 0.

By the Step 4, there exists an infinite index set K1 ⊆ K, such that dk−1 −→ 0, k ∈ K1. While,

by step 3, it holds that

lim
k∈K1

∥xk − xk−1∥ = lim
k∈K1

∥tk−1d
k−1 + t2k−1d̃

k−1∥ ≤ lim
k∈K1

(∥dk−1∥+ ∥d̃k−1∥) = 0.

So, the fact that xk−1 k∈K1−→ x∗, implies thatdk−1 k∈K1−→ 0. So, from Lemma 3.1, it is clear that

x∗is a K-T point of (1.1).

Case B η∗ > 0.

Obviously, it only needs to prove that dk −→ 0, k ∈ K. Suppose by contradiction that d∗ ̸= 0.

Since fi(x
k) +∇fi(x

k)T dk − F (xk) ≤ zk, i ∈ I

gj(x
k) +∇gj(x

k)T dk ≤ ηkzk, j ∈ J,
(3.13)

in view of k ∈ K, k −→ ∞, we havefi(x
∗) +∇fi(x

∗)T d∗ − F (x∗) ≤ z∗, i ∈ I

gj(x
∗) +∇gj(x

∗)T d∗ ≤ η∗z∗, j ∈ J.
(3.14)

So, the following corresponding QP subproblem (1.6) at x∗

min
(d,z)∈Rn+1

z + 1
2d

TH∗d

s.t fi(x
∗) +∇fi(x

∗)T d− F (x∗) ≤ z, i ∈ I,

gj(x
∗) +∇gj(x

∗)T d ≤ η∗z, j ∈ J,

(3.15)
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has a nonempty feasible set. Moreover, it is not difficult to show that (z∗, d
∗) is the unique

solution of (3.15). So, it holds thatz∗ < 0,∇fi(x
∗)T d∗ ≤ z∗ < 0, i ∈ I(x∗),

∇gj(x
∗)T d∗ ≤ η∗z∗ < 0, j ∈ J(x∗).

(3.16)

For xk −→ x∗, dk −→ d∗, k ∈ K, it is clear, for k ∈ K, k large enough, that∇fi(x
k)T dk ≤ 1

2∇fi(x
∗)T d∗ < 0, i ∈ I(x∗),

∇gj(x
k)T dk ≤ 1

2∇gj(x
∗)T d∗ < 0, j ∈ J(x∗).

(3.17)

From (3.17), by imitating the proof of Proposition 3.2 in [10], we know that the stepsize tk

obtained by the line search is bounded away from zero on K, i.e.,

tk ≥ t∗ = inf{tk, k ∈ K} > 0. (3.18)

In addition, from (2.8) and Lemma 3.1, it follows that {f(xk)} is monotonous decreasing. So,

considering {xk}K → x∗ and the hypothesis H 3.1, one holds that

fi(x
k) → fi(x

∗), k ∈ K, i ∈ I(x∗). (3.19)

Hence, from (2.8) and (3.17)-(3.19), we get

0 = lim
k∈K

(fi(x
k+1)− fi(x

k)) ≤ lim
k∈K

αtk∇fi(x
k)T dk ≤ 1

2αt∗∇fi(x
∗)T d∗ < 0. (3.20)

It is a contradiction. So, d∗ = 0. Thereby , according to Lemma 3.1, x∗ is a K-T point of

problem (1.1).

4. Rate of convergence

In this section, we show the convergence rate of the algorithm. For this purpose, we add

following some stronger regularity assumptions.

H 4.1. The functions fi(x)(i ∈ I) and gj(x)(j ∈ J) are twice continuously differentiable.

H 4.2. The sequence xk generated by the algorithm possesses an accumulation point x∗,

and Hk −→ H∗, k −→ ∞.

H 4.3. The second-order sufficiency conditions with strict complementary slackness are

satisfied at the KKT point x∗, i.e., it holds that λi > 0, i ∈ I(x∗), µj > 0, j ∈ J(x∗), and

dT∇2
xxL(x

∗, λ∗, µ∗)d > 0, 0 ̸= d ∈ S∗,

where,

∇2
xxL(x

∗, λ∗, µ∗) =
∑
i∈I

λ∗
i∇2fi(x

∗) +
∑
j∈J

µ∗
j∇2gj (x

∗)

=
∑

i∈I(x∗)

λ∗
i∇2fi(x

∗) +
∑

j∈J(x∗)

µ∗
j∇2gj (x

∗),

S∗ = {d ∈ Rn | ∇fi(x
∗)T d = ∇fik(x

∗)T d, ∀i ∈ I(x∗), ik ∈ I(x∗),∇gj (x
∗)T d = 0, ∀j ∈ J(x∗)}.

According to the all stated assumptions H4.1-H4.3 and Lemma 4.1 in [11], we have the

following results

98



AMO - Advanced Modeling and Optimization, Volume 16, Number 1, 2014

Lemma 4.1. The KKT point x∗ of problem (1.1) is isolated.

Lemma 4.2. The entire sequence {xk} converges to x∗, i.e., xk → x∗, k → ∞.

Lemma 4.3. For k large enough, it holds that

1) dk → 0, zk → 0,λk → λ∗, µk → µ∗.

2) d̃k obtained by step 2 satisfies,∥∥∥d̃k∥∥∥ = O
(∥∥dk∥∥2) , gj(x

k + dk + d̃k) = O
(∥∥dk∥∥3)∀j ∈ J(x).

.

To get the superlinearly convergent rate of the above proposed algorithm, the additional

assumption as following is necessary.

H 4.4. The matrix sequence Hk satisfies that∥∥Pk(Hk −∇2
xxL(x

k, λk, µk))dk
∥∥ = o(||dk||),

where,

Pk = In −Ak(A
T
kAk)

−1AT
k ,

Ak = Ak(x
k) = ((∇fi(x

k)−∇fik(x
k)), ∇gj (x

k)), (i ∈ I(xk)\{ik}, j ∈ J(xk).

According to Lemma 4.2 and Lemma 4.3, it is easy to know∥∥Pk(Hk −∇2
xxL(x

k, λk, µk))dk
∥∥ = o(||dk||) ⇐⇒

∥∥Pk(Hk −∇2
xxL(x

∗, λ∗, µ∗))dk
∥∥ = o(||dk||).

Lemma 4.4. For k large enough, under the above-mentioned assumptions, tk ≡ 1.

Proof. It is only necessary to show that the inequalities (2.8) and (2.9) are satisfied with

t = 1 for k large enough. Firstly, we prove that

F (xk + dk + d̃k) ≤ F (xk)− αdkTHkd
k. (4.1)

From (1.6), (3.11) and Taylor expansion, we have

fi(x
k + dk) = fi(x

k) +∇fi(x
k)T dk +O(∥dk∥2)

= f(xk) + zk +O(∥dk∥2), i ∈ I(X∗),

fj(x
k + dk) = fj(x

k) +∇fj(x
k)T dk +O(∥dk∥2)

= f(xk) + zk +O(∥dk∥2), j ∈ I(X∗).

Hence,

fi(x
k + dk) = fj(x

k + dk) +O(∥dk∥2), ∀i, j ∈ I(x∗). (4.2)

Similarly, together with
∥∥∥d̃k∥∥∥ = O

(∥∥dk∥∥2), it is easy to get

fi(x
k + dk + d̃k) = fj(x

k + dk + d̃k) +O(∥dk∥3), ∀i, j ∈ I(x∗). (4.3)

On the other hand, the facts that dk → 0, d̃k → 0 imply that I(xk + dk + d̃k) ⊆ I(x∗) (k large

enough). Thus, for jk ∈ I(xk + dk + d̃k) ⊆ I(x∗), we have

F (xk + dk + d̃k) = max
l∈I

{fl(xk + dk + d̃k)}

= fjk(x
k + dk + d̃k) = fj(x

k + dk + d̃k) +O(∥dk∥3), ∀j ∈ I(x∗)
(4.4)
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Hence, combining
∑

l∈I(x∗)

λk
i = 1 with (4.4), we have

F (xk + dk + d̃k) =
∑

i∈I(x∗)

λk
i fi(x

k + dk + d̃k) +O(∥dk∥3)

=
∑

i∈I(x∗)

λk
i (fi(x

k) +∇fi(x
k)T (dk + d̃k) + 1

2 (d
k)T∇2fi(x

k)dk) + o(∥dk∥2)
(4.5)

From the KKT condition (3.11) implies∑
i∈I(x∗)

λk
i∇fi(x

k)T (dk + d̃k) = −(dk)THkd
k) + o(∥dk∥2)∑

i∈I(x∗)

λk
i fi(x

k) ≤ F (xk).

Thus,

F (xk + dk + d̃k)

≤ F (xk)− dkTHkd
k + 1

2d
kT (

∑
i∈I(x∗)

λk
i∇2fi(x

k))dk + o(∥dk∥2),

= F (xk)− 1
2d

kTHkd
k + 1

2d
kT (

∑
i∈I(x∗)

λk
i∇2fi(x

k)−Hk)d
k + o(∥dk∥2),

= F (xk)− αdkTHkd
k − ( 12 − α)dkTHkd

k + o(∥dk∥2),

for k large enough, according to α ∈ (0, 1
2 ), it holds that

F (xk + dk + d̃k) ≤ F (xk)− αdkTHkd
k.

Secondly, we show that gj(x
k + dk + d̃k) ≤ 0, which implies that the (2.9) holds for t = 1.

For j ∈ J \ J(x∗), this is always satisfied since gj(x
∗) < 0, dk → 0, d̃k → 0 and the continuity

of gj(x). When j ∈ J(x∗), expanding gj(x
k + dk + d̃k) around xk + dk, we have

gj(x
k + dk + d̃k) = gj(x

k + dk) +∇gj(x
k + dk)T d̃k + o(∥d̃k∥2),

= gj(x
k + dk) +∇gj(x

k)T d̃k +O(∥d̃k∥3),

From (2.7), we obtain that

∇gj(x
k)T d̃k ≤ −∥dk∥γ − gj(x

k + dk).

i.e.

gj(x
k + dk + d̃k) ≤ −∥dk∥γ +O(∥d̃k∥3).

According toγ ∈ (2, 3), it holds that gj(x
k + dk + d̃k) ≤ 0, j ∈ J(x∗).

From Lemma 4.4, we can get the following theorem

Theorem 4.1. Under all stated assumptions, the algorithm is superlinearly convergent, i.e.,

the sequence {xk}generated by the algorithm satisfies ||xk+1 − x∗|| = o(||xk − x∗||).

5. Numerical Experiments

In this section, we select several problems to show the efficiency of the Algorithm in

section 2. The code of the proposed algorithm is written by using MATLAB 7.0 and utilized

the optimization toolbox to solve the quadratic programmings (1.6) and (2.7). The results show

that the proposed algorithm is efficient.
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During the numerical experiments, it is chosen at random some parameters as follows:

α = 0.25, η0 = 1 and H0 = I, the n × n unit matrix.Hk is updated by the BFGS formula [9].

In the implementation, the stopping criterion of Step 1 is changed to If ∥dk0∥ ≤ 10−6 STOP .

This algorithm has been tested on some problems from Ref.[13] and [14]. The results are

summarized in Table 1. The columns of this table has the following meanings:

No.: the number of the test problem inRef.[13] or [14];

n : the dimension of the problem;

m : the number of objective functions;

m
′
: the number of inequality constraints;

NT: the number of iterations;

IP: the initial point;

FV: the final value of the objective function.

Table 1

NO. n,m, m
′

NT IP FV

1 (Problem 1 in [14]) 2, 3, 0 11 (1, 5)T 1.952224

2 (Problem 4 in [14]) 2, 3, 0 10 (3, 1)T 0.616234

3 (Problem 1 in [13]) 2, 3, 2 7 (0, 0)T 1.952224

4 (Problem 2 in [13]) 2, 6, 2 12 (1, 3)T 0.616432

5 (Problem 4 in [13]) 2, 3, 2 10 (4, 2)T 2.250000

6 (Problem 5 in [13]) 4, 4, 3 32 (0, 1, 1, 0)T -44.000000

7 (Problem 6 in [13]) 2, 3, 2 4 (0, 1)T 2.000000
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