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Abstract

In this paper we represent a two-vehicle cost varying transportation model to solve

capacitated transportation problem. In this model the transportation cost varies

due to capacity of vehicles as well as amount of transport quantity. At first we pro-

pose an algorithm to determine unit transportation cost with initial allocation to the

basic cells by North-West corner rule. Then solve it. The unit transportation cost

vary during optimality test when allocations are changed. Numerical example is pre-

sented to illustrate the two-vehicle cost varying transportation problem(TVCVTP).

Finally, comparison is given to show better effective of this model.
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1 Introduction

Transportation problem of linear programming problem which deals with the distribution

of single commodity from various sources of supply to various destination of demand

in such a manner that the total transportation cost is minimized. In order to solve a

transportation problem, the decision parameters such as availability, requirement and

the unit transportation cost of the model must be fixed at crisp values but in real life

applications unit transportation cost may vary.

A capacitated transportation problem is such a transportation problem in which the

supply and demand constraints are equality type and capacity restriction on each route

are specified.

In transportation problem unit transportation cost is constant from each source to each

destination. But in reality, it is not constant; it depends on amount of transport quantity

and capacity of vehicles. If amount of quantity is small then small(capacity) vehicle is

sufficient for deliver. Where as if amount of quantity is large then big(capacity) vehicle

is needed. So, depend on amount of transport quantity and the capacity of vehicles,

the unit transportation cost is not constant. The cost varying transportation problem is

such a transportation problem where unit transportation cost is varied depending on the

selection of vehicles and number of vehicles.

The basic transportation problem was originally developed by Hitchock [14] and letter by

Dantzig [6]. Many researchers [13,15,17] did work on fixed charge transportation problem.

Gupta and Arora [8] presented a capacitated fixed charge bi-criterion indefinite quadratic

transportation problem, giving the same priority to cost as well as time is studied. They

developed an algorithm which is based on the concept of solving the indefinite quadratic

fixed charge transportation problem. Gupta and Arora [11] discussed on a paradox in a
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capacitated transportation problem where the objective function is a ratio of two linear

functions consisting of variable costs and profits respectively. In another paper, Gupta

and Arora [9,10] discussed on restricted flow in a fixed charge capacitated transportation

problem with bounds on total source availabilities and total destination requirements.

Dahiya and Verma [5] considered a class of the capacitated transportation problems with

bounds on total availabilities at sources and total destination requirements. In this pa-

per, unbalanced capacitated transportation problems have been discussed in the present

paper as a particular case of original problem. In addition, they have discussed paradox-

ical situation in a balanced capacitated transportation problem and have obtained the

paradoxical solution by solving one of the unbalanced problems. Arora and Ahuja [1]

discussed a paradox in fixed charge transportation problem. Then Arora and Khurana [2]

introduced three-dimensional fixed charge transportation problem is an extension of the

classical three-dimensional transportation problem in which a fixed cost is incurred for

every origin. Basu et. al. [3] represented an algorithm for finding the optimum solution of

solid fixed charge transportation problem. Then Bit, et. al. developed fuzzy programming

technique for multi objective capacitated transportation problem. Singh and Saxena [16]

introduced the multiobjective time transportation problem with additional restrictions.

Recently, Dutta and Murthy [7] developed fuzzy transportation problem with additional

restrictions.

Here we present some capacitated transportation problem. To solve this problem we con-

sider two vehicles whose capacities are less then the capacity restrictions i.e., capacity of

each vehicle is less than or equal to the all route restrictions. Since vehicles are fixed (

Contract with fixed Price) so unit transportation cost is varied. This type of transporta-

tion problem is named as cost varying transportation problem. In our model we consider

this type of capacitated transportation problems and solved these under two vehicles cost

varying transportation problem.
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2 Mathematical Formulation

2.1 Preliminaries

A transportation problem can be stated in Model 1 as follows:

Model 1

min
m∑

i=1

n∑
j=1

cijxij,

subject to
m∑

i=1

xij = ai, i = 1, . . . ,m

n∑
j=1

xij = bj, j = 1, . . . , n

m∑
i=1

ai =
n∑

j=1

bj

xij ≥ 0 ∀i, ∀j

A transportation problem can be represent in the following tabulated form.

D1 D2 .. Dn stock

O1 c11 c12, .... c1n, a1

O2 c21 c22, .... c2n, a2

.... .... .... .... .... ....

Om cn1 cn2, .... cnn, am

Demand b1 b2 .... bn

Table: Tabular representation of a transportation problem.

where ai is the quantity of material available at source Oi, i = 1, . . . ,m

bj is the quantity of material required at destination Dj, j = 1, . . . , n

cij is the unit cost of transportation from st source Oi to destination Dj.

The following terms are to be defined with reference to the transportation problems.
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Definition 1: Feasible Solution (F.S.):

A set of non-negative allocations xij ≥ 0 which satisfies (1), (2) is known as feasible

solution.

Definition 2: Basic Feasible Solution (B.F.S.):

A feasible solution to a m-origin and n-destination problem is said to be basic feasible

solution if number of positive allocations are (m + n− 1).

If the number of allocations in a basic feasible solutions are less than (m+n-1), it is called

degenerate basic feasible solution (DBFS) otherwise non-degenerate basic feasible solution

(NDBFS).

Definition 3: Optimal Solution:

A feasible solution (not necessarily basic) is said to be optimal if it minimizes the total

transportation cost.

Theorem 2.1: The number of basic variables in a Transportation Problem(T.P.) is at

most (m + n− 1)

Theorem 2.2: There exits a F.S. in each Transportation Problem(T.P.)

Theorem 2.3: In each T.P. there exits at least one B.F.S. which makes the objective

function a minimum

Theorem 2.4: The solution of a T.P. is never unbounded

Definition 4: Loop:

In the Transportation table, a sequence of cells is said to form a loop, if

(i) each adjacent pair of cells either lies in the same column or in the same row;

(ii) not more than two consecutive cells in the sequence lie in the same row or in the same

column;

(iii) the first and the last cells in the sequence lie either in the same row or in the same

column;

(iv) the sequence must involve at least two rows or two columns of the table.

Theorem 2.5: A sub-set of the columns of the coefficient matrix of a T.P. are linearly

dependent, iff, the corresponding cells or a sub-set of them can be sequenced to form a

loop.
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2.2 North-West corner rule

Step 1. Compute min (a1, b1). If a1 < b1, min (a1, b1) = a1 and if a1 > b1, min (a1, b1) =

b1. Select x11 = min (a1, b1) allocate the value of x11 in the cell (1, 1).

Step 2. If a1 < b1, compute min (a2, b1 − a1). Select x21 = min (a2, b1 − a1) and allocate

the value of x21 in the cell (2, 1).

If a1 > b1, compute min (a1− b1, b2). Select x12 = min (a1− b1, b2) and allocate the value

of x12 in the cell (1, 2).

Let us now make an assumption that a1− b1 < b2. With this assumption the next cell for

which some allocation is to made, is the cell (2, 2).

If a1 = b1 then allocate 0 only in one of two cells (2, 1) or (1, 2). The next allocation is to

be made cell (2, 2).

In general, if an allocation is made in the cell (i + 1, j) in the current step, the next

allocation will be made either in cell (i, j) or (i, j + 1).

The feasible solution obtained by this away is always a B.F.S.

2.3 optimality test:

In order to test for optimality we should follow the procedure as given bellow:

Step 1. Start with B.F.S. consisting of m + n− 1 allocation in independent positions.

Step 2. Determine a set of m+n numbers ui, i = 1, . . . ,m and vj, j = 1, . . . , n such that

in each cell (i, j) cij = ui + vj

Step 3. Calculate cell evaluations (unit cost difference) dij for each empty cell (i, j) by

using formula dij = cij − (ui + vj)

Step 4. Examine the matrix of cell evaluation dij for negative entries and conclude that

(i) If all dij > 0, then Solution is optimal and unique.

(ii) If all dij ≥ 0 and at least one dij = 0, then solution is optimal and alternative solution

also exists.

(iii) If at least one dij < 0, then solution is not optimal. If it is so, further improvement

is required by repeating the above process after Step 5 and onwards.
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Step 5. (i) See the most negative cell in the matrix [dij].

(ii) Allocate θ to this empty cell in the final allocation table. Subtract and add the amount

of this allocation to other corners of the loop in order to restore feasibility.

(iii) This value of θ, in general is obtained by equating to zero the minimum of the

allocations containing −θ (not +θ) only at the corners of the closed loop.

(iv) Substitute the value of θ and find a fresh allocation table.

Step 6. Again, apply the above test for optimality till we find dij ≥ 0.

2.4 capacitated transportation problem:

Consider m origins and n destinations. At each origin Oi, let ai be the amount of a

homogeneous product which we want to transport to n destinations Dj to satisfy the

demand for bj units of the product there. The unit transportation cost is cij from source

i to destination j. A variable xij represents the unknown quantity to transported from

origin Oi to destination Dj. Let rij be the capacitated restrictions on route i, j for

capacitated transportation problem.

A capacitated transportation problem can be stated in Model 2 as follows:

Model 2

min
m∑

i=1

n∑
j=1

cijxij,

subject to
m∑

i=1

xij = ai, i = 1, . . . ,m

n∑
j=1

xij = bj, j = 1, . . . , n

m∑
i=1

ai =
n∑

j=1

bj (1)

0 ≤ xij ≤ rij ∀i, ∀j

The condition (1) is necessary condition for the Model 2 to have a feasible solution,

however, this is not sufficient because of the capacity restriction on each route.
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2.5 2-vehicle cost varying transportation problem

Suppose there are two types off vehicles V1, V2 from each source to each destination. Let C1

and C2(> C1) are the capacities(in unit) of the vehicles V1 and V2 respectively,C1 ≤ rij and

C2 ≤ rij ∀i, j. Rij = (R1
ij, R

2
ij) represent transportation cost for each cell (i, j); where R1

ij

is the transportation cost from source Oi, i = 1, . . . ,m to the destination Dj, j = 1, . . . , n

by the vehicle V1. And R2
ij is the transportation cost from source Oi, i = 1, . . . ,m to the

destination Dj, j = 1, . . . , n by the vehicle V2. So, cost varying transportation problem

can be represent in the following tabulated form.

D1 D2 .. Dn stock

O1 R1
11, R

2
11 R1

12, R
2
12 .... R1

1n, R
2
1n a1

O2 R1
21, R

2
21 R1

22, R
2
22 .... R1

2n, R
2
2n a2

.... .... .... .... .... ....

Om R1
m1, R

2
m1 R1

m2, R
2
m2 .... R1

mn, R
2
mn am

Demand b1 b2 .... bn

Table: Tabular representation of cost varying transportation problem.

2.6 Solution procedure capacitated transportation problem

To solve model 2 we consider such type of vehicles V1, V2 such that the capacities Let C1

and C2(> C1) of the vehicles V1 and V2 respectively, satisfies following restrictions.

C1 ≤ rij ∀i, j (2)

and C2 ≤ rij ∀i, j (3)

so that Model 2 converted to a two vehicle cost varying transportation problem. Then

apply following rule.
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2.7 Solution procedure 2-vehicle cost varying transportation

problem

2.7.1 Determination of cij

To solve this problem, apply our proposed Algorithms stated as follows:

2.7.2 Algorithm

Step 1. Since unit cost is not determined (because it depends on quantity of transport),

so North-west corner rule (because it does not depend on unit transportation cost) is

applicable to allocate initial B.F.S.

Step 2. After the allocate xij by North-west corner rule, for basic cell we determine cij

(unit transportation cost from source Oi to destination Dj) as

cij =


p1ijR1ij+p2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

(4)

where p1ij, p2ij, i = 1, . . . ,m; j = 1, . . . , n are integer solution of

min p1ijR1ij + p2ijR2ij

s.t. xij ≤ p1ijC1 + p2ijC2

Step 3. For non-basic cell (i, j) possible allocation is the minimum of allocations in ith

row and jth column (for possible loop). If possible allocation be xij, then for non-basic

cell cij (unit transportation cost from source Oi to destination Dj) as

cij =


p1ijR1ij+p2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

(5)

where p1ij, p2ij, i = 1, . . . ,m; j = 1, . . . , n are integer solution of

min p1ijR1ij + p2ijR2ij

s.t. xij ≤ p1ijC1 + p2ijC2
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In this manner we convert cost varying transportation problem to a usual transportation

problem but cij is not fixed, it may be changed (when this allocation will not serve optimal

value) during optimality test.

Step 4. During optimality test some basic cell changes to non-basic cell and some non-

basic cell changes to basic cell, depends on running basic cell we first fix cij by Step 2

and for non-basic we fix cij by Step 3.

Step 5. Repeat Step 2. to Step 4. until we obtain optimal solution.

2.7.3 Bi-level Mathematical Programming for 2-vehicle cost varying trans-

portation problem

The Bi-level mathematical programming for 2-vehicle cost varying transportation problem

is formulated in Model 3 as follows:

Model 3

min
m∑

i=1

n∑
j=1

cijxij, (6)

where, cij is determined by following mathematical programming

cij =


p1ijR1ij+p2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

min p1ijR1ij + p2ijR2ij (7)

s. t. xij ≤ p1ijC1 + p2ijC2

m∑
i=1

xij = ai, i = 1, . . . ,m

n∑
j=1

xij = bj, j = 1, . . . , n

m∑
i=1

ai =
n∑

j=1

bj

0 ≤ xij ≤ rij ∀i, ∀j

where p1ij, p2ij, i = 1, . . . ,m; j = 1, . . . , n are integer solution of
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3 Numerical Example

Consider a capacitated transportation problem as

D1 D2 D3 stock

O1 .95 1.5 1.3 48

O2 1.1 .92 2.1 52

O3 1.2 1.3 1.3 25

Demand 75 30 20

with capacity of route restrictions are as follows:

r11 = 20, r12 = 23, r13 = 25;

r21 = 35, r22 = 24, r23 = 27;

r31 = 28, r32 = 30, r33 = 26;

To solve this capacitated transportation problem, first select the two vehicles where, the

capacities of vehicles of V1 and V2 are respectively, C1 = 6 and C2 = 18. So that the route

restriction is violated. Also, the fixed cost for each vehicles are shown in each cell (i, j)

in following tabulated form of 2-vehicle cost varying transportation problem.

D1 D2 D3 stock

O1 4, 8 5, 10 10, 20 48

O2 2, 3 8, 16 6, 12 52

O3 7, 14 3, 6 9, 18 25

Demand 75 30 20

Determination of cij for both basic and non-basic cell

Step 1. By North-west corner rule initial B.F.S. is
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D1 D2 D3 stock

O1 x11 = 48

4, 8 5, 10 10, 20 48

O2 x21 = 27 x22 = 25

2, 3 8, 16 6, 12 52

O3 x32 = 5 x33 = 20

7, 14 3, 6 9, 18 25

Demand 75 30 20

Step 2. Using (5), we determine c11 = 24
48

, C21 = 6
27

, c22 = 32
25

,C32 = 3
5

c33 = 27
20

,

Step 3. Using (6), we determinec12 = 20
25

, c23 = 18
20

, C13 = 30
20

, C31 = 7
5

With these cij the transportation problem converted to

D1 D2 D3 stock

O1 x11 = 48 c11 = 24
48

c12 = 20
25

c13 = 30
20

4, 8 5, 10 10, 20 48

O2 x21 = 27 c21 = 6
27

x22 = 25 c22 = 32
25

c23 = 18
20

2, 3 8, 16 6, 12 52

O3 c31 = 7
5

x32 = 5 c32 = 3
5

x33 = 20 c33 = 27
20

7, 14 3, 6 9, 18 25

Demand 75 30 20

optimality test

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj, j = 1, 2, 3 such that in each cell basic

(i, j) cij = ui + vj,

each non-basic cell (i, j) by using formula dij = cij − (ui + vj)

So the tabular representation of ui, i = 1, 2, 3, vj, j = 1, 2, 3 and dij non-basic cell (i, j)

is given in the following table
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D1 D2 D3 ui

O1 x11 = 48 c11 = 24
48

c12 = 20
25

c13 = 30
20

4, 8 5, 10 d12 < 0 10, 20 d13 > 0 0

O2 x21 = 27 c21 = 6
27

x22 = 25 c22 = 32
25

c23 = 18
20

2, 3 8, 16 6, 12 d23 > 0 − 5
18

O3 c31 = 7
5

x32 = 5 c32 = 3
5

x33 = 20 c33 = 27
20

7, 14 d31 < 0 3, 6 9, 18 2077
900

vj
1
2

701
450

−431
450

Since d12 < 0 so, solution is not optimal. So a loop occurred in cells(1, 1), (1, 2), (2, 2), (2, 1), (1, 1)

and modified basic cell and unit transportation cost (by our proposed algorithm) is rep-

resented in the following table.

D1 D2 D3 stock

O1 x11 = 23 c11 = 12
23

x12 = 25 c12 = 20
25

c13 = 30
20

4, 8 5, 10 10, 20 48

O2 x21 = 52 c21 = 9
52

c22 = 32
25

c23 = 18
20

2, 3 8, 16 6, 12 52

O3 c31 = 7
5

x32 = 5 c32 = 3
5

x33 = 20 c33 = 27
20

7, 14 3, 6 9, 18 25

Demand 75 30 20

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj, j = 1, 2, 3 such that in each cell basic

(i, j) cij = ui + vj,

each non-basic cell (i, j) by using formula dij = cij − (ui + vj)

So the tabular representation of ui, i = 1, 2, 3, vj, j = 1, 2, 3 and dij non-basic cell (i, j)

is given in the following table
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D1 D2 D3 ui

O1 x11 = 23 c11 = 12
23

x12 = 25 c12 = 20
25

c13 = 30
20

4, 8 5, 10 10, 20 d13 < 0 0

O2 x21 = 52 c21 = 9
52

c22 = 32
25

c23 = 18
20

2, 3 8, 16 d22 > 0 6, 12 d23 < 0 − 417
1196

O3 c31 = 7
5

x32 = 5 c32 = 3
5

x33 = 20 c33 = 27
20

7, 14 d31 > 0 3, 6 9, 18 −1
5

vj
12
23

20
25

31
20

Since d13 < 0 (i.e, most negative) so, solution is not optimal. So a loop occurred in

cells(1, 2), (3, 2), (3, 3), (1, 3), (1, 2) and modified basic cell and unit transportation cost

(by our proposed algorithm) is represented in the following table.

D1 D2 D3 stock

O1 x11 = 23 c11 = 12
23

x12 = 5 c12 = 5
5

x13 = 20 c13 = 30
20

4, 8 5, 10 10, 20 48

O2 x21 = 52 c21 = 9
52

c22 = 8
5

c23 = 18
20

2, 3 8, 16 6, 12 52

O3 c31 = 7
5

x32 = 25 c32 = 6
25

x33 = 20 c33 = 27
20

7, 14 3, 6 9, 18 25

Demand 75 30 20

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj, j = 1, 2, 3 such that in each cell basic

(i, j) cij = ui + vj,

each non-basic cell (i, j) by using formula dij = cij − (ui + vj)

So the tabular representation of ui, i = 1, 2, 3, vj, j = 1, 2, 3 and dij non-basic cell (i, j)

is given in the following table
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D1 D2 D3 ui

O1 x11 = 23 c11 = 12
23

x12 = 5 c12 = 5
5

x13 = 20 c13 = 30
20

4, 8 5, 10 10, 20 0

O2 x21 = 52 c21 = 9
52

c22 = 8
5

c23 = 18
20

2, 3 8, 16 d22 > 0 6, 12 d23 < 0 − 417
1196

O3 c31 = 7
5

x32 = 25 c32 = 6
25

c33 = 27
20

7, 14 d31 > 0 3, 6 9, 18 d33 > 0 −19
25

vj
12
23

25
25

3
2

Since d23 < 0 (i.e, most negative) so, solution is not optimal. So a loop occurred in

cells(1, 1), (1, 3), (2, 3), (2, 1), (1, 1) and modified basic cell and unit transportation cost

(by our proposed algorithm) is represented in the following table.

D1 D2 D3 stock

O1 x11 = 43 c11 = 28
43

x12 = 5 c12 = 5
5

c13 = 30
20

4, 8 5, 10 10, 20 48

O2 x21 = 32 c21 = 6
32

c22 = 8
5

x23 = 20 c23 = 18
20

2, 3 8, 16 6, 12 52

O3 c31 = 28
25

x32 = 25 c32 = 6
25

c33 = 27
20

7, 14 3, 6 9, 18 25

Demand 75 30 20

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj, j = 1, 2, 3 such that in each cell basic

(i, j) cij = ui + vj,

each non-basic cell (i, j) by using formula dij = cij − (ui + vj)

So the tabular representation of ui, i = 1, 2, 3, vj, j = 1, 2, 3 and dij non-basic cell (i, j)

is given in the following table
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D1 D2 D3 ui

O1 x11 = 43 c11 = 28
43

x12 = 5 c12 = 5
5

c13 = 30
20

4, 8 5, 10 10, 20 d13 > 0 0

O2 x21 = 32 c21 = 6
32

c22 = 8
5

x23 = 20 c23 = 18
20

2, 3 8, 16 d22 > 0 6, 12 −319
688

O3 c31 = 28
25

x32 = 25 c32 = 6
25

c33 = 27
20

7, 14 d31 > 0 3, 6 9, 18 d33 > 0 −19
25

vj
28
43

25
25

1.364

Since all dij > 0 for all non-basic cell so the table give optimal solution. x11 = 43, x12 =

5, x21 = 32, x23 = 20, x32 = 25. Minimum cost Z∗ = 28 + 5 + 6 + 18 + 6 = 61 unit(Rs.)

3.1 Comparison:

3.1.1 Comparison with capacitated transportation problem

To solve the above example(capacitated transportation) we have from Model 2 as fol-

lowing Model 4

Model 4

min z = .95x11 + 1.5x12 + 1.3x13 + 1.1x21 + .92x22

+2.1x23 + 1.2x31 + 1.3x32 + 1.3x33

subject to x11 + x12 + x13 = 48; x21 + x22 + x23 = 52; x31 + x32 + x33 = 25;

x11 + x21 + x31 = 75; x12 + x22 + x23 = 30; x13 + x23 + x33 = 20;

0 ≤ x11 ≤ 20; 0 ≤ x12 ≤ 23; 0 ≤ x13 ≤ 25;

0 ≤ x21 ≤ 35; 0 ≤ x22 ≤ 24; 0 ≤ x23 ≤ 27;

0 ≤ x31 ≤ 28; 0 ≤ x32 ≤ 30; 0 ≤ x33 ≤ 26;

Solve Model 4 by Lingo Package we get the following result: x11 = 20, x12 = 8, x13 =

20, x21 = 30, x22 = 22, x31 = 25. Minimum cost Z∗ = 140.24 unit(Rs.)

Clearly, 2-vehicles cost varying transportation model gives better result than usual ca-

pacitated transportation model.
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3.1.2 Comparison with single vehicle cost varying transportation problem

If the Example is solved by considering only single vehicle either V1 or V2 then minimum

transportation cost is increased. The results of Example for V1, for V2 and for both V1,

V2 are given in the following Table-T1.

Problems Single Vehicle CVTP Two-vehicle CVTP

V1 V2 V1, V2

Z∗ = 25 Z∗ = 54 Z∗ = 25

Example x11 = 43, x12 = 5 x11 = 23, x12 = 25 x11 = 43, x12 = 5

x21 = 32, x23 = 20 x22 = 52 x21 = 32, x23 = 20

x32 = 25 x32 = 5, x33 = 20 x32 = 25

Table - T1 : The computational results of Example

It is seen from table T1 that two-vehicle cost varying transportation model give more

efficient result than a single vehicle cost varying transportation model.

4 Conclusion

In this paper we have developed two-vehicle cost varying transportation problem. Using

vehicles whose capacities are not exceed to the route capacities of the capacitated trans-

portation problem we convert capacitated transportation problem to the cost varying

transportation problem. North-west corner rule plays a role to allocate initial basic cell.

Then by our proposed algorithm of determination of cij we transfer this cost varying trans-

portation problem to usual transportation problem. Then apply optimality test where

unit transportation cost vary from one table to another table. Finally, achieve optimal

solution. Comparing numerically, it is seen that two-vehicle cost varying transportation

model gives more efficient result than single objective capacitated transportation problem.

This problem is more real life problem than usual transportation problem.

89



Arpita Panda and Chandan Bikash Das

References

[1] Arora, S. R. Ahuja, A. (2000) ‘A paradox in fixed charge transportation problem’,

Indian Journal of Pure and Applied Mathematics, 31(7), 809-822.

[2] Arora, S. R. and Khurana, A. (2004) ‘Three dimensional fixed charge bi-criterion in-

definite quadratic transportation problem’, Yugoslav Journal of Operations Research,

14(1), 83-97.

[3] Basu, M., Pal, B. B. and Kundu, A. (1993) ‘An algorithm for finding the optimum

solution of solid fixed charge transportation problem’, Journal of Fuzzy Mathematics,

1(2), 367-376.

[4] Bit, A. K., Biswal, M. P. and Alam, S. S. (1994) ‘Fuzzy programming technique for

multi objective capacitated transportation problem’, Optimization, 31(3), 283-291.

[5] Dahiya, K. and Verma, V. (2007) ‘Capacitated transportation problem with bounds

on rim conditions’, Europeon Journal of Operational Research, 178, 718-737.

[6] Dantzig, G. B. (1963) Linear Programming and Extensions, Princeton University

Press, Princeton.

[7] Dutta, D. and Murthy, A. S. (2010) ‘Fuzzy transportation problem with additional

restrictions’, ARPN Journal of Engineering and Applied Sciences, 5 (2), 36-40.

[8] Gupta, K. and Arora, S. R. (2011) ‘An algorithm for solving a capacitated fixed

charge bi-criterion indefinite quadratic transportation problem with restricted flow’,

International Journal Of Research In IT, Management and Engineering, 1(5 ), 123-

140.

90



Capacitated Transportation Problem under 2-Vehicle

[9] Gupta, K. and Arora, S. R. (2012) ‘Restricted flow in a non linear capacitated

transportation problem with bounds on rim conditions’, International Journal Of

Research In IT, Management and Engineering, 2(5 ), 226-243.

[10] Gupta, K. and Arora, S. R. (2012) ‘An algorithm to find optimum cost time trade

off pairs in a fractional capacitated transportation problem with restricted flow’,

International Journal Of Research In Social Sciences, 2(2 ), 418-436.

[11] Gupta, K. and Arora, S. R. (2012) ‘Paradox in a fractional capacitated transportation

problem’, International Journal Of Research In IT, Management and Engineering,

2(3), 43-64.

[12] Haley, K. B. and Smith, A. J. (1996) ‘Transportation problems with additional

restrictions’, JSTOR, 15(2), 116-127.

[13] Hirisch, W. M. and Dantzig ,G. B. (1968) ‘The fixed charge problem’, Naval Research

Logistics Quarterly, 15(3) , 413-424.

[14] Hitchcock, F. L. (1941) The distribution of a product from several sources to numerous

localities, Journal of Mathematical Physics, 20, 224-230.

[15] Sandrock, K. (1988) ‘A simple algorithm for solving small fixed charge transportation

problem’, Journal of Operations Research Society, 39, 467-475.

[16] Singh, P. and Saxena, P. K. (2003) ‘The multiobjective time transportation problem

with additional restrictions’, European Journal of Operational Research, 146, 460-

476.

[17] Thirwani, D. (1998) ‘A note on fixed charge bi-criterion transportation problem with

enhanced flow’, Indian Journal of Pure and Applied Mathematics, 29(5), 565-571.

91


