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Abstract

In this paper, we formulate variational problems and establish weak, strong and
converse duality theorems to relate solutions of the primal and dual problems with
new generalized (p, r) − ρ − (η, θ)-invexity assumptions on the functions involved.
We also study the sufficient conditions for optimality and provide some examples
to illustrate our works. We transform the constrained variational problem into an
unconstrained one with the help of l1 exact exponential penalty function method.
The equivalence between sets of optimal solutions of the original variational prob-
lem and its associated exponential penalized variational problem is established with
new type of generalized invexity assumptions.
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1 Introduction

Calculus of variations is a field of mathematics that deals with extremizing func-
tionals. Main interest in this problem is to find the curves that make the functional
attain a minimum or maximum value and also satisfy the given constraints. The re-
lationship between mathematical programming problems and variational problems
was first explored by Hanson [14]. Thereafter variational programming problem has
attracted the attention of many researchers. Most of the authors established the op-
timality conditions and duality results for variational problems. For example, Mond
and Hanson [21] obtained the optimality conditions and duality results for scalar
valued variational problems under convexity assumptions. Mond and Husain [22]
studied duality results with pseudo-invexity and quasi-invexity assumptions. After
that, some authors studied the mathematical programs involving several conflict-
ing objectives, called multiobjective programming problems. Mishra and Mukherjee
[23] studied same problems with generalized (F, ρ)-convexity. Nahak and Nanda [24]
extended the optimality conditions and duality results for multiobjective variational
problems under invexity assumptions. Bhatia and Kumar [9] established duality re-
sults to a wider class of functions, called B-vex function. More recently, Khazafi
and Rueda [18] generalized the class of V -univex type I functions and studied mul-
tiobjective variational problems in the spirit of generalizations made by Aghezzaf
and Khazafi [1].
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Most of the above contributions are based on sufficient optimality conditions and du-
ality results for unconstrained variational problems. Sometimes, it is more easier to solve
constrained variational problem rather than unconstrained one. Penalty function method
is a technique, which is used to solve the constrained optimization problems. The usual
strategy is to replace a constrained optimization problem by a series of unconstrained
problems of penalty functions whose solutions ideally converge to the solutions of the
original constrained problems (see, for example, [13]). Most of the authors studied ex-
act penalty function method under the notions of convexity (see, for example, [11, 20]).
However, there are many real world problems which are nonconvex in nature. In the
recent years, some generalizations of convex functions have been derived. Antczak [5]
established the equivalence between optimal solutions of original optimization problem
and its exact penalized optimization problem under invexity assumptions. Further, under
suitable r-invexity assumption, Antczak [4] established the same result. More recently,
Antczak [6] introduced a new absolute value exact penalty function method, called the l1
exact exponential penalty function method and established exact penalized optimization
problem with suitable r-invexity assumptions.

In this paper, our objective is to establish the sufficient optimality conditions and
duality results for variational problems with (p, r) − ρ − (η, θ)-invex functions. We also
solve much wider class of nonconvex constrained variational problem by reformulating its
associated unconstrained penalized optimization problem. The comparison of the present
paper with some of the related works in the literature is given in Table 1.

Table 1: A comparison of the present model with some related works

Article Penalty function Variational problem Generalized invexity

Aghezzaf and Khazafi [1] none Multiobjective B-invexity
Antczak [5] Exact penalty none Invexity
Antczak [6] l1 exact penalty none r-invexity

Present paper l1 exact penalty yes (p, r)− ρ− (η, θ)-invexity

The paper is organized as follows. Notation and preliminaries are given in the following
section. Section 3 provides sufficient optimality conditions for variational problem, while Section
4 describes the duality results for Mond-Weir type dual variational problem. In Section 5, the l1
exact exponential penalty function method for variational problem has been discussed. Finally,
the paper is concluded in Section 6 with some remarks and future research directions.

2 Notations and Preliminaries

Invex function is one of the most important generalized convex functions. This invexity concept
has inspired a great deal of subsequent work which has greatly expanded the role of invexity in
optimization. The (p, r)− ρ− (η, θ)-invex functions generalize the class of (p, r)-invex functions
(see [2]) and ρ−(η, θ)-invex functions (see [27]). We will provide the definition of (p, r)−ρ−(η, θ)-
invex function, throughout the paper it will be used very frequently.

Definition 2.1. ([19]) Let f : R
n → R be a differentiable function and p, r be arbitrary

real numbers, ρ ∈ R. The function f is said to be (p, r) − ρ − (η, θ)-invex with respect to
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η, θ : Rn × R
n → R

n at u, if any one of the following conditions holds

1

r
(er(f(x)−f(u)) − 1) ≥ 1

p
∇f(u)(epη(x,u) − 1) + ρ‖θ(x, u)‖2 for p 6= 0, r 6= 0,

1

r
(er(f(x)−f(u)) − 1) ≥ ∇f(u)η(x, u) + ρ‖θ(x, u)‖2 for p = 0, r 6= 0,

f(x)− f(u) ≥ 1

p
∇f(u)(epη(x,u) − 1) + ρ‖θ(x, u)‖2 for p 6= 0, r = 0,

f(x)− f(u) ≥ ∇f(u)η(x, u) + ρ‖θ(x, u)‖2 for p = 0, r = 0.

Remarks:
1. It should be pointed out that the exponentials appearing on the right-hand sides of the above
inequalities are understood to be taken componentwise and 1 = (1, 1, ..., 1) ∈ R

n.
2. In case p 6= 0, r = 0, the functions are called (p, 0) − ρ− (η, θ)-invex with respect to η, θ.
3. In case p = 0, r 6= 0, the functions are called (0, r)− ρ− (η, θ)-invex with respect to η, θ (or
shortly r − ρ− (η, θ)-invex with respect to η, θ).
4. In case p = 0, r = 0, the functions are called (0, 0)− ρ− (η, θ)-invex with respect to η, θ (or
shortly ρ− (η, θ)-invex with respect to η, θ).
5. All theorems in this paper will be proved only in the case when p 6= 0, r 6= 0 (other cases can
be dealt with likewise since the only changes arise from form of inequality). Moreover, without
loss of generality, we shall assume that r > 0 (in the cases when r < 0, the direction, some of
the inequalities in the proofs of the given theorems should be changed to the opposite one).
The following examples 2.1 and 2.2 show that (p, r)− ρ− (η, θ)-invexity generalizes both (p, r)-
invexity and ρ− (η, θ)-invexity.

Example 2.1. Let f : R2 → R be defined by f(x1, x2) = log2(x1)−log2(x2) andX = {(x1, x2) ∈
R
2 : x1 > 0, x2 > 0}.

Define, θ1(x, u) =

{

1, if u1 = 1,
0, if u1 6= 1.

θ2(x, u) =

{

1, if u2 = 1,
0, if u2 6= 1.

η1(x, u) =

{

0, if u1 = 1,
− u1

log u1
, if u1 6= 1.

η2(x, u) =

{

0, u2 = 1,
− u2

log u2
, if u2 6= 1.

Here x = (x1, x2), θ = (θ1, θ2) and η = (η1, η2). Now 1
r
erf(x) = 1

r
er(log

2(x1)−log2(x2)) and
1
r
erf(u)[1 + r∇f(u)η(x, u)] = 1

r
, if we take u = (1, 1). Then the inequality

er(log
2(x1)−log2(x2)) ≥ 1 (2.1)

is not true. If we take x1 = 1, x2 =
1

e
and r = 1, then from the above inequality we get

1

e
≥ 1,

which is not possible. Therefore the function f is not (p, r)-invex function with respect to η at
u = (1, 1) for any real numbers p and r. If p = 0, r = 1, and ρ = −1/2, then

1

r
(er(f(x)−f(u)) − 1) = e(log

2(x1)−log2(x2)) − 1 (2.2)

and ∇f(u)η(x, u) + ρ‖θ(x, u)‖2 = −1 at the point u = (1, 1). The inequality

e(log
2(x1)−log2(x2)) − 1 ≥ −1 (2.3)

is always true. From the Definition 2.1 it is clear that, f is (0, 1)− ρ− (η, θ)-invex function with
respect to η and θ at the point u = (1, 1).
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Example 2.2. The above Example 2.1 also shows that f is (0, 1) − ρ − (η, θ)-invex but not
ρ− (η, θ)-invex.
Now f(x) − f(u) = log2(x1) − log2(x2) (where x = (x1, x2), f(u) = 0, at the point u = (1, 1))
and ∇f(u)η(x, u) + ρ‖θ(x, u)‖2 = −1 at u = (1, 1). If we take ρ = −1/2, then the inequality

log2(x1)− log2(x2) ≥ −1 (2.4)

is not true. In (2.4) take x1 = 1, x2 =
1
e2
, and θ(x, u), as we defined in previous Example 2.1 we

get −4 ≥ −1, which is wrong. Therefore f is not ρ− (η, θ)-invex function, but (0, 1)− ρ− (η, θ)-
invex function with respect to η and θ.
Hence examples 2.1 and 2.2 ensure that, our (p, r) − ρ − (η, θ)-invexity is more general than
(p, r)-invexity, as well as ρ− (η, θ)-invexity.

Variational Problem:
Consider the function f(t, x(t), ẋ(t)) where t is an independent variable, x : I → R

n is a function
of t and ẋ denotes the derivative of x with respect to t. The symbol zT stands for the transpose
of a vector z. Denote the first partial derivatives of f with respect to x(t) and ẋ(t) by fx and
fẋ, respectively, that is,

fx=
(

∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

)T

, fẋ=
(

∂f
∂ẋ1

∂f
∂ẋ2

. . . ∂f
∂ẋn

)T

.

Let C(I,Rn) denote the space of piecewise smooth functions with norm ‖x‖ = ‖x‖∞ +
‖Dx‖∞, where the differential operator D is given by

u = Dx ⇐⇒ x(t) = x(a) +

∫ t

a

u(s)ds.

A variational problem is to transfer the state vector from an initial state x(a) = α to a final
state x(b) = β so as to minimize a functional, subject to constraints on the state variables.
Mathematically, we formulate the variational problem as:

(VP) min :

∫ b

a

f(t, x, ẋ)dt

subject to

x(a) = α, x(b) = β, (2.5)

g(t, x, ẋ) ≥ 0, (2.6)

where, I = [a, b] and f : I×R
n×R

m → R, g : I×R
n×R

m → R
p are continuously differentiable

functions.
The set of feasible solutions of (VP) is defined by
K = {x ∈ C(I,Rn) : x(a) = α, x(b) = β, g(t, x, ẋ) ≥ 0, t ∈ I}.
Several authors studied variational problems under some convexity and generalized convexity
assumptions. Here we use more generalized invexity, called (p, r) − ρ − (η, θ)-invexity. We will
give the definition of (p, r)− ρ− (η, θ)-invexity, which is used throughout this paper.

Definition 2.2. The functional F (x, ẋ) =
∫ b

a
f(t, x, ẋ)dt is said to be (p, r)− ρ− (η, θ)-invex at

x on [a, b] with respect to η, θ, if there exist vector functions η, θ ∈ R
n, with η = 0 at t = a,
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t = b, and ρ ∈ R, if any one of the following conditions holds

1

r
[er{

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt} − 1] ≥

∫ b

a

[fx(t, x, ẋ)
1

p
(epη(t,x,x) − 1)

+fẋ(t, x, ẋ)e
pη(t,x,x) dη

dt
+ ρ‖θ(t, x, x)‖2]dt, p 6= 0, r 6= 0,

1

r
[er{

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt} − 1] ≥

∫ b

a

[fx(t, x, ẋ)η(t, x, x) + fẋ(t, x, ẋ)
dη

dt

+ρ‖θ(t, x, x)‖2]dt, p = 0, r 6= 0,
∫ b

a

(f(t, x, ẋ)− f(t, x, ẋ))dt ≥
∫ b

a

[fx(t, x, ẋ)
1

p
(epη(t,x,x) − 1)

+fẋ(t, x, ẋ)e
pη(t,x,x) dη

dt
+ ρ‖θ(t, x, x)‖2]dt, p 6= 0, r = 0,

∫ b

a

(f(t, x, ẋ)− f(t, x, ẋ))dt ≥
∫ b

a

[fx(t, x, ẋ)η(t, x, x) + fẋ(t, x, ẋ)
dη

dt

+ρ‖θ(t, x, x)‖2]dt, p = 0, r = 0.

Remark 2.1. (i) All the theorems will be proved only in the case when p 6= 0, r 6= 0 (other
cases can be dealt with likewise).

(ii) Without loss of generality, let r > 0 (in the case when r < 0, the proof is analogous; one
should change only the direction of some inequalities below to the opposite one).

Example 2.3. Let f : [0, 1] × [0, 1] × [0, 1] −→ R be given by

f(t, x, ẋ) = −x2(t)t.

The function
∫ 1
0 f(t, x, ẋ)dt is not −1− (η, θ)-invex with respect to η : [0, 1]× [0, 1]× [0, 1] −→ R

and θ : [0, 1] × [0, 1] × [0, 1] −→ R defined by

η (t, x, x) = x(t) + x(t),

θ (t, x, x) =
√
2t.

Now if we take p = 1, r = 1 and ρ = −1, then

1

r
[er

∫ 1

0
[f(t,x,ẋ)−f(t,x,ẋ)]dt − 1] = e

∫ 1

0
(x2−x2)tdt − 1 and

∫ 1

0
[fx(t, x, ẋ))

1

p
(epη − 1) + ρ‖θ(t, x, x)‖2]dt =

∫ 1

0
−2xt(ex+x − 1)dt− 1,

the inequality

e
∫
1

0
(x2−x2)tdt − 1 ≥

∫ 1

0
−2xt(ex+x − 1)dt− 1

is always true. Therefore, the function
∫ 1
0 f(t, x, ẋ)dt is (1, 1)− (−1)− (η, θ)-invex with respect

to same η, θ.
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3 Sufficiency for Optimality

The following necessary conditions for the existence of an extremal for (VP) were first developed
by Valentine [26].

Proposition 3.1. ([26]) If x is an optimal solution of (VP) and if it is normal, then there exist
λ0 ∈ R, and a piecewise smooth function µ : I → R

m, such that the function

F = λ0f − µT g (3.7)

satisfies

Fx =
d

dt
(Fẋ), (3.8)

µigi = 0, i = 1, 2, ...,m, (3.9)

µ(t) ≥ 0, t ∈ I. (3.10)

Since the optimal solution x is normal, i.e., λ0 is non-zero, so that without loss of generality, we
can take λ0 = 1.

We establish that the necessary optimality conditions are also sufficient for optimality if it
satisfies some (p, r)− ρ− (η, θ)-invexity assumptions.

Theorem 3.1. Let x be a feasible solution of (VP). Assume that there exists a piecewise
smooth function µ : I → R

p such that, for all t ∈ I,

fx(t, x, ẋ)− µT gx(t, x, ẋ) =
d

dt
[fẋ(t, x, ẋ)− µT gẋ(t, x, ẋ)], (3.11)

µT g(t, x, ẋ) = 0, (3.12)

µ(t) ≥ 0 (3.13)

hold. Further suppose that
∫ b

a
fdt and

∫ b

a
−µT gdt are (p, r) − ρ1 − (η, θ)-invex and (p,−r) −

ρ2 − (η, θ)-invex, respectively at x over K with respect to η, θ, and (ρ1 + ρ2) ≥ 0, then x is an
optimal solution of (VP).

Proof. Since
∫ b

a
f(t, x, ẋ)dt is (p, r)− ρ1 − (η, θ)-invex at x, then

1

r
(er[

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt] − 1) ≥

∫ b

a

[fx(t, x, ẋ)
1

p
(epη − 1)

+fẋ(t, x, ẋ)e
pη dη

dt
+ ρ1‖θ(t, x, x)‖2]dt, ∀x ∈ K. (3.14)

As
∫ b

a
−µT g(t, x, ẋ)dt is (p,−r)− ρ2 − (η, θ)-invex at x over K, then we reach the inequality,

−1

r
(er[

∫
b

a
{µT (g(t,x,ẋ)−g(t,x,ẋ))}dt] − 1) ≥

∫ b

a

[−µT gx(t, x, ẋ)×

1

p
(epη(t,x,ẋ) − 1)− µT gẋ(t, x, ẋ)e

pη dη

dt
+ ρ2‖θ(t, x, x)‖2]dt, ∀x ∈ K. (3.15)

Since x is an arbitrary feasible solution of (VP), µ(t) ≥ 0, then from the equation (3.12) and
the inequality (3.15), we have

∫ b

a

[−µT gx(t, x, ẋ)
1

p
(epη − 1)

−µT gẋ(t, x, ẋ)e
pη dη

dt
+ ρ2‖θ(t, x, x)‖2]dt ≤ 0. (3.16)
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Adding equations (3.14) and (3.16), we obtain

1

r
(er[

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt] − 1) ≥

∫ b

a

[
1

p
(epη − 1)× {fẋ(t, x, ẋ)− µT gx(t, x, ẋ)}

+epη
dη

dt
× {fẋ(t, x, ẋ)− µT gẋ(t, x, ẋ)}+ (ρ1 + ρ2)

∫ b

a

‖θ(t, x, x)‖2]dt. (3.17)

Now, pre-multiplying equation (3.11) by 1
p
(epη − 1) and integrating, we get

∫ b

a

(epη − 1)[λ
T
fx(t, x, ẋ)− µT gx(t, x, ẋ)]dt

=

∫ b

a

(epη − 1)
d

dt
[λ

T
fẋ(t, x, ẋ)− µT gẋ(t, x, ẋ)]dt. (3.18)

After integrating by parts of
∫ b

a
(epη − 1) d

dt
[λ

T
fẋ(t, x, ẋ) − µT gẋ(t, x, ẋ)]dt and using η = 0 at

t = a and t = b, the equality (3.18) becomes

∫ b

a

[(epη − 1){λT
fx(t, x, ẋ)− µT gx(t, x, ẋ)}+

epη
dη

dt
{λT

fẋ(t, x, ẋ)− µT gẋ(t, x, ẋ)}]dt = 0. (3.19)

From equations (3.17) and (3.19), it follows that

1

r
(er[

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt] − 1) ≥ (ρ1 + ρ2)

∫ b

a

‖θ(t, x, x)‖2dt.

By the assumption (ρ1 + ρ2) ≥ 0, we have

∫ b

a

f(t, x, ẋ)dt ≥
∫ b

a

f(t, x, ẋ)dt, ∀ x ∈ K.

Hence, x is an optimal solution of (VP), and the proof is completed.

4 Mond-Weir Type Dual Variational Problem

Mond and Husain [17] studied Mond-Weir type dual under pseudo-invexity and quasi-invexity
assumptions. To weaken pseudo-invexity and quasi-invexity assumptions, we consider the fol-
lowing Mond-Weir type dual (MWVD) for variational problem (VP) and establish the duality
results under (p, r)− ρ− (η, θ)-invexity assumptions.

(MWVD) max :

∫ b

a

f(t, x, ẋ)dt

subject to

x(a) = α, x(b) = β, (4.1)

fx(t, x, ẋ)− µ(t)T gx(t, x, ẋ) =
d

dt
[fẋ(t, x, ẋ)− µ(t)T gẋ(t, x, ẋ)], (4.2)

∫ b

a

µ(t)T gẋ(t, x, ẋ)dt ≤ 0, (4.3)

µ(t) ≥ 0. (4.4)

Let H be the set of all feasible solutions of (MWVD).
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Theorem 4.1. (Weak Duality). Let x and (x, µ) be the feasible solutions of the primal problem

(VP), and the dual problem (MWVD), respectively. If
∫ b

a
fdt and

∫ b

a
−µT gdt are (p, r)− ρ1−

(η, θ)-invex and (p,−r) − ρ2 − (η, θ)-invex, respectively at x on H with respect to η, θ and
(ρ1 + ρ2) ≥ 0. Then inf (VP) ≥ sup (MWVD).

Proof. Since
∫ b

a
fdt is (p, r) − ρ1 − (η, θ)-invex at x on H with respect to η, θ, we reach the

inequality

1

r
(er[

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ)dt] − 1) ≥

∫ b

a

[fx(t, x, ẋ)
1

p
(epη − 1)

+fẋ(t, x, ẋ)e
pη dη

dt
+ ρ1‖θ(t, x, x)‖2]dt. (4.5)

By the equation (4.2), we get

1

r
(er[

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt] − 1) ≥

∫ b

a

[{µT gx(t, x, ẋ) +
d

dt
(fẋ(t, x, ẋ)− µT gẋ(t, x, ẋ))}

×1

p
(epη − 1)]dt+

∫ b

a

[fẋ(t, x, ẋ)e
pη dη

dt
+ ρ1‖θ(t, x, x)‖2]dt. (4.6)

After integration by parts of
∫ b

a
{1
p
(epη − 1) d

dt
(fẋ(t, x, ẋ)− µT gẋ(t, x, ẋ))}dt and taking η = 0 at

t = a and t = b, from inequality (4.6) we obtain

1

r
(er[

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt] − 1) ≥

∫ b

a

[µT gx(t, x, ẋ)
1

p
(epη − 1)

+µT epη
dη

dt
gẋ(t, x, ẋ) + ρ1‖θ(t, x, x)‖2]dt. (4.7)

Now, since −
∫ b

a
µT g(t, x, ẋ)dt is (p,−r)− ρ2 − (η, θ)-invex, therefore we reach

−1

r
[er[

∫
b

a
{µT (g(t,x,ẋ)−g(t,x,ẋ))}dt] − 1] ≥

∫ b

a

[−µT gx(t, x, ẋ)
1

p
(epη − 1)

−epη
dη

dt
µT gẋ(t, x, ẋ) + ρ2‖θ(t, x, x)‖2]dt. (4.8)

Adding inequalities (4.7) and (4.8), we have

1

r
(er[

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt] − 1) ≥ 1

r
[er[

∫
b

a
{µT (g(t,x,ẋ)−g(t,x,ẋ))}dt] − 1]

+(ρ1 + ρ2)

∫ b

a

‖θ(t, x, x)‖2dt.

By the assumption (ρ1 + ρ2) ≥ 0, we have

1

r
(er[

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt] − 1) ≥ 1

r
(er[

∫
b

a
{µT (g(t,x,ẋ)−g(t,x,ẋ))}dt] − 1). (4.9)

Since x is feasible for (VP) and µ(t) ≥ 0, then µT g(t, x, ẋ) ≥ 0. Hence,

∫ b

a

f(t, x, ẋ)dt ≥
∫ b

a

{f(t, x, ẋ)− µT g(t, x, ẋ)}dt.

Therefore, inf (VP) ≥ sup (MWVD).
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Theorem 4.2. (Strong Duality). If x is a solution of the primal problem (VP), and it is
normal (see [16]), then there exists µ(t) such that (x, µ) is a feasible solution of (MWVD). If
the hypotheses of the Weak Duality Theorem 4.1 hold, then (x, µ) is an optimal solution of the
dual problem (MWVD), and the corresponding objective values are equal.

Proof. Since x is a solution of the primal problem (VP) and it is normal (see [21]), then from
Proposition 3.1, there exists a piecewise smooth function µ : I → R

p such that (x, µ) satisfies

fx(t, x, ẋ)− µT gx(t, x, ẋ) =
d

dt
{fẋ(t, x, ẋ)− µT gẋ(t, x, ẋ)}, (4.10)

µT g(t, x, ẋ)dt = 0, (4.11)

µ(t) ≥ 0, t ∈ I. (4.12)

Thus, from the above relations, it follows that (x, µ) is a feasible solution of the dual problem
(MWVD). Since all the hypotheses of the Weak Duality Theorem 4.1 hold, (x, µ) is an optimal
solution of (MWVD) and the optimal values of (VP) and (MWVD) are same.

Theorem 4.3. (Strict Converse Duality). Let x be an optimal solution of (VP), and which
also be normal (see [21]). If (u, µ) is an optimal solution of the dual problem (MWVD) and

moreover, if
∫ b

a
fdt and

∫ b

a
−µTgdt are strictly (p, r) − ρ1 − (η, θ)-invex and strictly (p,−r) −

ρ2 − (η, θ)-invex, respectively at u on H with (ρ1 + ρ2) ≥ 0, then x = u, that is u is an optimal
solution of (VP).

Proof. We will prove the theorem by the method of contradiction. Suppose that x 6= u. Since
x is an optimal solution of (VP) and it is normal, there exists a piecewise smooth function
µ : I → R

p. Then (x, µ) is an optimal solution of (MWVD). As (u, µ) is also an optimal
solution of (MWVD), it follows that

∫ b

a

f(t, x, ẋ)dt =

∫ b

a

f(t, u, u̇)dt. (4.13)

Since
∫ b

a
fdt is strictly (p, r)− ρ1 − (η, θ)-invex at u on H, the strict inequality

1

r
(er[

∫
b

a
(f(t,x,ẋ)−f(t,u,u̇)dt] − 1) >

∫ b

a

[fx(t, u, u̇)
1

p
(epη − 1)

+fẋ(t, u, u̇)e
pη dη

dt
+ ρ1‖θ(t, x, u)‖2]dt (4.14)

holds ∀x ∈ H. As x ∈ H, the inequality (4.14) reduces to

1

r
(er[

∫
b

a
(f(t,x,ẋ)−f(t,u,u̇)dt] − 1) >

∫ b

a

[fx(t, u, u̇)
1

p
(epη − 1)

+fẋ(t, u, u̇)e
pη dη

dt
+ ρ1‖θ(t, x, u)‖2]dt. (4.15)

Using the equation (4.2) in (4.15) and integrating by parts, we obtain

1

r
(er[

∫
b

a
(f(t,x,ẋ)−f(t,u,u̇)dt] − 1) >

∫ b

a

[µT {1
p
(epη − 1)gx(t, u, u̇)

+epη
dη

dt
gẋ(t, u, u̇)}+ ρ1‖θ(t, x, u)‖2]dt. (4.16)
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From (4.13) and (4.16), we have

∫ b

a

[µT {1
p
(epη − 1)gx(t, u, u̇) + epη

dη

dt
gẋ(t, u, u̇)}+ ρ1‖θ(t, x, u)‖2]dt < 0. (4.17)

By the strict (p,−r)− ρ2 − (η, θ)-invexity assumption of
∫ b

a
−µT gdt, we reach

−1

r
[er[

∫
b

a
{µT (g(t,x,ẋ)−g(t,u,u̇))}dt] − 1] >

∫ b

a

[−µT gx(t, u, u̇)
1

p
(epη − 1)

−epη
dη

dt
µT gẋ(t, u, u̇) + ρ2‖θ(t, x, u)‖2]dt, ∀x ∈ H. (4.18)

As x ∈ H, the inequality (4.18) reduces to

−1

r
[er[

∫
b

a
{µT (g(t,x,ẋ)−g(t,u,u̇))}dt] − 1] >

∫ b

a

[−µT gx(t, u, u̇)
1

p
(epη − 1)

−epη
dη

dt
µT gẋ(t, u, u̇) + ρ2‖θ(t, x, u)‖2]dt. (4.19)

Since x and (u, µ) are the optimal solutions of (VP) and (MWVD), respectively we get

∫ b

a

{µT (g(t, x, ẋ)− g(t, u, u̇))}dt ≥ 0. (4.20)

From (4.19) and (4.20), we have

∫ b

a

[−µT gx(t, u, u̇)
1

p
(epη − 1)− epη

dη

dt
µT gẋ(t, u, u̇) + ρ2‖θ(t, x, u)‖2]dt < 0. (4.21)

Adding (4.17) and (4.21), we obtain

(ρ1 + ρ2)

∫ b

a

‖θ(t, x, u)‖2dt < 0,

which contradicts the fact that (ρ1 + ρ2) ≥ 0. Therefore, x = u, that is, u is an optimal solution
of (VP).

5 l1 exact exponential penalty in variational problem

In this section, the l1 exact exponential penalty method has been used to convert a constrained
variational problem (VP) into an unconstrained one.
We obtain the following unconstrained variational problem corresponding to (VP):

(VPr(c)) min P (x(t), c) =

[

1

r
er

∫
b

a
f(t,x,ẋ)dt + c

{

p
∑

i=1

1

r

(

1− er
∫
b

a
gi
+
(t,x,ẋ)dt

)

}]

, (5.1)

where
1

r

(

1− er
∫
b

a
gi
+
(t,x,ẋ)dt

)

is defined by

1

r

(

1− er
∫
b

a
gi+(t,x,ẋ)dt

)

=

{

0, if gi(t, x, ẋ) ≥ 0,
1

r

(

1− er
∫
b

a
gi(t,x,ẋ)dt

)

, if gi(t, x, ẋ) < 0,
(5.2)
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where i = 1, 2, ..., p and c > 0 is the penalty parameter.
Now we will show that an optimal solution of the original variational problem (VP) is also an
optimal solution of the unconstrained variational problem with the l1 exact exponential penalty
function method under the suitable (p, r)− ρ− (η, θ)-invexity assumptions.
Further, denote the set of active constraints at point x ∈ X by I(x), which is defined by

I(x) = {i ∈ I : gi(t, x, ẋ) = 0.}

Theorem 5.1. Let x be an optimal solution of (VP). If
∫ b

a
fdt, −

∫ b

a
gidt, i ∈ I(x), are (p, r)−

ρ− (η, θ)-invex, (p,−r)− ρ̂i− (η, θ)-invex, respectively at x with respect to same η, θ with (ρ+
∑p

i=1 µiρ̂i) ≥ 0, then x is an optimal solution of (VPr(c)) with c ≥ er
∫
b

a
f(t,x,ẋ)dt max {µi, i ∈

I = {1, 2, ..., p}}.

Proof. Since
∫ b

a
fdt is (p, r)− ρ− (η, θ)-invex at x, we obtain

1

r
[er{

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt} − 1] ≥

∫ b

a

[fx(t, x, ẋ)
1

p
(epη − 1)

+fẋ(t, x, ẋ)e
pη dη

dt
+ ρ‖θ(t, x, x)‖2]dt. (5.3)

By necessary optimality condition (Proposition 3.1), we have

1

r
[er{

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt} − 1] ≥

∫ b

a

[{µT gx(t, x, ẋ) +
d

dt
(fẋ(t, x, ẋ)− µT gẋ(t, x, ẋ))}

×1

p
(epη − 1) + fẋe

pη dη

dt
+ ρ‖θ(t, x, x)‖2]dt.

=

∫ b

a

[µT gx(t, x, ẋ)
1

p
(epη − 1) + µT epη

dη

dt
gẋ(t, x, ẋ) + ρ‖θ(t, x, x)‖2]dt. (5.4)

(After integration by parts of
∫ b

a
{1
p
(epη − 1) d

dt
(fẋ(t, x, ẋ) − µT gẋ(t, x, ẋ))}dt and using η = 0, at

t = a and t = b).

By the (p,−r)− ρ̂i − (η, θ)-invexity assumption of −
∫ b

a
gidt, for i = 1, 2, ..., p at x with respect

to η, θ, we have the inequality

−1

r
(er

∫
b

a
(gi(t,x,ẋ)−gi(t,x,ẋ))dt − 1) ≥

∫ b

a

[−gix(t, x, ẋ)
1

p
(epη − 1)

−giẋ(t, x, ẋ)e
pη dη

dt
+ ρ̂i‖θ(t, x, x)‖2]dt, i ∈ I(x), (5.5)

Multiplying (5.5) by µi ≥ 0, i ∈ I(x), for i = 1, 2, ..., p, respectively we get

−1

r
µi(e

r
∫
b

a
(gi(t,x,ẋ)−gi(t,x,ẋ))dt − 1) ≥

∫ b

a

[−µig
i
x(t, x, ẋ)

1

p
(epη − 1)

−µig
i
u(t, x, ẋ)

1

p
(epη − 1) + µiρ̂‖θ(t, x, x)‖2]dt, i ∈ I(x). (5.6)

Summing over i = 1, 2, ..., p in the inequality (5.6) we obtain

−1

r

p
∑

i=1

µi(e
r
∫
b

a
(gi(t,x,ẋ)−gi(t,x,ẋ))dt − 1) ≥

∫ b

a

[−µT gx(t, x, ẋ)
1

p
(epη − 1)

−µT gu(t, x, ẋ)
1

p
(epη − 1) +

p
∑

i=1

µiρ̂‖θ(t, x, x)‖2]dt. (5.7)
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Adding the inequalities (5.4) and (5.7), we have

1

r
(er

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt − 1)− 1

r

p
∑

i=1

µi(e
r
∫
b

a
(gi(t,x,ẋ)−gi(t,x,ẋ))dt − 1)

≥ (ρ+

p
∑

i=1

µiρ̂i)

∫ b

a

‖θ(t, x, x)‖2dt. (5.8)

As (ρ+
∑p

i=1 µiρ̂i) ≥ 0, from (5.8), we obtain

1

r
(er

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt − 1)− 1

r

p
∑

i=1

µi(e
r
∫
b

a
(gi(t,x,ẋ)−gi(t,x,ẋ))dt − 1) ≥ 0. (5.9)

As x is an optimal solution of (VP), by (3.9) (Proposition 3.1) we obtain

1

r
(er

∫
b

a
(f(t,x,ẋ)−f(t,x,ẋ))dt − 1)− 1

r

∑

i∈I(x)

µi(e
r
∫
b

a
gi(t,x,ẋ)dt − 1) ≥ 0.

Hence, for all x ∈ X,

1

r
er

∫
b

a
f(t,x,ẋ)dt +

1

r
er

∫
b

a
f(t,x,ẋ)dt

∑

i∈I(x)

µi(1− er
∫
b

a
gi(t,x,ẋ)dt) ≥ 1

r
er

∫
b

a
f(t,x,ẋ)dt. (5.10)

Thus by (5.2), it follows that

1

r
er

∫
b

a
f(t,x,ẋ)dt +

1

r
er

∫
b

a
f(t,x,ẋ)dt

∑

i∈I(x)

µi(1− er
∫
b

a
gi+(t,x,ẋ)dt) ≥ 1

r
er

∫
b

a
f(t,x,ẋ)dt. (5.11)

Since c ≥ er
∫
b

a
f(t,x,ẋ)dt max {µi, i ∈ I}, therefore for all x ∈ X, we have

1

r
er

∫
b

a
f(t,x,ẋ)dt + c

{

p
∑

i=1

1

r
(1− er

∫
b

a
gi+(t,x,ẋ)dt)

}

≥ 1

r
er

∫
b

a
f(t,x,ẋ)dt.

As x is an optimal solution of (VP), together with (5.2), we obtain the inequality

1

r
er

∫
b

a
f(t,x,ẋ)dt + c

{

p
∑

i=1

1

r
(1− er

∫
b

a
gi+(t,x,ẋ)dt)

}

≥ 1

r
er

∫
b

a
f(t,x,ẋ)dt + c

{

p
∑

i=1

1

r
(1− er

∫
b

a
gi+(t,x,ẋ)dt)

}

which holds for all x ∈ X. By the definition of the exponential penalized control problem
(VPr(c)), it follows that the inequality

P (x(t), c) ≥ P (x(t), c)

holds for all x ∈ X. This implies that x is an optimal solution of the l1 exponential penalized
variational problem (VPr(c)).

To prove converse of the Theorem 5.1, we need the following proposition.
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Proposition 5.1. Let x be an optimal solution of the l1 exponential penalized variational
problem (VPr(c)). Then the inequality

∫ b

a

f(t, x, ẋ)dt ≥
∫ b

a

f(t, x, ẋ)dt

holds for all x ∈ K.

Proof. Since x is an optimal solution of the l1 exponential penalized variational problem (VPr(c)),
then the inequality

P (x(t), c) ≥ P (x(t), c)

holds for all x ∈ X. By the definition of the l1 exponential penalized variational problem
(VPr(c)), it follows that the inequality

1

r
er

∫
b

a
f(t,x,ẋ)dt + c

{

p
∑

i=1

1

r
(1− er

∫
b

a
gi+(t,x,ẋ)dt)

}

≥ 1

r
er

∫
b

a
f(t,x,ẋ)dt + c

{

p
∑

i=1

1

r
(1− er

∫
b

a
gi+(t,x,ẋ)dt)

}

(5.12)

holds for all x ∈ X. Thus, for any x ∈ K,

1

r
er

∫
b

a
f(t,x,ẋ)dt ≥ 1

r
er

∫
b

a
f(t,x,ẋ)dt + c

{

p
∑

i=1

1

r
(1− er

∫
b

a
gi+(t,x,ẋ)dt)

}

. (5.13)

Therefore, by (5.2), for any x ∈ K,

1

r
er

∫
b

a
f(t,x,ẋ)dt ≥ 1

r
er

∫
b

a
f(t,x,ẋ)dt. (5.14)

Hence,
∫ b

a

f(t, x, ẋ)dt ≥
∫ b

a

f(t, x, ẋ)dt, ∀x ∈ K.

Now, we prove converse of the Theorem 5.1 under the suitable (p, r) − ρ − (η, θ)-invexity
assumptions imposed on the functions involved in the original variational problem (VP).

Theorem 5.2. Let x be an optimal solution of (VPr(c)) (where c is replaced by c in the equa-
tion (5.1)) and let the penalty parameter c be sufficiently large number

(c > er
∫
b

a
f(t,x̃, ˙̃x)dt max {µ̃i, i ∈ I}, where x̃ is a feasible solution of (VP) and satisfies the nec-

essary optimality conditions (3.8)-(3.10), with Lagrange multiplier µ̃i). Furthermore, if
∫ b

a
fdt,

−
∫ b

a
gidt, i ∈ I(x) are (p, r) − ρ− (η, θ)-invex and (p,−r)− ρ̂i − (η, θ)-invex, respectively at x

with respect to same η, θ with (ρ +
∑p

i=1 µ̃iρ̂i) ≥ 0, and also if the set of all feasible solutions
K of (VP) is compact, then x is an optimal solution of (VP).

Proof. To prove that x is an optimal solution of the original variational problem (VP), first to
show that x is a feasible solution of the original variational problem (VP). We prove this by the
method of contradiction. Suppose that x is not a feasible solution of (VP). Since the set of all

feasible solutions of (VP) is compact, then
∫ b

a
f(t, x, ẋ)dt admits its minimum. Assume that the

minimum attains at x̃. Therefore, the original variational problem (VP) has an optimal solution
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at x̃. Since
∫ b

a
fdt and −

∫ b

a
gidt, i ∈ I(x) are (p, r)−ρ−(η, θ)-invex and (p,−r)− ρ̂i−(η, θ)-invex

respectively, at x with respect to same η, θ, therefore the inequalities

1

r
(er

∫
b

a
(f(t,x,ẋ)−f(t,x̃, ˙̃x))dt − 1) ≥

∫ b

a

[
1

p
fx(t, x̃, ˙̃x)(e

pη − 1)

+ fẋ(t, x̃, ˙̃x)e
pη dη

dt
+ ρ‖θ(t, x, x̃)‖2]dt, (5.15)

−1

r
(er

∫
b

a
(gi(t,x,ẋ)−gi(t,x̃, ˙̃x)dt) − 1) ≥

∫ b

a

[−gix(t, x̃, ˙̃x)
1

p
(epη − 1)

−giẋ(t, x̃, ˙̃x)e
pη dη

dt
+ ρ̂i‖θ(t, x, x̃)‖2]dt, i ∈ I(x), (5.16)

hold for all x ∈ X. Inequalities (5.15) and (5.16) are also satisfied at x. Thus,

1

r
(er

∫
b

a
(f(t,x,ẋ)−f(t,x̃, ˙̃x))dt − 1) ≥

∫ b

a

[
1

p
fx(t, x̃, ˙̃x)(e

pη − 1)

+ fẋ(t, x̃, ˙̃x)e
pη dη

dt
+ ρ‖θ(t, x, x̃)‖2]dt, (5.17)

−1

r
(er

∫
b

a
(gi(t,x,ẋ)−gi(t,x̃, ˙̃x))dt − 1) ≥

∫ b

a

[−gix(t, x̃, ˙̃x)
1

p
(epη − 1)

−giẋ(t, x̃, ˙̃x)e
pη dη

dt
+ ρ̂i‖θ(t, x, x̃)‖2]dt, i ∈ I(x). (5.18)

Applying necessary optimality condition (Proposition 3.1) and integration by parts in the in-
equality (5.17), we have

1

r
(er

∫
b

a
(f(t,x,ẋ)−f(t,x̃, ˙̃x))dt − 1) ≥

∫ b

a

[µ̃T gx(t, x̃, ˙̃x)
1

p
(epη − 1)

+µ̃T epη
dη

dt
gẋ(t, x̃, ˙̃x) + ρ‖θ(t, x, x̃)‖2]dt. (5.19)

Multiplying (5.5) by µ̃i ≥ 0, i ∈ I(x) and summing over i = 1, 2, ..., p, we obtain

−1

r

p
∑

i=1

µ̃i(e
r
∫
b

a
(gi(t,x,ẋ)−gi(t,x̃, ˙̃x))dt − 1) ≥

∫ b

a

[−µ̃T gx(t, x̃, ˙̃x)
1

p
(epη − 1)

−µ̃T gẋ(t, x̃, ˙̃x)e
pη dη

dt
+

p
∑

i=1

µ̃iρ̂i‖θ(t, x, x̃)‖2]dt, i ∈ I(x). (5.20)

Adding the inequalities (5.19) and (5.20), we obtain

1

r
(er

∫
b

a
(f(t,x,ẋ)−f(t,x̃, ˙̃x))dt − 1)− 1

r

∑

i∈I(x)

µ̃i(e
r
∫
b

a
(gi(t,x,ẋ)−gi(t,x̃, ˙̃x))dt − 1)

≥ (ρ+

p
∑

i=1

µiρ̂i)

∫ b

a

‖θ(t, x, x̃)‖2dt. (5.21)

By assumption (ρ+
∑p

i=1 µiρ̂i) ≥ 0, the inequality reduces to

1

r
(er

∫
b

a
(f(t,x,ẋ)−f(t,x̃, ˙̃x))dt − 1) +

1

r

∑

i∈I(x)

µ̃i(1− er
∫
b

a
(gi(t,x,ẋ)−gi(t,x̃, ˙̃x))dt) ≥ 0. (5.22)
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Now using the necessary optimality conditions together with the feasibility of x̃ in the original
variational problem (VP), we obtain

1

r
er

∫
b

a
f(t,x,ẋ)dt +

1

r
er

∫
b

a
f(t,x̃, ˙̃x)dt

p
∑

i=1

µ̃i(1− er
∫
b

a
gi+(t,x,ẋ)dt) ≥ 1

r
er

∫
b

a
f(t,x̃, ˙̃x)dt. (5.23)

By assumption c > er
∫
b

a
f(t,x̃,ũ)dt max {µ̃i, i ∈ I}, from (5.24) we have

1

r
er

∫
b

a
f(t,x,ẋ)dt + c

p
∑

i=1

1

r
(1− er

∫
b

a
gi+(t,x,ẋ)dt)

>
1

r
er

∫
b

a
f(t,x̃, ˙̃x)dt. (5.24)

Using the feasibility of x̃ in the original variational problem (VP), together with (5.2), we obtain

1

r
er

∫
b

a
f(t,x,ẋ)dt + c

p
∑

i=1

1

r
(1− er

∫
b

a
gi+(t,x,ẋ)dt)

>
1

r
er

∫
b

a
f(t,x̃, ˙̃x)dt + c

p
∑

i=1

1

r
(1− er

∫
b

a
gi+(t,x̃, ˙̃x)dt). (5.25)

Hence, by the definition of the l1 exponential penalized variational problem (VPr(c)), we ob-
tain P (x(t), c) > P (x̃(t), c), which contradicts the fact that x is an optimal solution of the l1
exponential penalized variational problem (VPr(c)). Thus, x is a feasible solution of (VP).
From the Proposition 5.1, the inequality

∫ b

a

f(t, x, ẋ)dt ≥
∫ b

a

f(t, x, ẋ)dt

holds for all x ∈ K. We conclude that x is an optimal solution of the original variational problem
(VP).

6 Conclusion

In this paper, we have established the sufficient optimality conditions and several duality re-
sults for variational problems under (p, r) − ρ − (η, θ)-invexity assumptions. We have defined
(p, r)−ρ− (η, θ)-invexity for functional and studied the duality results for Mond-Weir type dual
problem. Example 2.3 ensures that the concept of (p, r) − ρ − (η, θ)-invexity for functional is
more general than ρ − (η, θ)-invexity for functional. We also convert constrained variational
problem into unconstrained problem by the help of l1 exponential penalty function method. We
characterize the solutions of the variational problem (VP) in terms of the minimizers of the
unconstrained variational problem with the l1 exact exponential penalty function. Thus, we
establish the equivalence between an optimal solution of the original variational problem (VP)
and a minimizer of its associated exponential penalized variational problem with the l1 exact
exponential penalty function. We prove this result under the suitable (p, r)− ρ− (η, θ)-invexity
assumptions imposed on the functions constituting the original variational problem (VP). In
the Section 5 we introduce a new type of unconstrained variational problem with the l1 exact
exponential penalty function method. To the best of our knowledge, it is completely new and
not available in the existing literature. There is a rich scope to study this type of problems in
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non-smooth case. One can also formulate a fractional analogue of our model and study duality re-
sults and also establish the sufficient optimality conditions of the fractional variational problems.
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