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On the global complexity bounds of two nonlinear conjugate
gradient methods for nonconvex optimization

Chaohui Liang1, Fei Wang2 and Li Zhang 1

Abstract

In this paper, we study global complexity bounds of the MHS method in [8]
and the MFR method in [9] for nonconvex optimization. The global complexity
bound for an iterative method solving unconstrained optimization of f is an upper
bound to the number of iterations required to get an approximate solution such that
∥∇f(x)∥ ≤ ϵ. We show that the global complexity bounds of the MHS method and

the MFR methods are O(ϵ−(2+2r)) and O(aϵ
−2

), respectively, where r ≥ 0 and a > 1
are two constants.
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1 Introduction

In this paper, we consider the general unconstrained optimization problem:

min f(x), x ∈ Rn, (1.1)

where f : Rn → R is a smooth function and its gradient g(x) , ∇f(x) is available.
Throughout the paper, we denote gk = ∇f(xk), sk = xk+1 − xk and yk−1 = gk − gk−1.

Recently, global complexity bounds for some iterative methods have been studied for
unconstrained optimization problems by several authors in [1, 3, 4, 5, 6, 7]. The global
complexity bound of an iterative method for unconstrained optimization of an objective
function f is an upper bound to the number of iterations required to get an approximate
solution such that ∥∇f(x)∥ ≤ ϵ, where ϵ is a given small positive constant. So far, some
authors have given some complexity bounds of the steepest method and Newton type
methods for unconstrained optimization [1, 3, 4, 5, 6, 7]. However, to the best of our
knowledge, no complexity bounds for nonlinear conjugate gradient methods have been
investigated. In this paper, we are going to discuss the global complexity bounds for two
existing nonlinear conjugate gradient methods, one is the MHS method in [8] and the
other is the MFR method in [9].

Let us first recall these two methods. In [8], Zhang et al. presented a modified
Hestenes-Stiefel (MHS) nonlinear conjugate gradient method for solving (1.1). The steps
of the MHS method are described as follows.

The MHS method:
1Department of Mathematics, Changsha University of Science and Technology, Changsha 410004,

China.
2Department of Mathematics, Hunan City University, Yiyang 413000, China.

AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

237



Chaohui Liang, Fei Wang and Li Zhang

Step 0. Choose x0 ∈ Rn, r ≥ 0, t > 0, δ ∈ (0, 1), ρ ∈ (0, 1) and ϵ > 0. Let k := 0.

Step 1. If ∥gk∥ ≤ ϵ, then stop. Otherwise go to Step 1.

Step 2. Compute dk by (1.2)-(1.3) below, that is,

dk =

{
−gk, if k = 0,
−gk + βMHS

k dk−1 − θMHS
k zk−1, if k ≥ 1,

(1.2)

where

βMHS
k =

gTk zk−1

dTk−1zk−1
, θMHS

k =
gTk dk−1

dTk−1zk−1
, (1.3)

zk−1 = yk−1 +
(
max

{
0,−

dTk−1yk−1

dTk−1sk−1

}
+ t∥gk−1∥r

)
sk−1. (1.4)

Step 3. Compute αk by the following Armijo line search (1.5), that is, compute
αk = max{1, ρ1, ρ2, . . .} such that

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk. (1.5)

Step 4. Set xk+1 = xk + αkdk.

Step 5. Let k := k + 1 and go to Step 1.

Remark 1.1 By the definition of zk, it is clear that

dTk−1zk−1 ≥ t∥gk−1∥rdTk−1sk−1 > 0, (1.6)

which ensures that the MHS method is well defined.

In [9], Zhang et al. proposed a modified Fletcher-Reeves (MFR) nonlinear conjugate
gradient method for solving (1.1), which is given below.

The MFR method:

Step 0. Choose x0 ∈ Rn, δ ∈ (0, 1), ρ ∈ (0, 1) and ϵ > 0. Let k := 0.

Step 1. If ∥gk∥ ≤ ϵ, then stop. Otherwise go to Step 1.

Step 2. Compute dk by (1.7)-(1.8) below, that is,

dk =

{
−gk, if k = 0,
−θMFR

k gk + βFR
k dk−1, if k ≥ 1,

(1.7)

where

θMFR
k =

dTk−1yk−1

∥gk−1∥2
, βFR

k =
∥gk∥2

∥gk−1∥2
. (1.8)

Step 3. Compute αk by the Armijo line search (1.5).

Step 4. Set xk+1 = xk + αkdk.

Step 5. Let k := k + 1 and go to Step 1.
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Remark 1.2 It is easy to see that the MHS method and the MFR method satisfy the
following sufficient descent condition

gTk dk = −∥gk∥2. (1.9)

This shows that they are descent methods.
The MHS method and the MFR method were proven to be globally convergent for

nonconvex optimization [8, 9] when the line search (1.5) is used. In the next section and
Section 3, we shall investigate the global complexity bounds for the MHS method and
the MFR method, respectively.

2 The global complexity bound for the MHS method

In this section, we investigate the global complexity bound for the MHS method. To this
end, we first give the following standard assumptions.
Assumption 1.

(i) The level set Ω = {x| f(x) ≤ f(x0)} is bounded.
(ii) In some neighborhood N of Ω, the gradient is Lipschitz continuous, namely, there

exists a constant L > 0 such that

∥g(x)− g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ N. (2.1)

It is clear that xk ∈ Ω for all k ≥ 0 and the sequence {f(xk)} is decreasing and
therefore converges. Moreover, Assumption 1 implies that there exists a positive constant
M such that

∥g(x)∥ ≤ M, ∀x ∈ N. (2.2)

From (1.4), (2.1) and (2.2), we have

∥zk∥ ≤ ∥yk∥+
( |dTk yk|
dTk sk

+ t∥gk∥r
)
∥sk∥

≤ L∥sk∥+
(L∥dk∥∥sk∥

∥dk∥∥sk∥
+ tM r

)
∥sk∥

= M1∥sk∥, (2.3)

where M1 = 2L+ tM r.
The following result gives an estimation to the stepsize αk from below, whose proof

is standard.

Lemma 2.1. [8, 9] Let Assumption 1 hold and the sequence {xk} be generated by the
MHS method or the MFR method. Then there exists a constant C1 > 0 such that

αk ≥ C1
∥gk∥2

∥dk∥2
. (2.4)

The following theorem gives an estimation of the global complexity bound for the
MHS method.

Theorem 2.1. Suppose that Assumption 1 hold. Let the sequence {xk} be generated by
the MHS method. Let J be the first iterative such that ∥gJ∥ ≤ ϵ. Then,

J ≤ C2ϵ
−(2+2r), (2.5)

where C2 is a positive constant.
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Proof. By (1.2)-(1.3), (2.1), (1.6) and (2.3), we get

∥dk∥ ≤ ∥gk∥+ |βMHS
k |∥dk−1∥+ |θMHS

k |∥zk−1∥

≤ ∥gk∥+
2∥gk∥∥zk−1∥∥dk−1∥

dTk−1zk−1

≤ ∥gk∥+
2M1∥gk∥
t∥gk−1∥r

=
(
1 +

2M1

t∥gk−1∥r
)
∥gk∥,

which implies that
∥gk∥
∥dk∥

≥ t∥gk−1∥r

t∥gk−1∥r + 2M1
.

This together with (2.2) yields that

∥gk∥
∥dk∥

≥ t∥gk−1∥r

tM r + 2M1
. (2.6)

Since the sequence {f(xk)} decreases and converges, we suppose that limk→∞ f(xk) =
fmin. Then from the line search (1.5), (1.9), Lemma 2.1 and (2.6), we obtain

f(x0)− fmin ≥ f(x0)− f(xk) =
k−1∑
j=0

(
f(xj)− f(xj+1)

)
≥

k−1∑
j=0

(−δαjg
T
j dj) ≥

k−1∑
j=0

δC1
∥gj∥2

∥dj∥2
∥gj∥2

≥
k−1∑
j=1

C1δ
( t∥gj−1∥r

tM r + 2M1

)2
∥gj∥2

≥
k−1∑
j=1

C1δt
2

(tM r + 2M1)2

(
min

0≤j≤k−1
∥gj∥

)(2+2r)

= C3(k − 1)
(

min
0≤j≤k−1

∥gj∥
)(2+2r)

,

where C3 =
C1δt2

(tMr+2M1)2
. Hence, we have

min
0≤j≤k−1

∥gj∥ ≤
(f(x0)− fmin

C3(k − 1)

) 1
2+2r

.

Therefore,

k ≥ f(x0)− fmin

C3
ϵ−(2+2r) + 1 ⇒ min

0≤j≤k−1
∥gj∥ ≤ ϵ.

This finishes the proof. �
Remark 2.1 This theorem shows that the global complexity bound of the MHS method
is O(ϵ−(2+2r)). We also can see that the smaller the parameter r is, the better this bound
becomes.
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3 The global complexity bound for the MFR method

In this section, we study the global complexity bound for the MFR method.

From (1.7) and (1.9), we have

∥dk∥2 = (βFR
k )2∥dk−1∥2 + 2θMFR

k ∥gk∥2 − (θMFR
k )2∥gk∥2.

This and (1.8) yield that

∥dk∥2

∥gk∥4
=

∥dk−1∥2

∥gk−1∥4
−

(θMFR
k − 1)2

∥gk∥2
+

1

∥gk∥2

≤ ∥dk−1∥2

∥gk−1∥4
+

1

∥gk∥2

≤
k∑

j=0

1

∥gj∥2
,

which shows that
∥gk∥4

∥dk∥2
≥ 1∑k

j=0
1

∥gj∥2
. (3.1)

Now we present the theorem on the global complexity bound for the MFR method.

Theorem 3.1. Suppose that Assumption 1 hold. Let the sequence {xk} be generated by
the MFR method. Let J be the first iterative such that ∥gJ∥ ≤ ϵ. Then,

J ≤ C4a
ϵ−2

, (3.2)

where C4 and a > 1 are two positive constants.

Proof. Similar to Theorem 2.1, from (3.1), we have

f(x0)− fmin ≥
k−1∑
j=0

(
f(xj)− f(xj+1)

)
≥ δC1

k−1∑
j=0

∥gj∥4

∥dj∥2
≥ δC1

k−1∑
j=0

1∑j
l=0

1
∥gl∥2

≥ δC1

( k−1∑
j=0

1

j + 1

)(
min

0≤j≤k−1
∥gj∥

)2
= δC1Hk

(
min

0≤j≤k−1
∥gj∥

)2
,

where Hk =
∑k

j=1
1
j is the sum of the first k-terms of the Harmonic series. It is well-know

[2] that

Hk = ln k + γ + ηk, (3.3)

where γ is the Euler constant and ηk ≈ 1
2k converges to 0. Therefore, we have

min
0≤j≤k−1

∥gj∥ ≤
(f(x0)− fmin

δC1Hk

)1/2
,
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Hk ≥ f(x0)− fmin

C1δ
ϵ−2 ⇒ min

0≤j≤k−1
∥gj∥ ≤ ϵ.

Hence, by (3.3), we have

ln k ≥ f(x0)− fmin

C1δ
ϵ−2 − γ − ηk ⇒ min

0≤j≤k−1
∥gj∥ ≤ ϵ,

which implies that there exist two constants C4 > 0 and a > 1 such that

k ≥ C4a
ϵ−2

.

The proof is then complete.
�

4 Conclusions

We have studied the global complexity bound of two existing nonlinear conjugate gradient
methods for the nonconvex unconstrained optimization problem (1.1). The bound is
useful when we want to estimate in advance the worst computational cost for a given
accuracy of a solution. How to estimate the global complexity bounds for other conjugate
gradient methods solving nonconvex optimization is our future work.
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