# THE MODE OF A VIBRATING HOMOGENEOUS PLATE IS DECREASING ON THE DOMAIN WITH A HOLE 

PARASTOO MONJEZI


#### Abstract

In this note, by some numerical results we show that the principal eigenvalues of the Dirichlet and Bi-harmonic boundary value problems on the tow dimensional domain with a hole are decreasing when the hole moves until it touches the outer boundary of the domain.


## 1. Introduction

The vibration of a homogeneous plate, a plate with constant density, having the shape $\Omega \subset \mathbb{R}^{2}$, with boundary $\partial \Omega$, is modeled by the following boundary value problem

$$
\begin{equation*}
-\Delta u=\lambda u \text { in } \Omega, \text { and } u=0 \text { on } \partial \Omega . \tag{1.1}
\end{equation*}
$$

The parameter $\lambda$ is the eigenvalue (mode) and $u$ the corresponding eigenfunction (bending).
Let $D(h):=B \backslash B_{h}$, where $B$ stands for the unit ball in $\mathbb{R}^{2}$, centered at the origin, and $B_{h}$ is the ball centered at $(h, 0) \in \mathbb{R}^{2}$ with radius $a<1$. The mathematical formulation of the eigenvalue problem (1.1) corresponding to $D(h)$ is

$$
\begin{equation*}
-\Delta u_{h}=\lambda(h) u_{h} \text { in } D(h), \text { and } u_{h}=0 \text { on } \partial D(h) . \tag{1.2}
\end{equation*}
$$

The principal eigenpair corresponding to 1.2 is denoted $\left(\lambda(h), u_{h}\right) \in \mathbb{R}^{+} \times H_{0}^{1}(\Omega)$. The following Theorem has been proved in [2]:

Theorem 1.1. The function $\lambda:[0,1-a] \rightarrow \mathbb{R}^{+}$is decreasing.
We show that this theorem is valid for Bi-harmonic eigenvalue problems and collect some numerical results.

## 2. Bi-harmonic equation

It's well known that $\lambda^{2}$ is an eigenvalue for the following Bi-harmonic eigenvalue problem with Navier boundary conditions

$$
\begin{equation*}
\Delta^{2} u=\lambda^{2} u \quad \text { in } \Omega, \quad u=\Delta u=0 \quad \text { on } \partial \Omega, \tag{2.1}
\end{equation*}
$$

if and only if $\lambda$ is an eigenvalue for the Dirichlet problem (1.1), see [1]. Therefore, we'll have the following corollary.

Corollary 2.1. If $\Omega=D(h)$, then the Theorem 1.1 is valid for the principal eigenvalue of (2.1).

Now we use the PDETool of MATLAB's software to calculate $\lambda(h)$ for different values of $h$, when $\Omega=D(h)$ in (2.1). Let $-\Delta u=\lambda v$. Thus with this substitution the problem (2.1) converts to the following system

$$
\begin{align*}
& -\Delta u=\lambda v \text { in } \Omega, \text { and } u=0 \text { on } \partial \Omega,  \tag{2.2}\\
& -\Delta v=\lambda u \text { in } \Omega, \text { and } v=0 \text { on } \partial \Omega . \tag{2.3}
\end{align*}
$$

Let

$$
C=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), D=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and } W=\binom{u}{v}
$$

Hence the equations (2.2) and (2.3) can be written as the following

$$
-\operatorname{div}(C * \nabla W)+A * W=\lambda D * W
$$

Now by applying PDETool of MATLAB we have the following examples.
Example 1. Let $\Omega=D(h)=B \backslash B_{h}$ and $a=0.3$, thus

| $h$ | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda(h)$ | 19.4848 | 17.0155 | 14.3666 | 12.3177 | 10.7402 | 9.5125 | 8.5468 | 7.7814 |

Figure 1 shows the graph of the eigenfunction corresponding to $\lambda(0.5)$.


Figure 1. Graph of $u_{0.5}(x)$ on $\Omega=B \backslash B_{0.5}$.

## 3. Numerical results on special domains

In this section, by some numerical results, we show taht, in the prbblem 2.1 $\lambda$ is decreasing for some tow dimensional symmetric domain with a hole, when the hole moves (along a radius) until it touches the outer boundary of the domain. The analytic proof of these results is an open problem.

Example 2. Let $\Omega=E \backslash E_{h}$, that $E: x^{2}+\left(\frac{y}{0.5}\right)^{2} \leq 1$ and $E_{h}:\left(\frac{x-h}{0.5}\right)^{2}+\left(\frac{y}{0.25}\right)^{2} \leq 1$, thus

| $h$ | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda(h)$ | 61.7928 | 46.935 | 37.5802 | 31.267 | 26.8152 | 23.5544 |

In Figure 2 you can see the graph of the principal eigenfunction for $\lambda(0.3)$.


Figure 2. Graph of $u_{0.3}(x)$ on $\Omega=E \backslash E_{0.3}$.

Example 3. Let $\Omega=E \backslash E_{h}$, that $E: x^{2}+\left(\frac{y}{0.5}\right)^{2} \leq 1$ and $E_{h}:\left(\frac{x-h}{0.2}\right)^{2}+\left(\frac{y}{0.3}\right)^{2} \leq 1$, hence

| $h$ | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda(h)$ | 32.6276 | 27.8041 | 24.2876 | 21.6588 | 19.6534 | 18.1096 | 16.9165 | 16.003 |

Example 4. Let $\Omega=S \backslash B_{h}$, that $S=\left\{(x, y) \in \mathbb{R}^{2}:|x| \leq 1,|y| \leq 1\right\}$ and $B_{h}:(x-h)^{2}+y^{2} \leq$ 0.09. The values of $\lambda(h)$ are in the following table. Figure 3 shows the graph of $u_{0.5}(x)$.

| $h$ | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda(h)$ | 15.0883 | 13.596 | 11.7832 | 10.3031 | 9.1231 | 8.1797 |

Remark 3.1. From Examples 1-4 we deduce that $\lambda(0)=\sup _{h} \lambda(h)$ and on any radius the minimum of $\lambda(h)$ occurs when the hole touches the outer boundary of $\Omega$. These results have been proved for Dirichlet problem on $\Omega=D(h)$.

The following example shows that $\lambda(h)$ is decreasing however $\Omega$ is not symmetric.


Figure 3. The Graph of $u_{0.5}(x)$ on $\Omega=S \backslash B_{0.5}$.
Example 5. Let $\Omega=B \backslash T_{h}$, that $B: x^{2}+y^{2} \leq 1$ and $T_{h}$ is a triangle with vertices $(h+0.3,0)$ , $(h,-0.2)$ and $(h, 0.4)$, thus

| $h$ | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda$ | 12.9091 | 11.3613 | 10.0438 | 8.9797 | 8.13 | 7.4527 |

The Figure 4 shows the graph of $u_{0}(x)$.


Figure 4. The Graph of $u_{0}(x)$ on $\Omega=B \backslash T_{0}$.

## References

[1] N. Dunford, J. T. Schwartz,Linear operator, Part I, Wiley (Interscience), New york, 587 (1958)
[2] A. G. Ramm, P. N. Shivakumar, Inequalities for the minimal eigenvalue of the Laplacian in an annulus, Math. Inequal. Appl. Vol. 1, n. 4, (1998) 559-563
[3] J. Simon, Differentiation with Respect to the Domain in Boundary Value Problems, Numerical Functional Analysis and Optimization, Vol. 2, (1980) 649-687

Parastoo Monjezi
M.Sc. Student of Department of Mathematics, Faculty of Mathematical Sciences \& Computer, Shahid Chamran University, Golestan Blvd., Ahvaz, Iran,

E-mail address: parmonjezi@gmail.com

