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A Family of Conjugate Gradient Methods1
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Abstract. Conjugate gradient method is a method for solving unconstrained optimization

problems, especially for large-scale problems. In this paper, a new parameter is given and we

propose a new family of conjugate gradient methods. In particular, some famous conjugate

gradient methods are special cases. The global convergence is proved with an inexact line

search.
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1 Introduction

Consider the unconstrained optimization problem

min f(x), x ∈ Rn, (1.1)

where f(x) is continuously differentiable function, and g(x) is the gradient function of f(x),

i.e., g(x) = ∇f(x). The iterative method has the form as follows:

xk+1 = xk + αkdk, k = 0, 1, 2, · · · , n. (1.2)

where xk is the current iterate point, αk the step size, dk the search direction. The conjugate

gradient direction has the following formula

dk =

{
−g0, k = 0,

−gk + βkdk−1, k ≥ 1,
(1.3)

where gk = g(xk). the βk has the well-know types of FR,DY,PRP,LS as follows:

βFR
k =

∥gk∥2

∥gk−1∥2
, βDY

k =
gTk gk

dTk−1yk−1
, βPRP

k =
gTk yk−1

∥gk−1∥2
, βLS

k =
gTk yk−1

dTk−1yk−1
, (1.4)

where ∥ · ∥ is the Euclidean norm, yk−1 = gk − gk−1, sk−1 = xk − xk−1.

In the line search method, in order to guarantee dk to be a descent direction, dk is required

to satisfy

gTk dk < 0. (1.5)
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Sometimes dk is required to satisfy gTk dk ≤ −c∥gk∥2 which guarantees the global convergence.

Some literatures and related papers made a lot of work about the construction of βk and

the convergence of the corresponding algorithm. In [1], Zhang proposed a three-term PRP

conjugate gradient method, where dk was given by

dk+1 = −gk+1 + βPRP
k dk − θkyk, θk =

gTk+1dk

∥gk∥2
. (1.6)

A good property of the three-term PRP conjugate gradient method is that the direction

generated by the method satisfies gTk dk = −∥gk∥2. Dai [4] gave the new parameter

βV PRP
k =

gTk yk−1

∥gk−1∥2 + τsTk−1dk−1
,

then proposed the corresponding three-term PRP conjugate gradient method and proved its

global convergence with the standard Armijo line search

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk.

In [2], the author gave an Armijo-type line search. Shi [5] proposed a new Armijo-type line

search and proved the convergence of LS method. Shi [6] proved the convergence of PRP and

other conjugate gradient methods by using the Armijo-type line search [2]. Motivated by Dai

[4], we present a new βk as follows:

βk =
gTk yk−1

(1− u)∥gk−1∥2 − ugTk−1dk−1
, (1.7)

where u ∈ [0, 1]. For u = 0, βk is the βPRP
k , and for u = 1, βk is the βLS

k .

2 New Armijo-type line search

We firstly make the following assumption.

Assumption A:

(a) The level set

Ω = {x ∈ Rn|f(x) ≤ f(x0)} (2.1)

is bound.

(b) The function f is continuously differentiable with Lipschitz continuous gradient on an

open ball D containing Ω, i.e., there is a constant L > 0 such that

∥g(x)− g(y)∥ ≤ L∥x− y∥. (2.2)

L > 0 is a Lipschitz constant and we do not know it at priori. So, it needs to be estimated.

In [7, 8], some methods of estimating L were proposed as follows:

L =
∥yk−1∥
∥sk−1∥

, (2.3)

L =
∥yk−1∥2

|sTk−1yk−1|
, (2.4)
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L =
|sTk−1yk−1|
∥sk−1∥2

. (2.5)

By the Armijo-type line search, we should choose Lipschitz constants as small as possible in

practical computation. In the kth iteration we take the estimated Lipschitz constants as:

Lk = max{L0,
∥yk−1∥
∥sk−1∥

}, (2.6)

Lk = max{L0,min{ ∥yk−1∥2

|sTk−1yk−1|
,M ′

0}}, (2.7)

Lk = max{L0,
|sTk−1yk−1|
∥sk−1∥2

}, (2.8)

where L0 and M ′
0 being a large positive number. Motivated by [5], we present a different new

Armijo-type line search.

Moreover, we present the new Armijo-type line search. Given δ ∈ (0, 1
2 ), ρ ∈ (0, 1), c ∈ ( 12 , 1),

and u ∈ [0, 1], set ηk = (1−c)
Lk

· (1−u)∥gk∥2−ugT
k dk

∥dk∥2 and αk is the largest in {ηk, ηkρ, ηkρ2, · · · , } ,

which satisfies

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk. (2.9)

where Lk is estimated by (2.6),(2.7),(2.8) respectively.

Algorithm:

Step0 : Given an initial point x0 ∈ Rn, d0 = −g0, k := 0.

Step1 : If ∥gk∥ = 0, then stop, else go to Step 2.

Step2 : Set xk+1 = xk + αkdk. Compute the direction dk by (1.3), where

βk =
gTk yk−1

(1− u)∥gk−1∥2 − ugTk−1dk−1
.

αk is defined by the above new Armijo-type line search.

Step3 : Set k := k + 1, go to Step 1.

Lemma 2.1. Let Assumption A hold, and the algorithm with the new Armijo-type line

search generates an infinite sequence {xk}. Then, there exist m0 > 0 and M0 > 0 such that

m0 ≤ Lk ≤ M0. (2.10)

Proof . By (2.6), (2.7) or (2.8), we can easy to obtain Lk ≥ L0. We take m0 = L0 . For

(2.3) and (2.6), we have

Lk = max{L0,
∥yk−1∥
∥sk−1∥

} ≤ max{L0, L}.

For (2.4) and (2.7), we have

L = max{L0,min{ ∥yk−1∥2

|sTk−1yk−1|
,M ′

0}} ≤ max{L0,M
′
0}.

For (2.5) and (2.8), we have

L = max{L0,
|sTk−1yk−1|
∥sk−1∥2

} ≤ {L0, L}.

So we can take M0 = max{L0, L,M
′
0}. The proof is finished.
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Lemma 2.2. Let AssumptionA hold, under the new line search, for all k > 1, it holds that

αk ≤ (1− c)

Lk
· (1− u)∥gk∥2 − ugTk dk

∥dk∥2
. (2.11)

Then the following inequality

gTk+1dk+1 ≤ −c∥gk+1∥2 (2.12)

holds.

Proof . By the inequality (2.11) and the Cauchy − Schwarz inequality, we have

(1− c)[(1− u)∥gk∥2 − ugTk dk] ≥ αkL∥dk∥2

=
αkL∥gk+1∥∥dk∥

∥gk+1∥2
∥gk+1∥∥dk∥

≥ ∥gk+1∥∥gk+1 − gk∥
∥gk+1∥2

|gTk+1dk|

≥
gTk+1(gk+1 − gk)

(1− u)∥gk∥2 − ugTk dk

(1− u)∥gk∥2 − ugTk dk
∥gk+1∥2

gTk+1dk

≥ βk+1
(1− u)∥gk∥2 − uyTk dk

∥gk+1∥2
gTk+1dk.

Therefore

(1− c)∥gk+1∥2 ≥ βk+1g
T
k+1dk.

And thus

−c∥gk+1∥2 ≥ −∥gk+1∥2 + βk+1g
T
k+1dk = gTk+1dk+1.

The proof is finished.

Lemma 2.3. Let AssumptionA hold, if the stepsize αk is generated by the new Armijo

line search, there exists a constant c1 > 0 such that the following inequality holds for all k

sufficiently large,

αk ≥ c1
∥gk∥2

∥dk∥2
. (2.13)

Proof . We have from (2.9) and Assumption A that

∞∑
i=1

−δαkg
T
k dk < +∞. (2.14)

This together with (2.12) yields

∞∑
i=1

cαk∥gk∥2 ≤ −
∞∑
i=1

δαkg
T
k dk < +∞. (2.15)

We prove (2.13) by considering the following two cases.

Case (i). αk = (1−c)
Lk

· (1−u)∥gk∥2−ugT
k dk

∥dk∥2 , we can obtain

αk =
(1− c)

Lk
· (1− u)∥gk∥2 − ugTk dk

∥dk∥2
≥ (1− c)

Lk
· (1− u)∥gk∥2

∥dk∥2
. (2.16)
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In this case the inequality (2.13) is satisfied with c1 = (1−c)(1−u)
L .

Case (ii). αk < (1−c)
Lk

· (1−u)∥gk∥2−ugT
k dk

∥dk∥2 . By the line search condition, α = ρ−1αk does not

satisfy (2.9), this means

f(xk)− f(xk + αdk) < −δαkg
T
k dk. (2.17)

Using the mean value theorem on the left-hand side of the above inequality, there exists some

tk ∈ (0, 1) such that

−αg(xk + tkαdk)
T dk < −δαkg

T
k dk,

i.e.

g(xk + tkαdk)
T dk > δαkg

T
k dk.

By AssumptionA(b), the Cauchy− Schwarz inequality, the above inequality, and Lemma 2.1,

we have

Lα∥dk∥2 ≥ ∥g(xk + tkαdk)
T − gk∥∥dk∥

≥ (g(xk + tkαdk)
T − gk)

T dk ≥ −(1− δ)gTk dk

≥ c(1− δ)∥gk∥2.

We have

αk ≥ cρ(1− δ)

L

∥gk∥2

∥dk∥2
.

Letting c1 = min{ (1−c)(1−u)
L , cρ(1−δ)

L } , we can get αk ≥ c1
∥gk∥2

∥dk∥2 . The proof is finished.

From inequalities (2.13) and (2.15), we can easily obtain the following Zoutendijk condition.

Lemma 2.4. Suppose Assumption A holds. xk is generated by the Algorithm and αk is

generated by the new Armijo line search, then we have∑
k≥1

∥gk∥4

∥dk∥2
< +∞. (2.18)

3 Global Convergence

Theorem 3.1. Let Assumption A hold, the algorithm generates an infinite sequence {xk}.
Then we have

lim
k→∞

inf ∥gk∥ = 0. (3.1)

Proof . For the sake of contradiction, we suppose that the conclusion is not true. Then

there exists a constant ϵ > 0 such that

∥gk∥ > ϵ, ∀k ≥ 0. (3.2)

Since gk ̸= 0 and with (2.12), it follows that dk ̸= 0.

αk ≤ (1− c)

Lk
· (1− u)∥gk∥2 − ugTk dk

∥dk∥2
≤ (1− c)

m0
· (1− u)∥gk∥2 − ugTk dk

∥dk∥2
.
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By the βk formula and the Cauchy − Schwarz inequality, we have

∥dk+1∥ = ∥ − gk+1 + βk+1dk∥

≤ ∥gk+1∥+
|gk+1(gk+1 − gk)|

(1− u)∥gk∥2 − ugTk dk
∥dk∥

≤ ∥gk+1∥(1 +
αkL∥dk∥2

(1− u)∥gk∥2 − ugTk dk
)

≤ ∥gk+1∥(1 +
L(1− c)

m0
).

Let
√
A = (1 + L(1−c)

m0
),then ∥dk∥2 ≤ A∥gk∥2. So

∞∑
k=0

∥gk∥4

∥dk∥2
≥

∞∑
k=0

ϵ2

A
= ∞.

Which contradicts with (2.18). Hence, lim
k→∞

inf ∥gk∥ = 0.

4 Numerical experiments

In this section, we carry out some numerical experiments. Our algorithm has been tested

on some problems as follows, where x0 is the initial point, and xk is the final point.

Example 1 f(x) = 4 ∗ (x1 − 5)2 + (x2 − 6)2, x0 = (8, 9), xk = (5.0000, 6.0000).

Example 2 f(x) = (x2 − x2
1)

2 + 100 ∗ (1− x1)
2, x0 = (−1.2, 1), xk = (1.0000, 1.0000).

Example 3 f(x) = (x1 − x2 + x3)
2 + (−x1 + x2 + x3)

2 + (x1 + x2 − x3)
2, x0 = (1, 2, 3),

xk = (0, 0, 0).

Example 4 f(x) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2, x0 = (1, 1), xk = (3.0000, 2.0000).

Example 5 f(x) = (x1 − 2)2 + (x2 − 1)2 + 0.04/(−x2
1/4− x2

2 + 1) + (x1 − 2x2 + 1)2/0.2,

x0 = (2, 2), xk = (1.7954, 1.3779).

Example 6 f(x) =
n∑

i=1

(16− i)(x(i)− 1)2 + 10 ∗
n∑

i=1

(16− i)((x(i)− 1)2)2, x0 = (0, · · · , 0),

xk = (1, · · · , 1).

Example 7 f(x) =
n−1∑
i=1

x2
i + (xi+1 + x2

i )
2, x0 = (1, · · · , 1), xk = (0, · · · , 0).

Example 8 f(x) =
n∑

i=1

ix2
i + (

n∑
i=1

x2
i )

2, x0 = (1, · · · , 1), xk = (0, · · · , 0).

Example 9 f(x) =
n∑

i=1

(exi − xi), x0 = (1, · · · , 1), xk = (0, · · · , 0).

We set the parameters δ = 0.25, ρ = 0.5, c = 0.75 and L = 1 in the numerical experiment.

For the parameters u = 0, 0.5, 1, we named LS method (corresponding to u = 0), L+P method

(corresponding to u = 0.5) and PRP method (corresponding to u = 1). The results are

summarized in Table 1. For the test problem, n is the dimension, ∥gk∥ is the norm maximum

of the LS, L+P and PRP methods, and k is the number of iteration for the problem. The stop

criterion is

∥gk∥ ≤ 10−6,

and the numerical results are given in Table 1.

228



A Family of Conjugate Gradient Methods

Table 1 The detail information of numerical experiments for our algorithm

NO. n ∥gk∥ k(u=0) k(u=0.5) k(u=1)

1 2 1.9439e-007 23 18 21

2 2 2.6062e-007 28 34 21

3 3 7.0589e-007 34 37 40

4 2 2.8989e-007 18 24 18

5 2 6.2970e-007 31 23 29

6 10 5.9188e-007 45 45 23

7 50 6.7852e-007 18 24 31

8 100 5.7160e-007 67 67 34

9 1000 9.3892e-007 30 37 46

10000 9.3807e-007 31 38 46

Table 1 shows the performance of the our algorithm about relative to the iteration. It is

easy to see that, for all problems, the algorithm is very efficient. The results for each problem

are accurate, and with less number of times of iteration.

5 Conclusions

In this paper, we propose a new family conjugate gradient formula for computing un-

constrained optimization problems. PRP and LS conjugate gradient methods are special cases.

Motivated by [5], we present a different new Armijo-type line search. The global convergence

of this method is established under the new Armijo line search.
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