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Abstract 
 
Knowledge acquisition is approached here from a theoretical/methodological point of view. 
We develop a conceptual framework for modelling knowledge codification and acquisition 
via interaction with the real-world, e.g. the Internet, elaborating on mechanisms for gaining 
practical knowledge. This effort requires crossing many fields, including computer science, 
artificial intelligence, epistemology, as well as the cognitive sciences. Reliable information is 
shown to reduce entropy and increase stability, thus allowing for more informed decisions. 
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1. Introduction 
 
Man acquires knowledge via interaction with the external world. An intuition implies 
reference to memory is made, the required information in codified form is fetched, 
and a logical connection (synapse) follows. Man, then, enters a “state of reason”. 
Awareness of mind is linked to perception as the absence of observation would not 
allow a cognitive mind to capture objects and know them. Knowledge acquisition is 
a central subject in a number of diverse scientific fields including computer science, 
artificial intelligence, epistemology, and the cognitive sciences. 
 In this work we approach the problem of knowledge codification and acquisition 
from a theoretical/methodological standpoint, elaborating on the mechanisms which 
allow us to gain practical knowledge. This kind of knowledge, also called actionable 
by Argyris [1&2], is well correlated with skills thought necessary in today’s society. 
According to Floridi [3] knowledge and information are members of the same 
conceptual family. Since much of information today comes via the world wide web, 
it seems reasonable to concentrate on locations where such codified information is 
widely available. Such locations are collectively known as knowledge bases. 
Knowledge bases (KBs) are today integral parts of large-scale computer networks. 
They contribute to our understanding of many contemporary subjects of interest as 
being key elements of a global information economy and society. KB efficiency 
relies largely on  the capabilities of  the underpinning  telecommunications networks.  
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 The main features of these networks include an array of broadband technologies 
(fixed and wireless), access via intelligent interfaces, and better quality of service. 
Services presently being employed include: on-line searching in digital libraries, 
transfer/sharing of multimedia files, as well as collaborative work including decision-
making across national borders. 
 Human-readable KBs, which are examined here, are widely distributed across 
interconnected servers supporting many users with varying educational backgrounds. 
Engines are used to mine data in KBs. Modern knowledge-based systems incorporate 
artificial intelligence techniques [4]. We examine this subject in subsequent sections. 
Many modern KBs can support, inter alia, web-learning and automatic information 
discovery within the remote parts of world wide web. 
 With regard to this article, we proceed as follows. First, we discuss fundamental 
concepts such as data, information, messaging, memory, and the relevant interfaces. 
Then, we go on to more complex subjects like codification, encryption, knowledge 
representation and reasoning, and finally knowledge utilization. We conclude with 
practical aspects within the framework of today’s information society [5]. 
 
 
 
2. Binary data, information, and knowledge 
 
Computer systems are employed for “information processing”, which is their primary 
function in any given environment. In this section, we are interested in the nature and 
relationship between the following terms: binary data; information; inference; and, 
finally, knowledge. These terms are discussed within the the framework of artificial 
intelligence later in this article. 
 
 
2.1. Access to the real world 
 
Theory of knowledge, also known as Epistemology, is primarily concerned with the 
origin of knowledge, the place of experience in generating knowledge, and the place 
of reason in doing so. From this point of view, one might see two independent 
possibilities as to the way by which interaction between an observer/user and the 
“outside world” takes place. 
 
P1. The observer might reason with abstract ideas only. Using his previous sense 
experience the  observer can  see a number of  indistinguishable “possible worlds”. 
Then, interaction with any of the worlds follows. 
P2. The observer interacts with a “real world”, the only world seen. However, this 
interaction often contains elements of uncertainty; hence, any knowledge gained here 
should be the subject of inspection. 
 
There is also the problem of the assumptions that one frequently makes in order to 
claim knowledge. This problem is nicely illustrated by Klempner [6] in Chapter 4 of 
his  book  The Possible  World Machine as  follows: “What we call  our ‘knowledge’  
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rests on a vast network of assumptions; assumptions whose truth or falsity would be 
impossible to check or prove in their entirety. We might feel safer making the more 
modest claim that all we really know is what each of us has learned directly through 
our senses. Everything else that we believe comes under the heading of the ‘best 
explanation’ of our sense experiences.” 
 Let it be noted that the above network of assumptions has a clear similarity to the 
well-known series of “if ... then ... else” statements often expressed as logical 
conditions in algorithmic programming languages. 
 The existence of a materialized “real world” is taken for granted in this study as 
such existence is compatible with the function of any information system; and KB 
systems are advanced information systems. Thus, we have to deal with uncertainty. 
The subject of uncertainty and its consequences are examined in more detail in later 
sections in the context of information entropy. 
 Mathematical models are necessary for constructing a framework to formally 
express any cause-effect relationships. Models that are logic-oriented are particularly 
useful here as they link information content to possible logical implications. There 
are also other kinds of models, e.g. probabilistic ones; and, of course, the current 
application finally determines which kind of model is more suitable. 
 Figure 1 shows a part of a possible “real world” of interest to an observer. 
Information transferred from this outside world to the observer, e.g. via a bit stream, 
might be thought to be converted into actual facts by means of logical inference. 
These facts can then be transformed into knowledge. 
 
 

 
 
 Figure 1: Knowledge acquisition via interaction with the external world. 
 
For the purposes of this work, we consider the human brain as a neural network with 
complex circuitry and associated memory. At any time, the human brain is capable of 
selecting what it needs, store its content, and then retrieve it for later use. Memory is 
an important part of this learning process since it involves brain’s neuronal circuitry. 
Our aim is to examine how knowledge is acquired and managed in human memory. 
The analysis follows recent work of ours  [7&8]. 
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2.2. Memory model 
 
Our starting point is the so-called tabula rasa, a well-known term which literally 
means some blank table. Therefore, at its initial state, the mind has no information. 
The problem now is this. The tabula is constantly exposed to the “outside world” of 
Figure 1 which keeps feeding it with new information. In the course of time the 
tabula is likely to become full unless we assume that it has infinite capacity. 
However, such an assumption cannot be realistic given the physical constraints that 
underpin human evolution. Therefore, memory can be very large, but not infinite, 
despite brain’s extensive neuronal circuitry. 
 In computer science, the concept of knowledge is usually defined as follows: 
“Knowledge: the objects, concepts and relationships that are assumed to exist in 
some area of interest”.  Knowledge differs from data or information in the sense that 
new knowledge may be created from existing knowledge by logical inference. 
Information may, then, be thought of as the result of applying some kind of 
processing to some (raw) data, giving it meaning in a particular context. Thus, 
information can be assumed to be a prerequisite for knowledge. This assumption is 
also valid in the field of cognitive sciences. Following this discussion we formulate 
our first statement: 
 
S1. Data (binary representation) [PLUS] Processing (e.g. computer languages, data 
structures, algorithmic procedures)   ⇒   Information   ⇒   Knowledge. 
 
Computer scientists often make a distinction between main memory (MM) and 
virtual memory (VM). VM, unlike main memory, is always stable: it retains its 
content even when electrical power is switched off. This is because VM is a specific 
area of the system’s disk, which is stable by construction. Returning to our earlier 
discussion, we note that MM is like a short-term memory, a tabula rasa. MM by its 
construction contains recent information: thus, in relation to the field of 
neuroscience, it could be a model of the human brain’s hippocampus. This small part 
of the brain is responsible for holding information about recent events. 
 In contrast, VM could be seen as a long-term memory, e.g. a very large database 
containing billions of records. Such databases form the infrastructure of today’s 
digital libraries, and, of course, are sources of knowledge. Our second statement is, 
thus, as follows: 
 
S2. Short-term human memory  ≅  random-access main memory (MM). Long-term 
human memory  ≅  logically-structured virtual memory (VM). 
 
Again, in computer technology, memory renewal is based on the so-called criterion 
of temporal locality. The algorithm implementing this criterion is known as Least 
Recently Used (LRU). We recall that MM has finite capacity. Therefore, the 
continuous accumulation of pages would result in “overflow”, which is why memory 
renewal is necessary. 
 With respect to the human memory, LRU might be considered as a logical 
function embedded into the brain’s neural network circuitry. The processor itself 
could  be  thought of as  being  analogous to  the  entire circuitry, which  contains  all  
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neurons and their synapses. Space in VM is purely logical and pages in VM have 
their own logical addresses. These addresses are then thought to be “mapped” to the 
physical addresses of main memory whenever page renewal is necessary. Following 
is our third statement: 
 
S3. Knowledge acquisition ≅ information codification, then, renewal in short-term 
memory, and mapping between MM and VM, aided by algorithmic functions based 
on the principle of temporal locality. 
 
 
 
3. Entropy of knowledge 
 
Entropy of a system under examination can informally be defined as loss of order. 
Such a lack of order brings about uncertainty, which degrades system performance. 
In everyday life, information is commonly associated to a sense of order; hence, the 
need for most people to stay informed regarding their subject of interest. 
 In a recent article of ours [9] we concluded that “information does not equate to 
knowledge” which is in line with the earlier independent results, e.g. Greenfield [10]. 
Although information processing is not understanding, it can be argued that reliable 
data and careful processing leads to more informed decisions. However, practical 
evidence shows that sensory knowledge is not always reliable. Extracting knowledge 
through information processing, may sometimes be unreliable if the initial input 
contains errors. Such errors might be factual, as in case of distorted binary numbers, 
or purely logical, e.g. when a sequence of statements breaks down. Whenever that 
happens, knowledge becomes unstable. 
 Also in [9] above we examined the problem of knowledge stability both from an 
epistemic and systemic point of view. There, the final conclusion was that reliable 
information always leads to greater stability of knowledge. This effort requires 
reduction in uncertainty, which is considered as manifestation of a system’s entropy. 
Therefore, by reducing entropy, uncertainty is also reduced, and the system under 
examination becomes more stable. 
 
 
3.1. Information stability 

Entropy has its roots in physics, particularly in thermodynamics. In physics, the 
entropy of a system is defined as a measure of its intrinsic uncertainty. This notion 
has become familiar in our times thanks to the pioneering works of Claude Shannon 
and Norbert Wiener. Shannon introduced the term “information entropy” by means 
of his mathematical theory of communication. Wiener, the founder of Cybernetics, 
regarded information as the negative quantity of entropy and has shown that any 
increase in information will give greater stability, whether such information is 
communicated by humans or a machine [11]. Also, in a very different field, which is 
known as economics of information, Arrow [12] defines information as the reduction 
in system uncertainty. 
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 This reduction in uncertainty, if examined through classical information theory, 
indicates some kind of “self-organization” within the system [13]. Knowledge-based 
systems can be seen as special cases of self-organized information systems [14]. 
 Many real-world systems of our time, including academic/research environments, 
businesses as well as organizations, often have circulatory movement of information: 
such movement often takes the form of a feedback process, which contributes to 
increase in entropy. Since entropy, by its nature, distorts information content, its 
presence often leads to incomplete knowledge and away from the right decisions. 
This observation is evident in a number real-life situations involving interactions of 
the following forms: “humans ↔ humans”, “humans ↔ machines”, and in more 
advanced settings “machines ↔ machines”. The above discussion naturally leads to 
the following statement: 
 
S4. Entropy minimization of a real-world system  ⇒  Less uncertainty concerning 
information content   ⇒  Reduced feedback processes ⇒ Greater knowledge stability 
⇒  More informed decisions. 
 
The effect of entropy increase on information, and hence on the system’s stability, 
can be described by means of the following figure: 
 

      Figure 2: Information curve I(S) as system entropy E(S) → ∞. 
 
Information often contains uncertainty, which comes from the methods of obtaining 
the raw data. Uncertainty can be characterized analytically, as will be shown later. 
Reliable information leads to greater stability, which can be achieved by some form 
of internal system organization. Thus, for now we may note that by reducing entropy, 
uncertainty is also reduced, the flow of information becomes normal, and the system 
operates near the the top left-hand region of Figure 2: the steady-state region. 
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3.2. Acquired information 
 
According to Shannon’s original work, information entropy is a measure associated 
with a set of possible system states. The following formula: 
 

           S  =  ∑ pi log pi           (1) 
             i 

 
measures the average entropy of a system in the presence of probabilities {pi} that 
correspond to a series {i}  of system states. 
 When human communication with the real-world takes place, i.e. as suggested by 
Figure 1 given earlier, information transfer (e.g. in the form of bit stream) underpins 
this form of communication. Also, from the previous discussion, we may think of 
entropy as a measure of the amount of uncertainty about some expected outcome. 
Similarly, we may consider information as a measure in the reduction of uncertainty 
after observing a kind of logical connection or hint related to the same outcome. 
Having a hint helps the observer to form an opinion about the chance a specific 
outcome has to occur given a number of possible outcomes. Such an opinion can be 
described quantitatively in terms of probabilities. 
 Let us consider a system S and an associated hint h. Then, we express the entropy 
E(S) of system S as follows: 

         E(S) = − ∑ p(s) log p(s)          (2) 
                 s 

 
where p(s) is the probability of observing state s. 
 
We can also express the information acquired with the help of hint h by classical 
arguments such as those found in information theory. This acquired information is 
quantitatively the reduction in uncertainty within the system. 
 We also express the conditional entropy E(S|H) of system S, after the observation 
of hint h as: 
 
        E(S|H) = − ∑ p(h) ∑ p(s|h) log p(s|h)       (3) 
            h    s 
 
where p(h) is the probability of observing hint h and p(s|h) is the conditional 
probability that system S is in state s, after the observation of hint h. E(S|H) measures 
the residual uncertainty of system S. Therefore, the difference: 
 
         A(S) = E(S) − E(S|H)           (4) 
 
shows the extent by which hint h reduces the uncertainty. A(S) is named here the 
acquired information and its measured value extends from zero - when the elements 
in the right-hand part of eq. (4) are equal - up to some positive number. 
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4. Knowledge from content-related sources 
 
When considering communications and information networks like those depicted for 
example by Figure 1, the elements transmitted across are messages containing words, 
documents, symbols, graphs, and so on. These messages are typically measured by 
their information content. Such content can adequately be characterized by classical 
information theory arguments. 
 Messages may arrive at the receiving end in proper order, i.e. in the way it was 
indented by the sender, or their order may have changed due to random fluctuations. 
In the first case, messages retain their meaning while in the second case part of their 
meaning is lost. The latter case is especially troublesome since, in the mind of the 
receiver-observer, information content appears as a random aggregation of elements. 
Thus, in this case, we have a typical appearance of high entropy. As discussed in 
earlier sections, high entropy may lead to chaotic behaviour. Since we examine real-
world systems for the purpose of improving their performance, the presence of high 
entropy is clearly undesirable and must therefore be minimized. Also, as suggested 
by Figure 2, as entropy tends to infinity information approaches zero. 
 Sometimes the system at hand becomes overloaded as messages arrive at a rate 
that its storage, such as buffer front-ends, cannot accommodate. System performance 
becomes problematic and, after reaching its peak point (plateau), begins to fall often 
quite sharply towards zero. This phenomenon is known as thrashing or performance 
collapse [15]. Figure 3 below shows the system’s expected performance as a function 
of its workload measured by the number of received messages. 
 

 
 
   Figure 3: Thrashing curve as a function of system workload. 
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4.1. From information to knowledge 
 
Entropy in the terms discussed above requires the existence of a human interface. 
Networks are able to provide plenty of information to the receiver-observer, but such 
information is often volatile. Error-correcting mechanisms are often used as means of 
reformatting messages in a way as to obtain their original meaning and retransmitting 
messages when they are lost. Message content along with information flow rates 
within a network can be used for constructing ordering schemes. Such schemes help 
towards information organization and retrieval at a later stage. Instruments that apply 
in this framework are: 
 
(a) measurements of events; 
(b) induction processes; 
(c) deduction processes; and,  
(d) mapping algorithms. 
 
This brings us closer to knowledge representation, reasoning and, finally, acquisition. 
Principally, this is about the encoding of all propositions accepted by an observer. 
Artificial Intelligence (AI) practice is concerned with the construction of knowledge-
based systems realized via suitable man-system interfaces [16]. A carefully designed 
system should have a number of desirable properties. Perhaps, the first property is 
the system’s ability to perform some kind of a dialogue - via its interface - and then 
perform the following functions: 
 
F1. Accept the observer’s inputs and adjust itself accordingly. 
F2. Implement qualitative reasoning based on experience. 
F3. Invoke cognitive processes involving probabilities. 
F4. Use combinations of possible events and decision paths. 
F5. Convey knowledge in an effective manner. 
F6. Operate a user-friendly fashion during a session. 
F7. Implement the properties of integrity and safety. 
 
Inference often involves backward-type chains, i.e. a mechanism involving at first 
some possible solution which must then be proven true or false. This interactive form 
of reasoning makes use of formal rules or examples stored in the knowledge base. 
Sometimes, heuristics are also used: these are informal rules associated with pieces 
of knowledge acquired by experience. 
 
 
4.2. Knowledge acquisition sessions 
 
The knowledge acquisition process is the most time-consuming task with a great deal 
of complexity. Because this process is quite unstructured, it cannot follow a form 
known a priori, e.g. a linear or an exponential form. After knowledge is conveyed, 
following a session, this knowledge will have to be stored and then presented into 
some suitable representation scheme. 
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 Because knowledge acquired from sources of external environments is sometimes 
incomplete or even erroneous - as previously suggested - it follows that such 
knowledge should be tested for inconsistencies. This might give rise to further 
communication in order to clarify existing parts of information and/or elicit more 
information associated with the running session. The steps described above can be 
formulated as follows: 
 
[S1]: Start of session. 
[S2]: Transfer required information. 
[S3]: Process information to form knowledge. 
[S4]: Clarify knowledge and/or elicit more; 
  then, go to [S2]; else, continue. 
[S5]: Store knowledge in an appropriate format. 
[S6]: Convert existing knowledge into representation; 
  then, go to [S2]; else, continue. 
[S7]: End of session. 
 
 
 
4. Concluding remarks 
 
The problem of knowledge acquisition has been approached, in the present work, 
from a theoretical/methodological point of view. We have developed a conceptual 
framework for modelling knowledge acquisition via interaction with the real-world, 
elaborating on the mechanisms which allow us to gain forms of practical knowledge. 
Knowledge acquisition lies at the intersection of diverse scientific fields including 
computer science, artificial intelligence, epistemology, and the cognitive sciences. 
 Knowledge bases are in our times integral parts of large-scale computer networks 
contributing to the understanding of many subjects within the realm of a new global 
information economy and society. The results obtained in the present work should be 
particularly useful in the context of this still evolving society. The medium is the 
Internet with its vast array of servers and extensive digital content [17]. 
 Reliable information has been shown to lead to greater stability of knowledge. 
Stability requires internal organization as regards information, which can be achieved 
at the expense of uncertainty. The latter was described as a manifestation of entropy. 
Thus, by reducing entropy, uncertainty is also reduced, and the flow of information 
approaches steady state. In that state, knowledge is always stable and valuable. 
 Therefore, we are now able to express a composite final statement as follows: 
 
S5: Final Statement. (i) Binary representation of data and information processing 
are both prerequisites for acquiring knowledge from the real world, e.g. the Internet. 
(ii) The human brain may adequately be modelled as a complex neural network 
consisting of a short-term and a long-term memory. (iii) The process of knowledge 
acquisition requires information collection, codification, and representation realized 
by mapping algorithms. (iv) Entropy minimization implies less uncertainty and hence 
greater system stability: the end result is more informed decisions. 
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