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ON THE MAXIMUM OF AVERAGE DISPLACEMENT OF AN
ELASTIC MEMBRANE SUBJECT TO THE SHAPE

DEFORMATION

M. ZIVARI-REZAPOUR, M. R. MOKHTARZADEH AND M. JALALVAND

Abstract. In this paper, we prove that the average displacement of the elastic

membrane, subject to a constant vertical force is a monotone function on
a family of neighborhoods satisfying certain properties. The main idea is

motivated by [5]. Two numerical examples have been selected to verify and

illustrate this property.
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1. Introduction

Let 1 ≤ p ≤ ∞, |.|p be the standard p-norm on R2, and |.|p,t be the corresponding
weighted norm with weights t and t−1, t > 0, in x1 and x2 directions respectively.
Let r > 0 and c = (c1, c2) ∈ R2. Consider

Ωp,t = {x = (x1, x2) ∈ R2 : |x− c|p,t < r},

the r-neighborhood of the point c. Explicitly, for 1 ≤ p < ∞

Ωp,t = {x = (x1, x2) ∈ R2 : [|t(x1 − c1)|p + |t−1(x2 − c2)|p]
1
p < r},

and for p = ∞

Ω∞,t = {x = (x1, x2) ∈ R2 : max(|t(x1 − c1)|, |t−1(x2 − c2)|) < r}.

It is apparent that the area of each neighborhood is

|Ωp,t| =


4r2 (Γ( p+1

p ))2

Γ( p+2
p )

p ≥ 1,

4r2 p = ∞,

for all t > 0, see [7, p. 208]. From hereon, we assume that p is fixed and for
simplicity of the notations, we will drop p when it is unnecessary.

Let α ≥ 0 and β > 0. Consider the boundary value problem{
−∆u + αu = β in Ωt,
u = 0 on ∂Ωt.

(1.1)

The affine transformation

ζ :=
1
r
(x− c),
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transforms the boundary value problem (1.1) to{
−∆u + α̂u = β̂ in Ω̂t,
u = 0 on ∂Ω̂t,

where α̂ = αr2, β̂ = βr2 and

Ω̂t = {x ∈ R2 : |x|p,t < 1}.
Therefore, without loss of generality we can assume that c = (0, 0), r = 1 and Ωt

is a scaled unit ball. For each t > 0, we denote the unique solution, see [1], of the
boundary value problem (1.1) by ut. It is well known that∫

Ωt

∇ut · ∇v dx + α

∫
Ωt

utv dx = β

∫
Ωt

v dx, for all v ∈ H1
0 (Ωt). (1.2)

We define the functional Jt : H1
0 (Ωt) → R by

Jt(u) = β

∫
Ωt

u dx− α

2

∫
Ωt

u2 dx− 1
2

∫
Ωt

|∇u|2 dx,

so, ut is the unique maximizer of Jt on H1
0 (Ωt);

Jt(ut) = max
u∈H1

0 (Ωt)
Jt(u). (1.3)

From (1.2), for v = ut, we conclude that

Jt(ut) =
β

2

∫
Ωt

ut dx =
1
2

∫
Ωt

(|∇ut|2 + αu2
t ) dx. (1.4)

Let 0 < a < 1, we define the function ξ : [a, 1
a ] → R by ξ(t) =

∫
Ωt

ut dx. We prove
that the function ξ is increasing on [a, 1].

2. Elastic membrane

Suppose Ωt is a planar region occupied by an elastic membrane fixed around
the boundary. We assume the membrane is made from several materials with same
densities and is subject to a constant vertical force such as a load distribution.
These assumptions justify the role of the two constant functions α and β in (1.1)
respectively. In the mathematical modeling (1.1), the solution ut denotes the dis-
placement of the membrane. For each t > 0, ξ(t) is the average displacement. In
the following we prove that for any 0 < a < 1, the average displacement increases
on [a, 1] and then decreases on [1, 1

a ]. Thus, the average displacement is maximum
on the domain Ω1.

3. Main results

The main result in this paper is the following theorem.

Theorem 3.1. For each 0 < a < 1, the function ξ is increasing on [a, 1].

Proof. Let 0 < a < 1. For (x1, x2) ∈ R2 and t ∈ [a, 1] we consider the mapping

Φt(x1, x2) =
a

t
x1

~i +
t

a
x2

~j,

where ~i and ~j stand for the standard unit vectors in R2. It is apparent that
Φt(Ωa) = Ωt for each t ∈ [a, 1]. Therefore, the map

[a, 1] 3 t → Φt(Ωa),
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is a continuous Schwarz symmetrization of Ωa. Thus, the continuous Schwarz sym-
metrization of ua, see [2, 3], is the unique function ut

a ∈ H1
0 (Ωt) such that

{(x1, x2) : ut
a(x1, x2) > γ} = Φt({(x1, x2) : ua(x1, x2) > γ}),

for all γ ∈ R and t ∈ [a, 1]. From [4] we have the following results
(i)

∫
Ωa
|ua|s dx =

∫
Ωt
|ut

a|s dx, s ≥ 1;
(ii)

∫
Ωa
|∇ua|2 dx ≥

∫
Ωt
|∇ut

a|2 dx, t ∈ [a, 1].

Now, From (i), (ii) and (1.3) we deduce that
β

2
ξ(t) = Jt(ut) ≥ Jt(ut

a) ≥ Ja(ua) =
β

2
ξ(a).

Thus
ξ(a) ≤ ξ(t), for all t ∈ [a, 1].

Since the above argument can be started by any intermediate design, using Ωt′

instead of Ωa, we infer that ξ is an increasing function on [a, 1]. �

Corollary 3.2. By symmetrization we infer that the function ξ is decreasing on
[1, 1

a ]. Therefore,
ξ(1) = max

t∈[a, 1
a ]

ξ(t).

It is well known that the norm

‖u‖ =
(∫

Ωt

(|∇u|2 + αu2) dx

) 1
2

, u ∈ H1
0 (Ωt).

is equivalent to the standard norm in H1
0 (Ωt). Now, we can state the following

corollary.

Corollary 3.3. If 0 < a < 1, then

max
t∈[a, 1

a ]
‖ut‖2 = βξ(1).

Proof. This result is a consequence of (1.4) and the Corollary 3.2. �

4. Numerical results

In this section, we examine two numerical examples corresponding to a simply
connected domains with smooth (C∞(∂Ωt)) and non-smooth(C0(∂Ωt)) boundaries.
To demonstrate the accuracy of computations, the residuals, in some sense, are
evaluated and shown in tables.

Example 1. Consider the boundary value problem{
−∆u + u = 1 in Ωt,
u = 0 on ∂Ωt.

(4.1)

Here p = 2 and

Ωt = {x = (x1, x2) ∈ R2 : |tx1|2 + |t−1x2|2 < 1}.
Let

ξ(t) =
∫

Ωt

ut(x, y) dx dy, t > 0

where ut is the unique solution of the BVP (4.1).The graph of ξ(t) on the interval
[4/5, 5/4] is shown in Figure 1. The function ξ(t) attains its maximum at t = 1.
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Figure 1. The graph of ξ(t).

Let uh denotes the finite element solution of the problem (4.1). The values of the
function ξ(t) for different values of t are evaluated and shown in Table 1. Let

t 0.877193 0.909091 0.943396 0.961538 1 1.04 1.08 1.12

uh 0.327151 0.331657 0.334889 0.335955 0.336842 0.335955 0.333447 0.329549

Table 1. Results of Example 1.

ti = 0.877193 and tf = 1.12 denote the initial and final values of t. The graph of
domains corresponding to the values of ti and tf are illustrated in Figure 2 and the
graph of graph displacement of the membrane corresponding to the values of ti and
tf are illustrated in Figure 3.

Figure 2. The graph of domains.

Example 2. Consider the boundary value problem (4.1) where p = ∞,

Ωt = {x = (x1, x2) ∈ R2 : max{|tx1|, |t−1x2|} < 1}.
Let

ξ(t) =
∫

Ωt

ut(x, y) dx dy, t > 0

where ut is the unique solution of the BVP (4.1). The graph of ξ(t) on the interval
[4/5, 5/4] is shown in Figure 4. The function ξ(t) attains its maximum at t = 1.
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Figure 3. The graph of graph displacement of the membrane.

Figure 4. The graph of ξ(t)

Numerical values of the function ξ(t) for different values of t are shown in Table
2. The graph of domains corresponding to the values of ti and tf are illustrated in
Figure 5. The graph of graph displacement of the membrane corresponding to the
values of ti and tf are illustrated in Figure 6.

t 0.877193 0.909091 0.943396 0.961538 1 1.04 1.08 1.12

ξ(t) 0.125011 0.12649 0.127548 0.127896 0.128185 0.127896 0.127076 0.125799

Table 2. Results of Example 2.

In this paper, numerical examples are solved using the finite element package in
Matlab 7 software. Programs are implemented in a cluster environment at Labora-
tory of Scientific Computation in Institute for Studies in Theoretical Physics and
Mathematics visit

http://math.ipm.ac.ir/mcc/

More animated results in two dimension are available online as for check the max-
imum properties average displacement of the membrane with respect to shape de-
formations. To see please browse

http://www.camera-ac.ir/
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Figure 5. The graph of domains.

Figure 6. The graph of graph displacement of the membrane.

5. Conclusion

The qualitative and quantitative study of the average displacement and least
eigenvalue of an elastic membrane on variable domains are interesting problems in
the fields of pure and applied mathematics see for example [5, 6, 8]. In this paper,
we restricted ourselves to the variation of the average displacement on a family
of domains. Analysis of the least eigenvalue of a membrane on these domains are
postponed to future work.
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