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ABSTRACT: This paper presents an inverse optimization model 

for the transportation problem of optimizing the ratio of linear 

functions subject to the linear equality constraints and non 

negative restrictions on the variables. In our discussion, we have 

considered a feasible solution and in order to make it an optimal 

one by adjusting the objective coefficients as little as possible, 

we have proposed an algorithm and finally an example is 

presented to demonstrate our algorithm.  
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1. INTRODUCTION 

In the last 15-20 years, the community of operations research has shown a significant interest 

in the field of inverse optimization and many applications of inverse optimization have been 

found in different areas such as: geophysical sciences, traffic equilibrium, isotonic regression, 

portfolio optimization etc. In an optimization problem, there are some parameters associated 

with the decision variable in the objective function and constraint’s set. When solving the 

problem, generally it is assumed that all the parameters are known, but in practice, there are 

many situations where the parameter values are not known with certain, but we may have 

some estimates of these parameters and also have an optimal solution from the past 

experience or past practice. In these situations, inverse optimization can be used to adjust the 

parameter values as little as possible so that the given solution becomes optimal.  
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Burton and Toint [1] were the first who investigate the inverse optimization for shortest path 

problem under l2 norm, since then a lot of work has been done on inverse optimization but 

most of the work is based on combinatorial optimization problems. Zhang and Liu [2] have 

first been calculated some inverse linear programming problem and further investigated 

inverse linear programming problems in [3]. Ahuja and Orlin [4] provide various references 

in the area of inverse optimization and compile several applications in network flow 

problems. Huang and Liu [5] and Amin and Emrouznejad [6], have considered applications 

of inverse problem. Yibing, Tiesong and Zhongping [7] worked on inverse optimal value 

problem, Zhang and Zhang [8-10] worked on inverse quadratic programming problems, and 

Wang [11] has given the cutting plane algorithm for inverse integer programming problem. 

Jain, Arya [12, 13] have presented inverse models for linear fractional programming and 

quadratic programming problems. 

In the real life, there are many problems where we need to optimize profit/cost, profit/ 

manpower requirement, dept/equity, nurse/patient etc., and then the linear fractional 

transportation problem comes into picture. The linear fractional programming problem seeks 

to optimize the objective function of non-negative variables of quotient form with linear 

functions in numerator and denominator subject to a set of linear and homogeneous 

constraints. Bajanilov [14] compiled the literature of Linear Fractional Programming: Theory, 

Methods, Applications and Software in the form of book. Dinkelbach [15], Charnes-Cooper 

[16], Kantiswarup [17], Jain, Mangal and Parihar [18] and many other researchers worked on 

linear fractional programming problem. 

A classical (traditional) transportation problem is a minimization problem of the cost of 

transportation from some origins to some other destinations. The minimum cost planning 

plays an important role for solving the transportation problem from origins to different 

destinations, such as from factories to warehouses or from warehouses to supermarkets, etc. 

Here we are considering a class of transportation problem called linear fractional 

transportation (LFT) problem, which is similar to the classical transportation problem except 

the objective function is a ratio of two linear functions. These types of problems arise when 

we want to minimize the cost-to-time ratio or maximize the profit-to-time ratio. Radzik [19] 

has first been considered combinatorial fractional problem, Joshi and Gupta [20] obtained the 

initial basic feasible solution and Sirvi et.al. [21] proposed a solution method for linear 

fractional programming transportation problem. Ramakrishnan [22], Khurana and Arora [23], 

Monta [24], Jain [25] and many other have worked on different types of transportation 

problems. 
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2. THE LINEAR FRACTIONAL TRANSPORTATION (LFT) PROBLEM 

We are considering the following transportation problem 

               

Subject to,  , , , , 

where  is the i
th

 source,  is the j
th

 destination,  is the unit cost and  is the unit 

preference  from i
th

 source to j
th

 destination. 

If we introduce the variables ,  and , associated with the numerator and denominator 

of objective as given in [14], where  and , i = 1, 2,…., m, are corresponding to supply 

constraints and  and , j = 1, 2,…., n, are corresponding to demand constraints, and 

defined as: 

,   . 

,  . 

Where  is the set of pairs of indices  of basic variable xij. The reduced costs  and  

are defined as: 

, i = 1, 2,…., m; j = 1, 2…., n, 

, i = 1, 2,…., m; j = 1, 2,…., n, 

Further, we define 

, i = 1, 2,…., m, 

, j = 1, 2,…. n, 

, i = 1, 2,…., m; j = 1, 2,……., n, 

, i = 1, 2,…., m; j = 1, 2,……., n, 
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and finally  

, i = 1, 2,…., m; j = 1, 2,……., n, 

It can be express as 

 , i = 1, 2,…., m; j = 1, 2,……., n, 

The optimality condition for LFT problem given in [14] state that a basic feasible solution is 

optimal if 

, i = 1, 2,…., m; j = 1, 2,…., n, 

3. THE INVERSE LFT ALGORITHM 

In order to make the given feasible solution an optimal one, we have proposed an algorithm. 

Our algorithm is divided into two parts: in the first part (i.e. part (a)), we obtained the optimal 

solution of LFPT using [14] and in the second part (i.e. part (b)), we have converted the given 

feasible solution to an alternate optimal solution. 

The proposed algorithm is as follows: 

Part A:   

Step 1: Calculate the initial basic feasible solution by using the method given in [24] or by 

any existing method. 

Step 2: Obtain the variables  and  from loaded cells using the relation   for 

all i = 1, 2,…., m and j = 1, 2,…., n and then calculate  for each 

unoccupied cell of the transportation table. 

Step 3: Obtain the variables  and  from loaded cells using the relation   

for all i = 1, 2,…., m and j = 1, 2,…., n and then calculate  for each 

unoccupied cell of the transportation table. 

Step 4: Calculate  for the initial basis feasible 

solution. 

Step 5: Calculate   for all unoccupied cells. 
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Step 6: If  for all i = 1, 2,…., m and j = 1, 2,……., n, then the present solution is 

optimal, otherwise the variable xij correspond to most negative  will enter into the basis. 

Step 7: Repeat the procedure until all  for all i = 1, 2,…., m and j = 1, 2,……., n, and 

calculate the  optimal objective value z
*
 using step 4. 

Part B: 

Step 8: If  is the given feasible solution then defining the following sets 

A*: set of pairs of indices (i, j) of optimal  

A
0
: set of pairs of indices (i, j) of feasible  

and A0/ A*: set of pairs of indices (i,j) of A0 which are not in A* 

Step 9: Replace  with  and  with  for all , where  and 

. 

Step 10: Calculate  for all , where z* is the optimal value of z, 

 and . 

Step 11: find the values of  and  such that all  calculated in step 10 are equal to zero 

and the sum of absolute values of  and  is minimum. Most of the time  and  can 

be calculated by inspection only, but for the large problems, we may assume  

and   where . Using this transformation  and  can be 

calculated by solving the following linear programming problem: 

Min , 

Subject to, ,  for all , 

 , for all . 

In the case of maximization, we can use the above algorithm for inverse optimization except the 

optimality condition replace with  for all i = 1, 2,…., m and j = 1, 2,……., n, or even we 

can also use the same optimality condition i.e.  for all i = 1, 2,…., m and j = 1, 2,…., n, 

if we redefine  and  as  and  for all unoccupied 

cells. 
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4. NUMERICAL EXAMPLE 

Consider the transportation problem 

 

 

Subject to, 

 

 

 

 

 

 

 

  for i = 1, 2, 3; j = 1, 2, 3, 4 

Placing the data of above problem into the table, we have  

Table 1 

8 

 

9 

10 

 

12 

12 

(12) 

7 

9 

 

6 

 

a1 = 12 

6 

(3) 

11 

4 

(5) 

9 

8 

(6) 

17 

11 

(5) 

6 

 

a2 = 19 

9 

 

5 

13 

(17) 

4 

11 

 

3 

7 

 

9 

 

a3 = 17 

 

b1 = 3 

 

 

b2 = 22 

 

b3 = 18 

 

b4 = 5 

 
Z = 0.715 

 

Where the entries at the top left and bottom right corners of each cell represents dij and cij. 

Now, solving the problem using the algorithm proposed in [21], we obtained the basic 

feasible solution and the values of xij are shown in the small brackets in Table 1.  

Calculating  and , and place them into the table, we have   

 

Table 2 
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8                -2 

 

8                  9 

10                2 

 

13              12 

12 
(12) 

7 

9                 -6 

 

10                6 

 
 

 
6 

(3) 

11 

4 
(5+θ) 

9 

8 
(6-θ) 

17 

11 
(5) 

6 

 
 

 
9                 -6 

 

-1                 5 

13 
(17-θ) 

4 

11               -6 

(θ) 

-9                 3 

7               -13 

 

8                  9 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Z = 0.715 

The entries written at the bottom left and top right corners of cells represents  and  

respectively. 

Calculating  for all empty cells, we have 

  

  

  

  

  

  

Clearly,  is the negative, therefore x33 will enter into the basis, if we take x33 = θ (see table 

2), then we have θ = 6 and the new transportation table is 

Table 3 

8               -8 

 

-1               9 

10             -4 

 

4              12 

12 

(12) 

7 

9              -12 

 

1                6 

 
 

 
6 

(3) 

11 

4 

(11) 

9 

8                6 

 

9              17 

11 

(5) 

6 

 
 

 
9               -6 

 

-1               5 

13 

(11) 

4 

11 

(6) 

3 

7              -13 

 

8                9 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Z = 0.655 
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Further, calculating the values of , we have 

  

  

  

  

  

  

All  therefore the solution is optimal.  

If  = { , , , , , } is the given feasible 

solution, then we have  = , 

 and   

Now, we replace and  with and and 

then recalculate  and  with the help of these values 

   

  

  

, 

and similarly, . Now we observe that  and 

 are the values, for which  and  is 

minimum. Therefore the modified values of  and  are 11.93 and 2.07. 

Now, we can check the optimality of the given feasible solution (x
0
) for the modified 

transportation problem with the help of following table 

Table 4 
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8                4 

 

6.86             9 

10              2 

 

7.93           12 

12 

(12) 

7 

9               -6 

 

4.93             6 

 
 

 
6                6 

 

3.93           11 

4 

(8) 

9 

8                 

(6) 

            11.93 

11 

(5) 

6 

 
 

 
9                

(3) 

2.07 

13 

(14) 

4 

11             -6 

 

-3.93            3 

7              -13 

 

8                9 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Z = 0.655 

 

Calculating  for all unoccupied cells, we have 

  

  

  

  

  

  

All  , therefore the given solution x
0
 is an optimal solution of the modified problem. 

 

5. CONCLUSION 

This paper proposed an algorithm for inverse transportation problem of 

minimizing/maximizing the ratio of two linear functions. The approach can be use to obtain 

the modified values of objective coefficients in such a way that the given feasible solution 

becomes optimal.  For the future work, this method can be extended to capacitated linear 

fractional transportation problem, transshipment problem and linear plus linear fractional 

transportation problem. 
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