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Recursive Least Square Estimations of AR(q) Series
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Abstract. This paper is concerned with the recursive least square estima-
tion in a time varying AR(q) process. The estimates are given and recursive
relations are proposed. Some applications about the rate of convergence to the
true value of parameters and change point detection is also studied. Finally a
conclusion section is given.
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1 Introduction. There are many unknown parameters while modeling a
physical phenomena by a stochastic model. These parameters may be time
varying, in practice. In this case, related models are referred as dynamic. There
are many interesting estimation methods such as Kalman filter and recursive
least square (RLS). The RLS has been applied in engineering (Kung (1978)),
statistics (Brown et al. (1975)) and finance (JP Morgan company (1996)). For
a more comprehensive review see Sinha and Rao (1991). Mathematically, this
method provides a set of recursive relations between least square estimates based
on n− 1 and n sample sizes.

One of traditional time series is auto-regressive AR(p) model. Under some
certain conditions, this model is stationary. However, when coefficients are
time varying, this model is changed to dynamic model which is non-stationary.
Therefore, the RLS may be applied here, which is the point of the current
paper. This paper is organized as follows. in the next section, we propose the
theoretical results. Recursive relations are given in section 3. Some applications
are given in section 4. Conclusions are presented in section 5.

2 RLS in AR(p). Let Xt be an AR(p) process with time varying parame-
ters, i.e., for t ≥ 1

Xt =
q∑

j=1

φt−jXt−j + εt,

where εt is a white noise process with zero mean and variance σ2 independent
of {X1, ..., Xt−1}. Here, {φj}∞−∞ is a sequence of constants which should be
estimated.
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Here, we want to estimate φt by

φ̂t =
p∑

k=0

wkxt−k = wT
t Xt,

where the filter coefficients are wt = (w1, ..., wp)T and the p-recent samples of
Xs, s ≥ 1, that is Xt = (Xt, Xt−1, ..., Xt−p)T , for some suitable p. The notation
T stands for transpose of a vector. The RLS estimate of wt is a weight vector
which minimizes the cost function

C(wt) =
t∑

i=0

λt−ie2
i ,

where ei = φ̂i − φi, i = 0, 1, ..., t and 0 < λ ≤ 1 is the decay factor. By
differentiating of C(wt) with respect to wk, the k-th component of vector wt,
we find that

∂C

∂wk
= 2

t∑
i=0

λt−ieiXi−k = 0,

k = 1, 2, ..., q. These values of wk, k = 1, 2, ..., q are minimizers of cost function.
Therefore,

t∑
i=0

λt−i[φi −
p∑

l=0

wlXi−l]Xi−k = 0,

or equivalently,
p∑

l=0

wl[
t∑

i=0

λt−iXi−lXi−k] =
t∑

i=0

λt−iφiXi−k.

However, the above q-equations may be summarized in a matrix equation as

Rtwt= rt,

where Rt and rt are the weighted sample correlation and cross correlation be-
tween φ and Xt, respectively. Therefore, wt=R−1

t rt. They are defined as

Rt =
t∑

i=0

λt−iXiXT
i ,

rt =
t∑

i=0

λt−iφiXi.

3 Recursive algorithm. Using the Woodbury matrix identity (see Chow
and Wang (1994)) and some algebraic manipulations, we find that

wt = wt−1 + αtgt,

Pt = λ−1Pt−1 + gtXT
t λ−1Pt−1.
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The gain vector gt is defined by

gt = Pt−1XT
t {λ + XT

t Pt−1Xt}−1,

and the prior error is given by

αt = φt −XT
t wt−1.

Note that the recursions for Pt satisfies in Riccarti equations and thus have
parallel relations with Kalman filters. For run this recursive algorithm, we
consider the initial values as Xt = 0 for k = −p, ...,−1 and w0 = 0 and P0 =
δI(p+1)×(p+1).

4 Applications. In this section, we propose two applications of this method
in the style of two examples.

Example 1. In this example, we survey the convergence of the RLS estimate
to the true value of parameter. To this end, we consider an AR(1) process
defined by

Xt = πXt−1 + εt,

t = 1, 2, ..., 1000 where εt is zero mean white noise process with variance 0.15
and π = −0.48. We have plotted the RLS estimate of π in Figure 1 (page 4) for
t = 200, ..., 1000. It is seen that πt converges to π.

Example 2. In this example, we study the change point detection. Consider
the AR process of the previous example, but here, assume that parameter π
changes from −0.48 to 0.01 after t = 500. We have plotted the RLS estimate
for t = 100, ..., 1000 in Figure 2 (page 4). It is seen that the change point is
detected correctly.

5 Conclusions. We considered the RLS estimates of coefficients of a time
varying AR(q) process. The recursive algorithm is proposed and some applica-
tions are given.
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Figure 1: RLS in AR(1), with no change point
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Figure 2: RLS in AR(1), with a change point
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