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Abstract    

 Bilevel programming is a two-stage optimization problem where the 

constraint region of the first level problem is implicitly determined by another 

optimization problem. This paper is divided into two sections. In section I of 

this paper, we consider the bilevel programming problem in which both the 

leader and the followers’ problem are capacitated fixed charge transportation 

problems with bounds on total availabilities at sources and total destination 

requirements. In section II, we restrict the transportation flow to a known 

specified level. Both the problems are converted into a standard fixed charge 

transportation problems. The algorithms based on the concept that the optimal 

solution of Bilevel programming problem lies at an extreme point are presented 

to solve the problems which are illustrated with the help of an example. 

Keywords: Bilevel programming problem, Non-convex optimization, Fixed 

charge transportation problem, capacitated transportation problem, Restricted 

flow. 

Classification No. 

 Primary  :  90C08 

 Secondary  :  90C26 

                                              
AMO - Advanced Modeling and Optimization. ISSN: 1841-4311 



Ritu Arora, Deepa Thirwani 

 646

Introduction 

 Bilevel programming problem has been developed and studied by Bialas 

and Karwan [5, 6] in the year 1982, 1984; Candler and Townsley [9] in 1982; 

Bard [1, 2,3] in the year 1982, 84, 92. The bilevel programming structure has 

been used to model problems concerning traffic signal optimization [19], 

structural design [22] and genetic algorithms [11]. The transportation problem 

is a subclass of linear programming problem. There are different types of 

transportation problems and the simplest of them was presented by Hitchcock 

in 1941 [13], along with a constructive solution and later independently by 

Koopman in 1947 [17]. Brigden [8] in 1974 considered the transportation 

problem with mixed constraints. 

 The fixed charge transportation problem (FCTP) is a non-convex 

transportation problem. It was originally formulated by Dantzig and Hirsch 

[12] in 1954. K.G. Murthy [18] solved the (FCTP) by ranking the extreme 

points.  Sandrock [21] gave a simple algorithm for solving a (FCTP), Basu et.al 

[4] gave an algorithm for solving a (FCTP). Khanna et al. [15, 16] developed 

techniques for solving the transportation problem when the flow is either 

restricted or enhanced. 

Capacitated transportation problem with bounds on total availabilities at 

sources and total destinations, find their applications in a variety of real world 

problems like telecommunication networks, production-distribution system, rail 

and urban-road system where finite capacity of resources such as vehicles, 

docks, parking places etc. have to be taken into account and equipment 

capacity, location shipping and receiving constraints are typically experienced. 

Charnes and Klingman [10], Verma and Puri [23] have discussed minimization 

of dead-Mileage assessed in terms of running buses from various depots to 

starting points. If total flow in transportation problem with bounds on sources 

and destinations are considered, them the resulting problem makes the 
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transportation model more realistic. Kassay [14] gave an operator method for 

solving capacitated transportation problem. Later on, Bit et al. [7], Zheng et al. 

[25] and Rachev and Olkin [20] worked on capacitated transportation 

problems. 

SECTION I 

A Bilevel Capacitated Fixed Charge Transportation Problem (BCFCTP) is 

defined as 

(BCFCTP): 
1

T T
1 1 1 2 2 1

X
Min Z c X c X F= + +  

  where X2 solves, for a given X1 

  
2

T T
2 1 1 2 2 2

X
Min Z d X d X F= + +  

  subject to 

  
i ij i

j J

j ij j
i I

a x A , i I

b x B , j J

∈

∈

≤ ≤ ∀ ∈ 


≤ ≤ ∀ ∈


∑

∑
 (1) 

  ij ij ij 1 1x u & integers i I , j J≤ ≤ ∀ ∈ ∈ℓ  (2) 

  ij ij ij 2 2x u & int egers i I , j J′ ′≤ ≤ ∀ ∈ ∈ℓ                                     (3) 

where c1 = [cij], i ∈ I1 = {1, 2, .., m1} ;  j ∈ J1 = {1, 2, ..., n1} 

 c2 = [cij],  i ∈ I2 = {m1+1, .., m} ;  j ∈ J2 = {n1+1, ..., n} 

 d1 = [dij],  i ∈ I1,  j ∈ J1 and d2 = [dij],  i ∈ I2, j ∈ J2 

 I = I1 ∪ I2 = {1, 2, .., m} 

 J = J1 ∪ J2 = {1, 2, ..., n} 
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 X1 = [xij], i ∈ I1,  j ∈ J1 and X2 = [xij];   i ∈ I2,  j ∈ J2 are the variables 

controlled by the upper level and lower level problems respectively. 

 Here, ℓij is assumed to be non-negative for all i ∈ I, j ∈ J. Let ℓij , uij and 

ij ij, u′ ′ℓ  be the minimum and maximum number of units to be transported from 

the ith origin to the jth destination for the upper level and for the lower level 

problems respectively. 

 Here, ai (i ∈ I) and Ai (i ∈ I) are the bounds on the goods available at the 

ith origin and bj (j ∈ J) and Bj(j ∈ J) are the bounds on the demands at the jth 

destinations. cij and dij (i ∈ I, j ∈ J) are per unit costs of transportation of goods 

from the ith origin to the jth destination of the upper level and the lower level 

problems respectively. 

  1 i
i I

F F
∈

=∑   is the total fixed cost for the upper level problem and Fi is 

the fixed cost associated with origin i for the upper level problem and 

2 i
i I

F F
∈

′=∑  is the total fixed cost for the lower level problem and Fi′ is the fixed 

cost associated with origin i for the lower level problem. 

 For formulation of Fi (i ∈ I), assume that Fi (i ∈ I) has p number of steps 

so that 
p

i i i
1

F F , i I
=

= δ ∈∑ ℓ ℓ

ℓ

 where  

  
n

i ij i
j 1

1 if x A
=

δ = >∑ℓ ℓ
, i ∈ I,  ℓ ∈ L = {1, 2, ..., p} 

       = 0  otherwise. 

Here, 
1 2 pi i i0 A A ... A< < < < . 
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1 2 pi i iA ,A ,...,A (i I)∈  are constants and iF (i I, L)∈ ∈
ℓ

ℓ  are fixed costs. 

Similarly, for formulation of iF (i I)′ ∈ , assume that iF (i I)′ ∈  has q number of 

steps, so that 
q

i ik ik
k 1

F F , i I
=

′ ′ ′= δ ∈∑ ,  

where ik′δ  = 1 if 
n

ij ik
j 1

x B , i I, k K {1,2,...,q}
=

> ∈ ∈ =∑  

       = 0 otherwise. 

Here, 
1 2 qi i i0 B B ... B< < < <  

1 2 qi i iB ,B ,...,B  (i ∈ I) are constants and ikF (i I, k K)′ ∈ ∈  are fixed costs. 

Algorithmic Development for (BCFCTP) 

 To solve the problems (BCFCTP), we separate it into two problems, 

upper level capacitated fixed charge transportation problem (UCP) and lower 

level capacitated fixed charge transportation problem (LCP), defined as   

 (UCP) : 
1

T T
1 1 1 2 2 1

X
Min Z c X c X F= + +  

  subject to (1) and (2). 

(LCP) : 
2

T T
2 1 1 2 2 2

X
Min Z d X d X F= + + , for a given X1 

  subject to (1) and (3). 

Problem (UCP) 

Consider the upper level capacitated fixed charge transportation problem as 
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(UCP) :  
1 1 2 2

1 ij ij ij ij i
i I j J i I j J i I

Min Z c x c x F
∈ ∈ ∈ ∈ ∈

= + +∑ ∑ ∑ ∑ ∑  

  subject to (1) and (2) 

 or 1 ij ij i
i I j J i I

Min Z c x F
∈ ∈ ∈

= +∑ ∑ ∑  

  subject to (1) and (2). 

In order to solve problem (UCP), consider the related transportation problem 

(RUCP) as follows: 

(RUCP) : 1 ij ij i
i I j J i I

Min Z c t F
′ ′ ′∈ ∈ ∈

′ ′ ′= +∑ ∑ ∑  

  subject to  

  ij i
j J

t A i I
′∈

′ ′= ∀ ∈∑  (4) 

  ij j
i I

t B j J
′∈

′ ′= ∀ ∈∑  (5) 

where   ij ij ijt u i I, j J≤ ≤ ∀ ∈ ∈ℓ  

  m 1, j j j0 t B b , j J+≤ ≤ − ∀ ∈  

  i,n 1 i i0 t A a , i I+≤ ≤ − ∀ ∈  

  m 1,n 1t 0+ + ≥  and integers, 

  i i m 1 j
j J

A A i I; A B+
∈

′ ′= ∀ ∈ =∑ , 

  j i n 1 i
i I

B B j J; B A+
∈

′ ′= ∀ ∈ =∑ , 

  ij ij m 1, j i,n 1 m 1,n 1c c i I, j J; c c c 0 i I, j J+ + + +′ ′ ′ ′= ∀ ∈ ∈ = = = ∀ ∈ ∈  
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  I′ = {1, 2, ..., m, m+1},  J′ = {1, 2, ..., n, n+1}. 

  Fi′ = Fi,  ∀ i ∈ I 

  Fm + 1  = 0. 

It can be shown that problems (UCP) and (RUCP) are equivalent [24]. 

Theorem 1. The value of the objective function of problem (UCP) at a feasible 

solution is equal to the value of the objective function (RUCP) at its 

corresponding feasible solution and conversely. 

Proof: Let {t ij} : i ∈ I′, j ∈ J′ and {xij};  i ∈ I, j ∈ J be corresponding feasible 

solutions of problem (UCP) and (RUCP) respectively. Then 

1Z′  = objective function value of (RUCP) at {tij} : i ∈ I′, j ∈ J′ 

ij ij i
i I j J i I

c t F
′ ′ ′∈ ∈ ∈

′= +∑ ∑ ∑

 

ij ij i,n 1 i,n 1 m 1 m 1, j m 1,n 1 m 1,n 1 i m 1
i I j J i I j J i I

c t c t c t c t F F+ + + + + + + + +
∈ ∈ ∈ ∈ ∈

′ ′ ′ ′= + + + + +∑ ∑ ∑ ∑ ∑  

ij ij i i,n 1 m 1 m 1,n 1 ij ij
i I j J i I

m 1 i i

c t F ( c c c 0, c c i I, j J

and F 0, F F i I)

+ + + +
∈ ∈ ∈

+

′ ′ ′ ′= + = = = = ∀ ∈ ∈

′= = ∀ ∈

∑ ∑ ∑ ∵
 

ij ij i ij ij
i I j J i I

c x F ( t x , i I, j J)
∈ ∈ ∈

= + = ∈ ∈∑ ∑ ∑ ∵  

= objective function value of problem (UCP) at {xij}; i ∈ I, j ∈ J. 

Similarly, the converse can be proved. 

To find the Optimal Solution of the Problem (RUCP) 

In order to solve the problem (RUCP), an additional source and an additional 

destination have been added. The method moves from an (m+1)×(n+1) 

capacitated fixed charge transportation problem to an (m×n) capacitated fixed 

charge transportation problem. 
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Let {t′ij}, i ∈ I′, j ∈ J′ be a basic solution of the problem (RUCP), with respect 

to the variable cost using upper bounding simplex method. Let B be the basis 

matrix and N1 and N2 denote the set of non-basic cells (i, j) which are at their 

lower bounds and upper bounds respectively. Find the corresponding fixed 

cost. Let it be denoted by k1F  (current), where k
1 i

i I

F (current) F
∈

=∑ .  

Also, k k k
ij 1 ij k ij k ij k ij i j(A ) (c ) (E ) ,where (c ) c u v , (i, j) B′ ′ ′= × = − − ∀ ∉ , k k

i ju ,v  (i∈I′, 

j∈J′) are the dual variables and k
ij 1(A ) , is the change in the cost of the upper 

level that occurs on introducing a non-basic cell (i, j) with value (Eij)k into the 

basis by making reallocations. 

Find k
ij 1(F )  (Difference) = k

ij 1(F ) (NB) − k
1F  (current), where k

ij 1(F ) (NB) is the 

total fixed cost obtained on introducing the cell (i, j) into the basis. 

Find k k
ij 1 ij 1( ) (F )∆ =  (Difference) + k

ij 1(A ) ,  ∀ (i, j) ∉ B. 

Optimality Criterion for the Problem (RUCP) 

The basic feasible solution ij{t }, i I , j J′ ′ ′∈ ∈  for the problem (RUCP) with basis 

matrix B will be an optimal basic feasible solution if k
ij 1 1( ) 0 (i, j) N∆ ≥ ∀ ∈  and 

k
ij 1 2( ) 0 (i, j) N∆ ≤ ∀ ∈ . 

If k
pq 1( ) 0∆ <  for some 1(p,q) N∈ , then one can move from one basic feasible 

solution to another basic feasible solution on entering the cell (p, q) ∈ N1 into 

the basis which undergoes change by an amount θpq given by  

θpq = min{upq − ℓpq; t′pq −ℓpq for all basic cells with (−θ) entry in the θ-loop; 

                     upq − t′pq for all basic cells with (+θ) entry in the θ-loop} 
 
Similarly, when non-basic variable t′pq ∈ N2 undergoes change by an amount 

θpq, the solution can be improved. 
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Optimal Solution for the Problem (UCP) 

 Since (RUCP) and (UCP) are equivalent problem, therefore, optimal 

solution for (RUCP) yields the optimal solution for (UCP). Let the optimal 

solution of the upper level capacitated fixed charge transportation problem be 

denoted by * * *
1 2X (X ,X ),=  with the value of the objective function as *1Z . 

Putting the value of *
1 1X X=  in the lower level capacitated fixed charge 

transportation problem (LCP), its related problem (RLCP) is formulated and 

solved by the method explained above. Let 2X̂  be its optimal solution with the 

value of the objective function as 2Ẑ .  

If *
2 2

ˆX X= , then *X  is the optimal solution of the given problem (BCFCTP). 

If *
2 2

ˆX X≠ , then find an alternate optimal solution to the problem (UCP). If 

there exists an alternate solution ** ** **
1 2X (X ,X )= , repeat the above process for 

**
1 1X X= . Let 2

ˆ̂X  be optimal solution of (LCP). 

If **
2 2

ˆ̂X X= , then **
2X  is the optimal solution of given (BCFCTP). If not, then 

test for other alternate solutions till we get the optimal solution of (BCFCTP). 

This process must end in a finite number of steps because the solution of 

(BCFCTP) lies on an extreme point which are finite in number. 

Algorithm for Solving (BCFCTP) 

Step 1:  Consider the Bilevel Capacitated Fixed Charge Transportation 

Problem (BCFCTP). 

Step 2:  Separate the problem (BCFCTP) into the problems (UCP) and 

(LCP). 

Step 3: Set K = 0, where K is the number of iterations in the algorithm. 

Step 4: Set K = K + 1, K = 0, 1, 2, ... 
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Step 5: To solve (UCP), formulate its related capacitated fixed charge 

transportation problem (RUCP), by introducing additional rows 

and columns respectively. Find a basic feasible solution of this 

problem with respect to the variable costs only. Find the 

corresponding basic feasible solution of (UCP).  

Step 6: Find the corresponding fixed cost. Let it be denoted by K
1F  

(current), where K
1 i

i I

F (current) F
∈

=∑ . 

  Also, find K
ij 1 ij k ij k(A ) (c ) (E )′= ×  and  

  K
ij 1(F )  (Difference) = K

ij 1(F )  (NB) - K
1F  (Current). 

Step 7: Find K K
ij 1 ij 1( ) (F )∆ =  (Difference) + K

ij 1(A ) , ∀ (i, j) ∉ B. 

  If K
ij 1 1( ) 0 (i, j) N∆ ≥ ∀ ∈  and K

ij 1 2( ) 0 (i, j) N∆ ≤ ∀ ∈ , then the 

optimal solution of (RUCP) is obtained. Go to step 9. 

  If K
pq( ) 0∆ <  for some (p, q)∈N1 or K

pq( ) 0∆ > for some (p, q) ∈ N2, 

then go to step 8. 

Step 8: If K
pq( ) 0∆ < , for some (p, q) ∈ N1, enter the cell (p, q) into the 

basis which undergoes change by an amount given by 

  pq pq pq pq pqMin{u ; t ′θ = − −ℓ ℓ  for all basic cells with (−θ) entry in  

the θ-loop; upq − t′pq for all basic cells with (+θ) entry in                                   

the θ -loop} 

  Go to step 6. 

  Similarly, if K
pq( ) 0∆ > , for some (p, q) ∈ N2, improve the solution 

by an amount θpq and go to step 6. 
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Step 9: Let the optimal solution of the problem (UCP) be denoted by 

* * *
1 1 2X (X ,X )= . 

Step 10: For a given *
1 1X X= , solve the problem (LCP). Formulate its 

related capacitated fixed charge transportation problem (RLCP) 

and solve it by the method explained above. Let 2X̂  be its 

optimal solution. 

Step 11: If *
2 2

ˆX X= , then X* is an optimal solution of the given problem 

(BCFCTP). 

  If *
2 2

ˆX X≠  find all possible alternate solutions of (UCP) and go 

to step 9. 

  The procedure is repeated till an optimal solution of (BCFCTP) is 

obtained. 

 Example 1: Consider the following capacitated bilevel fixed charge 

transportation problem as 

  
1

3 4 3

1 ij ij i
X

i 1 j 1 i 1

Minimize Z c x F
= = =

= +∑ ∑ ∑  

  where X2 solves 

  
2

3 4 3

2 ij ij i
X

i 1 j 1 i 1

Minimize Z d x F
= = =

′= +∑ ∑ ∑  

  subject to  

  
4 4

1j 2 j
j 1 j 1

5 x 26, 9 x 20
= =

≤ ≤ ≤ ≤∑ ∑  

  
4 3

3 j i1
j 1 i 1

18 x 24, 4 x 10
= =

≤ ≤ ≤ ≤∑ ∑ , (6) 

  
3 4 3

i2 i3 i4
i 1 i 1 i 1

10 x 22, 10 x 25, 20 x 27
= = =

≤ ≤ ≤ ≤ ≤ ≤∑ ∑ ∑ , 
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  where 

  3 ≤ x11 ≤ 15,  1 ≤ x12 ≤ 10,  0 ≤ x13 ≤ 15,  2 ≤ x14 ≤ 8, 

  1 ≤ x21 ≤ 10,  4 ≤ x22 ≤ 12,  1 ≤ x23 ≤ 14,  0 ≤ x24 ≤ 7, (7) 

  1 ≤ x31 ≤ 5,  0 ≤ x32 ≤ 12,  1 ≤ x33 ≤ 11,  0 ≤ x34 ≤ 14 

  are the bounds on the upper level problem, and  

  1 ≤ x11 ≤ 10,  4 ≤ x12 ≤ 12,  1 ≤ x13 ≤ 14,  0 ≤ x14 ≤ 7, 

  1 ≤ x21 ≤ 5,  0 ≤ x22 ≤ 12,  1 ≤ x23 ≤ 11,  0 ≤ x24 ≤ 14, (8) 

  0 ≤ x31 ≤ 6,  0 ≤ x32 ≤ 16,  0 ≤ x33 ≤ 15,  0 ≤ x34 ≤ 7 

  are the bounds on the lower level problem. 

  Here,  1 11 12 13 14X (x ,x , x , x )=  are the variables controlled by the 

leader. 2 21 22 23 24 31 32 33 34X (x ,x , x , x , x , x , x ,x )=  are the variables 

controlled by the follower. 

The above problem is separated into two problems. 

The upper level problem (UCP) is 

 
1

3 4 3

1 ij ij i
X

i 1 j 1 i 1

Minimize Z c x F
= = =

= +∑ ∑ ∑  

 subject to (6) and (7). 

The lower level problem (LCP) is 

 
2

3 4 3

2 ij ij i
X

i 1 j 1 i 1

Minimize Z d x F
= = =

′= +∑ ∑ ∑  

 subject to (6) and (8). 

Table (1) and (2) give the values of the variable cost  ijc (i 1,2,3; j 1,2,3,4)= =  

ijand d (i 1,2,3; j 1,2,3,4)= =  for the upper level and lower level problems 

respectively. 
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2 2 1 2 

3 2 1 2 

4 2 3 1 

Table 1 

1 2 1 2 

4 5 3 3 

3 2 2 1 

Table 2 

The fixed costs for the upper level problem are  

F11 = 10,  F12 = 10,  F13 = 5,  F14 = 5,  F21 = 5, F22 = 5, F23 = 10,  

F24 = 5,   F31
 = 10,   F32 = 5,  F33 = 5,  F34 = 10 

The total cost which is to be minimized is given by 

3 4 3

ij ij i
i 1 j 1 i 1

c x F
= = =

 
+ 

 
∑ ∑ ∑ , where 

3

i i
1

F , i 1,2,3
=

δ =∑ ℓ ℓ

ℓ

 

where 
4

i1 ij
j 1

1 if x 20 i 1,2,3
=

δ = > =∑  

       = 0 otherwise 

  
4

i2 ij
j 1

1 if x 8 i 1,2,3
=

δ = > =∑  

       = 0 otherwise 

4

i3 ij
j 1

1 if x 20 i 1,2,3
=

δ = > =∑  

       = 0 otherwise 

4

i4 ij
j 1

1 if x 7 i 1,2,3
=

δ = > =∑  

       = 0 otherwise 
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The fixed costs for the lower level problem are 

 11 12 13 14F 10 F 5 F 5 F 10′ ′ ′ ′= = = =  

 21 22 23 24F 5 F 5 F 10 F 5′ ′ ′ ′= = = =  

31 32 33 34F 10 F 10 F 5 F 5′ ′ ′ ′= = = =  

The total cost which is to be minimized is given by 

3 4 3

ij ij i
i 1 j 1 i 1

d x F
= = =

 
′+ 

 
∑ ∑ ∑ , where 

3

i ik ik
k 1

F F , i 1,2,3
=

′ ′ ′= δ =∑  

where 
4

i1 ij
j 1

1 if x 5 i 1,2,3
=

′δ = > =∑  

       = 0 otherwise 

  
4

i2 ij
j 1

1 if x 12 i 1,2,3
=

′δ = > =∑  

       = 0 otherwise 

4

i3 ij
j 1

1 if x 5 i 1,2,3
=

′δ = > =∑  

        = 0 otherwise 

4

i4 ij
j 1

1 if x 20 i 1,2,3
=

′δ = > =∑  

       = 0 otherwise 

Related standard transportation problem for the upper level problem is given as 

(RUCP) 
4 5

ij ij
i 1 j 1

c t
= =

′∑ ∑  

  subject to 

  
5

ij i
j 1

t A 26,20, 24, 84; i 1,2,3,4
=

′= = =∑  

  
4

ij j
i 1

t B 10, 22, 25, 27, 70; j 1,2,3,4,5
=

′= = =∑  
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3 ≤ t11 ≤ 15,  1 ≤ t12 ≤ 10,  0 ≤ t13 ≤ 15, 2 ≤ t14 ≤ 8, 

 1 ≤ t21 ≤ 10,  4 ≤ t22 ≤ 12,  1 ≤ t23 ≤ 14,  0 ≤ t24 ≤ 7, 

 1 ≤ t31 ≤ 5,  0 ≤ t32 ≤ 12,  1 ≤ t33 ≤ 11,  0 ≤ t34 ≤ 14, 

 0 ≤ t14 ≤ ≤ 21,  0 ≤ t24 ≤ 11,  0 ≤ t34 ≤ 6  and t44 ≥ 0. 

ijc′  (i = 1, 2, 3, 4;  j = 1, 2, 3, 4, 5) are given as depicted in the following tabular 

form 

2 2 1 2 0 

3 2 1 2 0 

4 2 3 1 0 

0 0 0 0 0 

Table 3 

The initial basic feasible solution for the upper level problem using upper 

bounding simplex method is given in Table 4. 

             ui 

  

  

 

 

 

  

vj 

 

Table 4 

2 
 
3 2 

2  
4 

1 
 

15 1 

2  
3 

0 
1 

  
0 

3 
 
1 3 

2 
 
4 0 

1 
 
1 1 

2 
3 

0 
 
11 0 

0 

4 
 
1 4 

2 
2 

3 
 

1 3 

1 
 
14 −1 

0 
 

6  0 
0 

0 
5 
 

0 
 
12 −2 

0 
8 

0 
 
7  −2 

0 
52 

 
0 

 
0 
 

2 0 2 0  
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Calculate ij 1 ij i j(c ) c u v (i, j) B′ ′= − − ∀ ∉  

and ij 1 ij 1 ij 1( ) (F ) (Difference) (A ) , (i, j) B′ ′∆ = + ∀ ∉  

which is given in Table 5. 

(i,j) (1,1) (1,3) (2,1) (2,2) (2,3) (2,5) (3,1) (3,3) (3,4) (3,5) (4,2) (4,4) 

(A ij)1 2 7 3 0 1 0 4 3 −3 0 −2 −2 

(∆ij)1 2 22 3 0 1 5 4 3 −3 0 −2 −2 

Table 5 

Since ij 1( )∆  ≥ 0 for upper bounded variable corresponding to the cell (1,3), 

therefore, x13 enters the basis. 

Proceeding as above, the optimal solution for the upper level problem so 

obtained is *
1X (3, 4, 8, 3)=  and *

2X  = (1, 4, 1, 3, 1, 2, 1, 14). 

Putting the values of X1 =  *
1X  in the lower level problem and solving by the 

same procedure as above, the optimal solution for the lower level problem is 

2X̂  = (1, 4, 1, 3, 1, 2, 1, 14). 

Since *
2 2

ˆX X= , therefore, the optimal solution for the bilevel problem is  

(3, 4, 8, 3, 1, 4, 1, 3, 1, 2, 1, 14), with Z1 = 71, F1 = 40 and Z2 = 84, F2 = 30. 

 

SECTION II 

Problem (BCFCTP) with Restricted Flow 

If in problem (BCFCTP), total flow is specified, that is, ij
i I j J

x P
∈ ∈

=∑ ∑ , then 

problem can be stated as 
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(BCFCTPF) : 
1

T T
1 1 1 2 2 1

X
Min Z c X c X F= + +  

  where X2 solves, for a given X1 

  
2

T T
2 1 1 2 2 2

X
Min Z d X d X F= + +  

  subject to 

  
i ij i

j J

j ij j
i I

a x A , i I

b x B , j J

∈

∈

≤ ≤ ∀ ∈ 


≤ ≤ ∀ ∈


∑

∑
 (9) 

  ij ij ij 1 1x u & integers i I , j J≤ ≤ ∀ ∈ ∈ℓ  (10) 

  ij ij ij 2 2x u & int egers i I , j J′ ′≤ ≤ ∀ ∈ ∈ℓ  (11) 

  ij i j
i I j J i I j J

x P, P Min A , B
∈ ∈ ∈ ∈

   = <      
∑ ∑ ∑ ∑  (12) 

  I = I1 ∪ I2 = {1, 2, .., m} denote the origins, 

  J = J1 ∪ J2 = {1, 2, ..., n} denote the destinations. 

The symbols defined in the above problem are same as defined in Section I. 

Algorithm Development for (BCFCTPF) 

To solve the problem (BCFCTPF), we separate it into two problems, upper 

level capacitated fixed charge transportation problem with restricted flow 

(UCPF) and lower level capacitated fixed charge transportation problem with 

restricted flow (LCPF), defined as 
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(UCPF): 
1

T T
1 1 1 2 2 1

X
Min Z c X c X F= + +  

  subject to (9), (10) and (12). 

  
2

T T
2 1 1 2 2 2

X
Min Z d X d X F= + + , for a given X1 

  subject to (9), (11) and (12). 

The flow constraint in the problem (BCFCTPF) implies that a total of 

i
i I

A P
∈

 − 
 
∑  of source reserves has to be kept at the various sources and a total 

of j
j J

B P
∈

 
− 

 
∑  of destination slacks is to be retained at the various 

destinations. Therefore, an extra destination to receive the source reserves and 

an extra source to fill up the destination slacks are introduced. Hence, the 

Related Bilevel capacitated Fixed Charge Transportation Problem with 

Restricted Flow for upper level and lower level problems are defined. 

To solve the problem (UCPF) the related capacitated fixed charge 

transportation problem with restricted flow is formulated with an additional 

supply point and an additional destination point, defined as 

(RUCPF): T T
1 1 1 2 2 1Min Z c Y c Y F′ ′ ′= + +  

  subject to  

   ij i
j J

y A i I I {m 1}
′∈

′ ′= ∀ ∈ = ∪ +∑  

  ij j
i I

y B j J J {n 1}
′∈

′ ′= ∀ ∈ = ∪ +∑  

  ij ij ijy u i I, j J≤ ≤ ∀ ∈ ∈ℓ  

  0 ≤ yi,n+1 ≤ Ai − ai;  i ∈ I 
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  0 ≤ ym+1,j ≤ Bj − bj; j ∈ J;  ym+1,n+1 ≥ 0. 

  ij ij i,n 1 m 1, jc c , i I, j J; c c 0, i I, j J+ +′ ′ ′= ∈ ∈ = = ∈ ∈ , 

  m 1,n 1c M+ +′ = . 

  i i j jA A , i I, B B , j J′ ′= ∈ = ∈  

  m 1 j n 1 i
j J i I

A B P, B A P+ +
∈ ∈

′ ′= − = −∑ ∑  

  m 1F 0+′ = . 

Definition 1: A feasible solution ij I J{y } ′ ′×  to solve the problem (RUCPF) is 

called a convex feasible solution (cfs) if m 1,n 1y 0+ + = . 

Theorem 2 [24]: There is a one-one correspondence between the feasible 

solution to (UCPF) and the corner feasible solution to (RUCPF). 

Theorem 3: Let {x ij} I×J be a feasible solution of (UCPF) and let its 

corresponding cfs be ij I J{y } ′ ′× . Then the values of the objective function of 

(UCPF) and (RUCPF) are equal.  

Proof: The value of the objective function (RUCPF) at the feasible solution 

{y ij} is = ij ij i
i I j J i I

c y F
′ ′ ′∈ ∈ ∈

′ ′+∑ ∑ ∑  

ij ij i,n 1 i,n 1 m 1, j m 1, j
i I j J i I j J

m 1,n 1 m 1,n 1 i m 1
i I

c y c , y c y

c y F F

+ + + +
∈ ∈ ∈ ∈

+ + + + +
∈

′ ′= + +

′ ′ ′+ + +

∑ ∑ ∑ ∑

∑
 

ij ij i m 1, j i,n 1 m 1,n 1 m 1,n 1
i I j J i I

c x F ( c c 0,c 0, y 0)+ + + + + +
∈ ∈ ∈

′ ′ ′= + = = = =∑ ∑ ∑ ∵  

 = the value of the objective function of (UCPF) at the corresponding  

    feasible solution {xij}. 
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Theorem 4: The optimal solutions of (UCPF) and (RUCPF) are equivalent. 

Optimal Solution for the Problem (UCPF) 

Solve the problem (RUCPF) with respect to the variable cost using upper 

bounding simplex method.  The fixed cost for the problem (RUCPF) is 

calculated by the method explained in section I. 

On solving the problem (RUCPF), let * *
ijY {y ), i I , j J′ ′= ∈ ∈  be the basic 

feasible solution. It will be optimal if K
ij 1 1( ) 0 (i, j) N and∆ ≥ ∀ ∈  

K
ij 1 2( ) 0 (i, j) N∆ ≤ ∀ ∈ . The optimal solution *

ij{x }  to the problem (UCPF) is 

then derived using the following transformation. 

 ij ijy x , i I, j J= ∈ ∈  

 i,n 1 i ij
j

y A x , i I+ = − ∈∑  

 m 1, j j ij
i I

y B x , j J+
∈

= − ∈∑  

 m 1,n 1y 0+ + = . 

Let the optimal solution of the problem (BCFCTPF) be denoted by * * *
1 2X (X ,X )= , 

with the value of the objective function as *
1Z . Putting the value of *

1 1X X=  in the 

lower level capacitated fixed charge transportation problem (LCPF), its related 

problem (RLCPF) is formulated by the method explained above. Let 2X̂  be its 

optimal solution with the value of the objective function as 2Ẑ .  

If *
2 2

ˆX X= , then X* is the optimal solution of the given problem (BCFCTPF). 

If *
2 2

ˆX X≠ , then find an alternate solution of the problem (BCFCTPF). If not, 

then test for other alternate solutions till we get the optimal solution of 

(BCFCTPF). This process must end in a finite number of steps because the 

solution of (BCFCTPF) lies on an extreme point which are finite in number. 
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Example 2: Consider the bilevel capacitated fixed charge transportation 

problem, defined in Example 1. The bounds on the upper level and the lower 

level problems are same as defined in example 1. The fixed costs for the upper 

level problem are 

 F11  = 5,   F12 = 10,  F13 = 5,  F14 = 10,  

 F21 =5,   F22 = 5,  F23 = 5, F24 = 10 

 F31 = 5,  F32 = 5,  F33 = 10, F34 = 10 

The total cost which is to be minimized is given by 
3 4 3

ij ij i
i 1 j 1 i 1

c x F
= = =

 
+ 

 
∑ ∑ ∑ , 

where 
3

i i
1

F , i 1,2,3
=

δ =∑ ℓ ℓ

ℓ

. 

where 
4

i1 ij
j 1

1 if x 5
=

δ = >∑     i = 1, 2, 3 

      = 0 otherwise 

4

i2 ij
j 1

1 if x 12
=

δ = >∑     i = 1, 2, 3 

       = 0 otherwise 

4

i3 ij
j 1

1 if x 15
=

δ = >∑     i = 1, 2, 3 

       = 0 otherwise 

           
4

i4 ij
j 1

1 if x 22
=

δ = >∑     i = 1, 2, 3 

       = 0 otherwise 

The fixed costs for the lower level problem are 

 11 12 13 14F 5 F 5 F 10 F 10′ ′ ′ ′= = = =  

 21 22 23 24F 10 F 10 F 5 F 5′ ′ ′ ′= = = =  

31 32 33 34F 5 F 5 F 5 F 5′ ′ ′ ′= = = =  
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The total cost which is to be minimized is given by  

3 4 3

ij ij i
i 1 j 1 i 1

d x F
= = =

 
′+ 

 
∑ ∑ ∑ , where 

3

i ik ik
k 1

F F , i 1,2,3
=

′ ′ ′= δ =∑  

where  
4

i1 ij
j 1

1 if x 6 i 1,2,3
=

′δ = > =∑  

      = 0 Otherwise 

 
4

i2 ij
j 1

1 if x 7 i 1,2,3
=

′δ = > =∑  

       = 0 Otherwise 

 
4

i3 ij
j 1

1 if x 10 i 1,2,3
=

′δ = > =∑  

       = 0 Otherwise 

 
4

i4 ij
j 1

1 if x 15 i 1,2,3
=

′δ = > =∑  

       = 0 Otherwise 

Consider the above problem with additional flow constraint 
3 4

ij
i 1 j 1

x 45
= =

=∑ ∑ . 

Formulate the related standard transportation problem for the upper level 

problem with additional flow constraint. The optimal solution for the upper 

level problem so obtained by the upper bounding simplex method is 

*
1X (3,4,8,3)=  and *

2X  = (1, 4, 1, 3, 1, 2, 14). 

Putting the values of *
2X   in the lower level problem and solving by the method 

explained above, we get  2X̂  = (1, 4, 1, 3, 1, 2, 14). 

Since *
2 2

ˆX X= , therefore the optimal solution for the bilevel problem is         

(3, 4, 8, 3, 1, 4, 1, 3, 1, 2, 1, 14), with Z1 = 71, F1 = 45 and Z2 = 84, F2 = 40. 
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CONCLUSIONS 

The algorithm moves from one extreme point to another extreme point in 

(BCFCTP) as well as in (BCFCTPF). Since the extreme points are finite in 

number, therefore, the procedure must end in a finite number of steps and the 

optimal solutions of both the problems (BCFCTP) and (BCFCTPF) lies on an 

extreme point. 
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