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Abstract 

In this paper we have developed an economic order quantity (EOQ) model with partially 

permissible delay in payments for defectives items, in which a supplier frequently offers its 

retailers a permissible delay linked to order quantity and the demand rate of the item, is 

assumed to be a function of both the selling price and credit period offered by retailer to his 

customer. The purpose of this paper is to maximize the retailer’s profit by determining the 

optimal cycle time and the optimal selling price. Finally, numerical example is presented to 

illustrate the theoretical results followed by the sensitivity of parameters on the optimal 

solution. 
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1.  Introduction 

The traditional economic order quantity model is based on the assumption that the retailer 

paid for the items immediately after the items are received. However, in practice, the supplier 

may provide the retailer many incentives such as a cash discount to motivate faster payment 

and stimulate sales, or a permissible delay in payment to attract new customer and increase 

the sales. [Goyal, 1985] is the first to establish an economic order quantity model under the 

condition of permissible delay in payments. [Aggarwal and Jaggi, 1995] considered the 

inventory model with an exponential deterioration rate under the condition of permissible 

delay in payments. [Jamal et al., 1997] further generalized the model with shortages. [Teng, 

2002] amended Goyal’s model by considering the difference between unit price and unit cost. 

All above models assumed that the supplier would offer the retailer a delay period but the 

retailer would not offer the trade credit period to his customer. But in most business 

transactions, this assumption is debatable. [Huang, 2003] extends [Goyal,1985] to provide a 

fixed trade credit period M between the supplier and the retailer and a maximal trade credit 

period N (M > N) between the retailer and the customer. Basically, the inventory model of 

[Goyal, 1985] is a supply chain of two stages (the supplier and the retailer). [Huang, 2003] 

generalizes [Goyal, 1985] to the supply chain of three stages the supplier, the retailer and 

customers.  [Jaggi et al., 2007] developed inventory model in demand is assumed to be a 

function of selling price and length of credit period offered by the retailer. In the present 

competitive world business to attract more sales supplier frequently offer a permissible delay 

in payment if the retailer orders more than or equal to predetermined quantity. [Chung and 

Liao, 2004] studied a similar lot sizing problem under supplier’s trade credits depending on 

retailer’s order quantity. [Chang, 2004] extended [Chung and Liao, 2004] by taking into 

account inflation and finite time horizon. They assumed that the supplier only offers the 

retailer fully permissible delay in payments if the retailer orders a sufficient quantity. 

Otherwise, permissible delay in payments would not be permitted. We know that this policy 

of the supplier to stimulate the demands from the retailer is very practical. But this is just an 

extreme case. That is, the retailer would obtain 100% permissible delay in payments if the 

retailer ordered a large enough quantity. Otherwise, 0% permissible delay in payments would 

happen. In reality, the supplier can relax this extreme case to offer the retailer partially 

permissible delay in payments rather than 0% permissible delay in payments when the order 

quantity is smaller than a predetermined quantity. That is, the retailer must make a partial 

payment to the supplier when the order is received to enjoy some portion of the trade credit. 

Then, the retailer must pay off the remaining balances at the end of the permissible delay 

period. For example, the supplier provides 100% delay payment permitted if the retailer 

ordered a sufficient quantity, otherwise only α% (0 ≤α ≤100) delay payment permitted. 

[Ouyang et al., 2009] developed An economic order quantity model for deteriorating items 

with partially permissible delay in payments linked to order quantity. Recently, [Huang, 

2007] established an EOQ model in which the supplier offers a partially delay in payments 

when the order quantity is smaller than the predetermined quantity W.  
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Previous studies related to trade credits were focused on determining optimal ordering policy 

for a retailer in which the quality-related issues are not taken into account. Namely, it is 

implicitly assumed that all items produced are non-defective. However, in a real production 

environment, it is often observed that some defective items are produced due to an imperfect 

production process or other factors. [Salameh and Jaber, 2000] developed an EOQ model for 

circumstances where a fraction of the ordered lot is of imperfect quality and has a uniform 

distribution. Their model assumed that shortages are not permitted to occur. [Goyal and 

Cardenas-Barron, 2002] reworked on the paper by [Salameh and Jaber, 2000] and presented a 

practical approach to find out the optimal lot size. [Chung and  Huang, 2012] develop a 

inventory model of the retailer to allow items with imperfect quality under permissible delay 

in payments. [Ouyang et al. 2012] extended [Huang, 2007]   EOQ model with partially 

permissible delay in payments to consider defective items. 

     In this paper we have developed economic order quantity (EOQ) model with partially 

permissible delay in payments for defectives items, in which a supplier frequently offers its 

retailers a permissible delay linked to order quantity and the demand rate of the item, is 

assumed to be a function of both the selling price and credit period offered by retailer to his 

customer. 

2. Model Description 

The retailer orders Q units of non-defective items at the beginning of the cycle. Due to an 

imperfect production process, the supplier produces some defective items. Based on past 

statistics, the supplier knows its defective rate is  � in an order lot, where 0 ≤ γ < 1 . Hence, 

the supplier immediately delivers q = Q/(1 − �) ≥ � items to the retailer in the same 

shipment. For simplicity, we assume the lead time is zero. Upon arrival, the retailer inspects 

all q items with the inspection rate of x items per year. After inspection, the defective items 

are discovered and returned to the supplier at the time of the next replenishment. If the 

retailer’s order quantity of non-defective items is greater than or equal to �	 , then the 

supplier offers fully delay payment to the retailer ,i.e. pay  cQ after 
 time periods from the 

time the order is filled.. Otherwise, as the order is filled, the retailer must make a partial 

payment, (1 − �)��, to the supplier ,where 0 ≤ � ≤ 1. Then the retailer must pay off the 

remaining balances,���, at the end of the trade credit period. The retailer also offers the full 

trade credit period N to his customer to settle the account. 

 The demand rate consists of (i) regular cash-demand, which is inversely proportional to 

selling price and (ii) credit-demand, which is inversely proportional to selling price and 

directly proportional to the credit period offered by the retailer. Hence, demand rate at any 

time t can be represented as  
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                (�, �) =      ����� + �����(� − �)�     0 ≤ � ≤ � �����                                      � ≤ � ≤ �  

Where    �� > 0 , �� > 0 ,� > 0 and � > 1  
 

3.  Notations and   Assumptions  

The following notations and assumptions are adopted to develop the mathematical model 

3.1  Notations  

A ordering cost per order h� holding cost per non-defective item per year excluding interest charges h� holding cost per defective item per year excluding interest charges where     

 ℎ� ≤ ℎ�              " inspection rate (or inspected items) per year 
             # inspection cost per item �          purchase cost per item � selling price per item, where p > c 
 delay period in payment offered by the supplier � delay period in payment offered by the retailer, where � ≤ � and also � ≤ 
 $� interest earned per dollar per year $% interest charged per dollar per year 

� retailer’s order quantity of non-defective items per order �  replenishment cycle time in years �	 time interval that �	units are depleted to zero due to demand �& retailer’s optimal total profit per year 
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3.2 Assumption 

• During the inspection period, the on-hand non-defective inventory is larger than or 

equal to the demand.  

• For simplicity, it is assumed that � ≤ 
. It is also assumed that the customers would 

settle their accounts only on the last day of the credit period N . 

• The shortages are not permitted. 

4.  Mathematical formulation 

A batch of Q units is purchased from the supplier at the beginning of the cycle. As the time   

passes, the inventory level depletes due to demand. Thus, the changes of inventory level can 

be represented by the following differential equation 

	'(	) = −����� − �����(� − �)�       0 ≤ � ≤ �               (1)      

	'*	) = −�����          � ≤ � ≤ �               (2) 

With the conditions  $�(0) = � , $�(�) = $�(�) and  $�(�) = 0 . The solutions of Eq.(1) and 

Eq.(2) are 

$�(�) = �����(� − �) + ����� (+�)),-((�.�)           0 ≤ � ≤ �          (3) 

$�(�) = �����(� − �)                                      � ≤ � ≤ �                               (4) 

 The order quantity for each cycle is 

� = / (�) 0� =12  ������ + ����� +,-((�.�)                                                   (5) 

From Eq.(5),we can obtain the time interval that �	 units are depleted to zero due to demand 

as 

�	 = �3(%45 6�	 − ����� +,-((�.�)7                     (6) 

The retailer’s annual profit consist of the following elements 

Annual sales  revenue  = %81 = %1 9������ + ����� +,-((�.�): 

Annual purchasing cost = 
;81 = ;1 9������ + ����� +,-((�.�): 

Annual ordering cost = 
<1 
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Annual inspection cost =
=>1 = =1(��?) 9������ + ����� +,-((�.�): 

 Annual stock holding cost for the non-defective items and some waiting for inspection items  

=  @(1 6/ $�(�) 0� + / $�(�) 0� + ?>*�A1++2 7  
= @(1 B����� 1*� + ����� +,-*(�.�)(�.�) + ?�(��?)*A 9������ + ����� +,-((�.�):�C  

Annual stock holding cost for the defective items 

= @*1 6�D� − ?>*�A 7  
= @*1 ?(��?) 9������ + ����� +,-((�.�): 6� − ��(��?)A 9������ + ����� +,-((�.�):7 
Computation for interests charged and earned (i.e. (g) and (h)) are based on the values of � 

and �	 , there are two cases: (1) � <  �	 and (2) � ≥  �	 . 

Case 1   F < FG (i.e., H < HG ) 
In this case, the order quantity is less than �	, we know that the retailer must pay  �(1 −�)�  at initial time and pay off remaining balance ���  at time M. According to the values of 
, �, �and Td , we have the following possible sub-cases: (i) � ≤ 
 ≤ � < �	 , (ii) � ≤ � ≤
 ≤  �	 , and (iii) � ≤ � < �	 ≤  
 

 

Sub case 1.1    � ≤ 
 ≤ � < �	 

The retailer accumulates revenue from cash sales during the period (0, 
) and also from 

credit sales during (�, 
) into an account that earns an interest rate of  $�. So in the period (0, 
) the total revenue generated due to cash sales is / ������  0�I2  and from credit sales 

during the time period (�, 
) is / �����  +,-((�.�)I+  0� 

Annual interest earned is = '5%1 6/ ������  0�I2 + / �����  +,-((�.�)I+  0�7 

= '5%1 6����� I*� + �����  +,-((�.�) (
 − �)7 
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On the other hand, since  because, M ≤ T  , the retailer still has some inventory on hand at 

t=M. The retailer pay off all unit sold and keep his/ser profit and starts paying for interest 

charges on the item in stock with rate $%. 

Annual interest payable is= 'J;1 6(1 − �)�
 + / $�(�) 0�1I 7 
 = 'J;1 6(1 − �) 9������ + ����� +,-((�.�): 
 + ����� (1�I)*� 7 
 

Sub case 1.2     � ≤ � ≤ 
 ≤  �	 

Here the credit period 
 is more than or equal to the cycle , so the retailer earns interest on 

cash sales during the period(0, 
) and also on credit sales during (�, 
). Therefore 

       (f)  Annual interest earned is = '5%1 6/ ������  0�12 + / �����  +,-((�.�)1+  0� + / � 0�I1 7  
  = '5%1 6����� (�I�1)1� + �����  +,-((�.�) (
 − �)7 
Since � ≤ 
, the retailer sells all items and receives all returns from customer before pays 

purchasing amount to the supplier. Hence 

Annual interest payable is= 'J;1 (1 − �) 9������ + ����� +,-((�.�): 
 

 

Sub case 1.3   � ≤ � < �	 ≤  
  

The interests charged and earned in sub-case 1.3 are the same as those in sub-case 1.2. 

Case 2 F ≥ FG (K. M.  H ≥ HG) 

In this case, the order quantity is greater than or equal to �	, we know that the delay in 

payments is permitted for all purchase cost. That is, the retailer does not pay any purchase 

cost at initial time, he/she is permitted to pays off all purchase cost �� to the supplier at time 

M. Based on the values of 
, � and  �	, we have the following possible sub-cases: (i)� ≤�	 ≤ � ≤ 
,(ii) �	 ≤ � ≤ � ≤ 
  (iii) �	 ≤ � ≤ 
 ≤ � (iv)� ≤ �	 ≤ 
 ≤ �          

(v) � ≤ 
 ≤ �	 ≤ � 
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Sub case 2.1     � ≤ �	 ≤ � ≤ 
 

Since  � ≤ �	 ≤ � ≤ 
 , the retailer faces no interest charged. On the other hand, the retailer 

earns interest on cash sales during the period(0, 
) and also on credit sales during(�, 
). 

Therefore 

      (f)  Annual interest earned is = '5%1 6/ ������  0�12 + / �����  +,-((�.�)1+  0� + / � 0�I1 7  
  = '5%1 6����� (�I�1)1� + �����  +,-((�.�) (
 − �)7 
 

Annual interest payable is = 0 

Sub case 2.2     �	 ≤ � ≤ � ≤ 
 

The interests charged and earned in sub-case 2.2 are the same as those in sub-case 2.1. 

 

Sub case 2.3    �	 ≤ � ≤ 
 ≤ � 

The retailer accumulates revenue from cash sales during the period (0, 
) and also from 

credit sales during (�, 
) into an account that earns an interest rate of $�. Therefore  

Annual interest earned is = '5%1 6/ ������  0�I2 + / �����  +,-((�.�)I+  0�7 

  = '5%1 6����� I*� + �����  +,-((�.�) (
 − �)7 
On the other hand , since after the due date M the retailer still has some inventory on hand , 

As a result interest charged for the item kept in stock. 

Annual interest payable is= 'J;1 / $�(�) 0�1I  = 'J;1 6����� (1�I)*� 7 
 

Sub case 2.4    � ≤ �	 ≤ 
 ≤ � 

The interests charged and earned in sub-case 2.4 are the same as those in sub-case 2.3. 

 

Sub case 2.5     � ≤ 
 ≤ �	 ≤ � 

The interests charged and earned in sub-case 2.5 are the same as those in sub-case 2.3. 
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As a result the retailer’s annual profit 

 �&(�, �) = Annual sales revenue −Annual purchasing cost − Annual ordering cost −Annual 

inspection cost−   Annual stock holding cost for the non-defective items and some waiting 

for inspection items −   Annual stock holding cost for the defective items + Annual interest 

earned – Annual interest payable 

Case 1   � < �	 (i.e., � < �	  ) 
�&�(�, �) =     

�&��(�, �)          � ≤ 
 ≤ � < �	�&��(�, �)         � ≤ � ≤ 
 ≤  �	�&�O(�, �)         � ≤ � < �	 ≤  
  

Where 

 �&��(�, �) = P� − $%������
(1 − �) + $%������
 −   
�1 QP� − $�� R����� I*� + ����� +,-((�.�) (
 − �)S + $%� R(1 − �)
����� +,-((�.�) +
����� I*� ST − � 6PO + 'J;� �����7                                                                                    (7)                          

                                                      �&��(�, �) = �&�O(�, �) = P� + $�������
 − $%�(1 − �)�����
 −  

�1 6P� − $������� +,-((�.�) (
 − �) + $%�(1 − �)����� +,-((�.�) 
7 − � 6PO + '5%� �����7   (8)              

 Where 

 P� = 69� − � − =(��?): ����� − ℎ� ?3(3*%4*5+,-(A(��?)*(�.�) + ℎ� 3*%45+,-(?(�.�)(��?) 9 3(%45A(��?) − 1:7         (9) 

P� =69� − � + =(��?): 3*%45+,-((�.�) + U + ℎ� 3*%45+,-((�.�) 9 ?3*%45+,-(�A(��?)*(�.�) + +(�.�): − ℎ� ?3**%4*5+*(,-()�A(��?)*(�.�)*7     
                                                                                                                                       (10)                                  

PO = 6ℎ� 9 3(*%4*5?�A(��?)* + 3(%45� : − ℎ������ ?(��?) 9 3(%45�A(��?) − 1:7                                       (11)                                                                                            

At � = 
 ,we find that �&��(
, �) = �&��(
, �) for 
 ≤  �	,hence �&�(�, �) is a 

continuous function and well defined. 
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Case 2 � ≥ �	  (V. �.  � ≥ �	) 

                             
 �&��(�)           � ≤ �	 ≤ � ≤ 
�&��(�)         �	 ≤ � ≤ � ≤ 
  

                          

     �&�O(�)         �	 ≤ � ≤ 
 ≤ �     �&�W(�)         � ≤ �	 ≤ 
 ≤ �   �&�X(�)         � ≤ 
 ≤ �	 ≤ �  

Where  

 

�&��(�, �) = �&��(�, �) = P� + $�������
 − �1 6P� − $������� +,-((�.�) (
 − �)7 −� 6PO + '5%� �����7                                      (12) 

        

�&�O(�, �) = �&�W(�, �) = �&�X(�, �) = P� + $%������
 − �1 QP� − $�� R����� I*� +
����� +,-((�.�) (
 − �)S + $%������ I*� T − � 6PO + 'J;� �����7                                    (13)     

At � = 
 , we find that �&��(
, �) = �&�O(
, �)for 
 ≥  �	, hence  �&�(�, �) is a 

continuous function and well defined. 

 

5.  Determination of optimal replenishment time for a fixed price 

In this section, we find the optimal replenishment time for the case of  � < �	  , and then the 

other case of � ≥  �	. 

Case 1   F < FG (i.e., H < HG ) 
 

Sub case 1.1    � ≤ 
 ≤ � < �	 

For any given value of  p, optimal value  of T (say  ���),which maximizes �&��(�, �)   is 

obtained from the  equation  
Y1Z(((1,%)Y1 = 0. Thus, 

���(�) = [\*�'5%R3(%45]** .3*%45^,-((,-()(I�+)S.'J;R(��_)I3*%45^,-((,-().3(%45]** S
\`.aJb* 3(%45                (14)  

�&��(�, �) is  strictly concave on � > 0 if  
Y*1Z(((1,%)Y1* < 0 ,which gives  

�&�(�) = 
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P� − $�� R����� I*� + ����� +,-((�.�) (
 − �)S + $%� R(1 − �)
����� +,-((�.�) + ����� I*� S > 0                     

To ensure that  
 ≤ ��� < �	 , we substitute (14) into inequality 
 ≤ ��� < �	, and obtain if 

and only if ∆�≤ P� < ∆� , then 
 ≤ ��� < �	 where 

∆�= 
�PO + $�� R����� I*� + ����� +,-((�.�) (
 − �)S − $%�(1 − �)
����� +,-((�.�)    (15)      

∆� = �	� 9PO + 'J;� �����: + $�� R����� I*� + ����� +,-((�.�) (
 − �)S − $%� R(1 −
�)
����� +,-((�.�) + ����� I*� S                                                                                      (16)                          

Based on the above results , the following lemma can be obtained 

 

Lemma 1    For  � ≤ 
 ≤ �	 

a) if  ∆�≤ P� < ∆� ,then � = ��� is the optimal value which maximizes �&��(�, �)  

b) if P� < ∆� , then � = 
maximizes �&��(�, �) . 

c) if  P� ≥ ∆� , then the value of  � maximizes �&��(�, �) does not exist. 

Proof:  If  P� < ∆�, then for any �� > �� ≥ 
  

�&��(��, �) − �&��(��, �) = 9PO + 'J;� �����: (�� − ��) + QP� − $�� R����� I*� +
����� +,-((�.�) (
 − �)S + $%� R(1 − �)
����� +,-((�.�) + ����� I*� ST 9 �1( − �1*:    

< (
� − ����) d�� − ������ e dPO + $%�2 �����e < 0 

Hence, �&��(�, �) is a strictly decreasing function on the half-closed interval 

[M,∞).Consequently, �&��(�, �)  has a maximum value at the boundary point T = M. 

Likewise, if P� ≥ ∆� , then for any given T1 < T2 < Td , we obtain the following results: 

�&��(��, �) − �&��(��, �) ≥ 9PO + 'J;� �����: (�	� − ����) 91*�1(1(1* : > 0  

Hence, �&��(�, �) is a strictly increasing function on the open interval (0, �	 ). As a 

result, the value of T which maximizes �&��(�, �) does not exist.  
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Sub case 1.2     � ≤ � ≤ 
 ≤  �	 

Likewise, we obtain optimal value of T (say���)which maximizes �&��(�, �)  as 

���(�) = g\*�'5%3*%45^,-((,-()(I�+).'J;(��_)3*%45^,-((,-()I\`.a5J* 3(%45                                                   (17)       

�&��(�, �) is  strictly concave on � > 0 if   

  P� − $������� +,-((�.�) (
 − �) + $%�(1 − �)����� +,-((�.�) 
 > 0                                               

To ensure that  � ≤ ��� ≤ 
 , we substitute (17) into inequality � ≤ ��� ≤ 
 , and obtain 

if and only if ∆O≤ P� ≤ ∆� , then � ≤ ��� ≤ 
  where 

∆O= 9PO + '5%� �����: �� + $������� +,-((�.�) (
 − �) − $%�(1 − �)����� +,-((�.�) 
    (18)          

and  ∆� is defined as in (15) 

Based on the above results , the following lemma can be obtained 

 

Lemma 2    For � ≤ 
 ≤  �	 

a) if  ∆O≤ P� ≤ ∆� ,then � = ��� is the optimal value which maximizes �&��(�, �).  

b) if P� < ∆O , then � = �  maximizes �&��(�, �) . 

c) if P� > ∆� , then � = 
  maximizes �&��(�, �) . 

Proof.  If  P� > ∆�,  then for any �� <  �� ≤  
  

�&��(��, �) − �&��(��, �) = dPO + $%�2 �����e (�� − ��) + d 1�� − 1��e 

6P� − $������� +,-((�.�) (
 − �) + $%�(1 − �)����� +,-((�.�) 
7 > (
� − ����) 91*�1(1(1* : 9PO +'J;� �����: > 0    

Hence, �&��(�, �) is a strictly increasing function on the half-closed interval (0, 
h . 
Consequently, �&��(�, �) has a maximum value at the boundary point T = M. 

If  P� < ∆O,then for any �� > �� ≥ � 

�&��(��, �) − �&��(��, �) < (�� − ����) 91*�1(1(1* : 9PO + 'J;� �����: < 0  

Hence, �&��(�, �) is a strictly decreasing function on the half-closed interval 
[N,∞).Consequently, �&��(�, �) has a maximum value at the boundary point T = N. 
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Sub case 1.3   � ≤ � < �	 ≤  
  

Since�&��(�, �) = �&�O(�, �), we obtain the optimal value of T (say��O) which maximizes �&�O(�, �), as following 

��O(�) = ���(�)= g\*�'5%3*%45^,-((,-()(I�+).'J;(��_)3*%45^,-((,-()I\`.a5J* 3(%45                                    (19)    

�&�O(�, �) is  strictly concave on � > 0 if   

P� − $������� +,-((�.�) (
 − �) + $%�(1 − �)����� +,-((�.�) 
 > 0                                               

To ensure that  � ≤ ��O < �	 , we substitute (19) into inequality � ≤ ��O < �	 , and obtain if 

and only if  ∆O≤ P� < ∆W , then � ≤ ��O < �	  where 

∆W= 9PO + '5%� �����: �	� + $������� +,-((�.�) (
 − �) − $%�(1 − �)����� +,-((�.�) 
    (20)          

and  ∆O is defined as in (18) 

Based on the above results , the following lemma can be obtained 

 

Lemma 3    For � ≤  �	 ≤ 
  
a) if  ∆O≤ P� < ∆W ,then � = ��O is the optimal value which maximizes �&�O(�, �)  

b) if P� < ∆O , then  � = �  maximizes �&�O(�, �) . 

c) if P� ≥ ∆W , then the value of  � maximizes �&�O(�, �) does not exist. 

Proof.    If P2 < ∆3,then using lemma 2 ,we find that , �&13(�, �) has a maximum value at the 

boundary point T = N. 

If P2 ≥ ∆4 , then for any �1 < �2 < �	 

�&13(�2, �) − �&13(�1, �) ≥ i�	2 − �1�2j 912�111112

: 9P3 + 'J;
2

�1���: > 0  

Hence, �&13(�, �) is a strictly increasing function on the open interval (0, �	 ). As a result, 

the value of T which maximizes �&13(�, �) does not exist.  
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Case 2 F ≥ FG (K. M.  H ≥ HG) 

Sub case 2.1     � ≤ �	 ≤ � ≤ 
 

The optimal value of T (say ���)which maximizes �&��(�, �)  is 

���(�) = g\*�'5%3*%45^,-((,-()(I�+)\`.a5J* 3(%45                                                                   (21)       

�&��(�, �) is  strictly concave on � > 0 if    P� − $������� +,-((�.�) (
 − �) > 0                             

To ensure that  �	 ≤ ��� ≤ 
 , we substitute (21) into inequality �	 ≤ ��� ≤ 
 , and obtain 

if and only if ∆k≤ P� ≤ ∆X , then �	 ≤ ��� ≤ 
 where 

∆X= 
� 9PO + '5%� �����: +$������� +,-((�.�) (
 − �)                                                  (22)              ∆k= �	� 9PO + '5%� �����: +$������� +,-((�.�) (
 − �)                                                   (23)                           

Based on the above results , the following lemma can be obtained 

 

Lemma 4     For  � ≤ �	 ≤ 
 

a) if  ∆k≤ P� ≤ ∆X ,then � = ��� is the optimal value which maximizes �&��(�, �)  

b) if P� < ∆k , then � = �	  maximizes �&��(�, �) . 

c) if P� > ∆X , then � = 
  maximizes �&��(�, �) . 

proof: the proof is similar to lemma 1. 

 

Sub case 2.2     �	 ≤ � ≤ � ≤ 
 

Since�&��(�, �) = �&��(�, �), we obtain the optimal value of T (say���) which maximizes �&��(�, �), as following 

���(�) = ���(�) = g\*�'5%3*%45^,-((,-()(I�+)\`.a5J* 3(%45                               (24) 

�&��(�, �) is  strictly concave on � > 0 if      P� − $������� +,-((�.�) (
 − �) > 0                             

To ensure that  � ≤ ��� ≤ 
 , we substitute (24) into inequality � ≤ ��� ≤ 
, and obtain if 

and only if ∆l≤ P� ≤ ∆X , then � ≤ ��� ≤ 
 where 
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∆l= �� 9PO + '5%� �����: +$������� +,-((�.�) (
 − �)                                            (25)               

and  ∆X is defined as in (22) 

Based on the above results , the following lemma can be obtained 

 

Lemma 5     For  �	 ≤ � ≤ 
 

a) if  ∆l≤ P� ≤ ∆X ,then � = ��� is the optimal value which maximizes �&��(�, �)  

b) if P� < ∆l , then � = �  maximizes �&��(�, �) . 

c) if P� > ∆X , then � = 
  maximizes �&��(�, �) . 

proof: the proof is similar to lemma2. 

 

Sub case 2.3    �	 ≤ � ≤ 
 ≤ � 

The optimal value of T (say ��O)which maximizes �&�O(�, �)  is 

��O(�) = [\*�'5%R3(%45]** .3*%45^,-((,-()(I�+)S.'J;3(%45]**\`.aJb* 3(%45                 (26)   

�&�O(�, �) is  strictly concave on � > 0 if    

 P� − $�� R����� I*� + ����� +,-((�.�) (
 − �)S + $%������ I*� > 0                                 

To ensure that  
 ≤ ��O , we substitute (26) into inequality 
 ≤ ��O, and obtain if and only if  P� ≥ ∆X, then 
 ≤ ��O where ∆X is defined as in (22)  

Based on the above results , the following lemma can be obtained 

 

Lemma 6     For  �	 ≤ � ≤ 
 

a) if  P� ≥ ∆X,then � = ��O is the optimal value which maximizes �&�O(�. �) . 

b) if P� < ∆X , then � = 
  maximizes �&�O(�. �) . 

proof :  If P2 < ∆5 and for any  �1 > �2 ≥ 
 

�&23(�2, �) − �&23(�1, �) < (
2 − �1�2) 912�111112

: 9P3 + 'J;
2

�1���: < 0  
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Hence, �&12(�, �) is a strictly decreasing function on the half-closed interval [
,∞) . , �&23(�, �) has a maximum value at the boundary point T = M. 

 

Sub case 2.4    � ≤ �	 ≤ 
 ≤ � 

Since�&�W(�. �) = �&�O(�. �), we obtain the optimal value of T (say��W) which maximizes �&�W(�, �), as following 

��W(�) = ��O(�) = [\*�'5%R3(%45]** .3*%45^,-((,-()(I�+)S.'J;3(%45]**\`.aJb* 3(%45                     (27)  

�&�W(�, �) is  strictly concave on � > 0 if   

P� − $�� R����� I*� + ����� +,-((�.�) (
 − �)S + $%������ I*� > 0                                 

 To ensure that  
 ≤ ��W , we substitute (27) into inequality 
 ≤ ��W, and obtain if and only 

if P� ≥ ∆X, then 
 ≤ ��W where ∆X is defined as in (22) 

Based on the above results , the following lemma can be obtained 

 

Lemma 7     For  � ≤ �	 ≤ 
 

a) if  P� ≥ ∆X,then � = ��W is the optimal value which maximizes �&�W(�, �) . 

b) if P� < ∆X , then � = 
  maximizes �&�W(�, �) . 

proof: the proof is similar to lemma 6. 

 

Sub case 2.5    � ≤ 
 ≤ �	 ≤ �  

Since�&�X(�, �)  = �&�W(�, �) = �&�O(�, �) , we obtain the optimal value of T (say��X ) 

which maximizes  �&�W(�, �), as following 

��X(�) = ��W(�) = ��O(�) = [\*�'5%R3(%45]** .3*%45^,-((,-()(I�+)S.'J;3(%45]**\`.aJb* 3(%45       (28)  

�&�X(�, �) is  strictly concave on � > 0 if   
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P� − $�� R����� I*� + ����� +,-((�.�) (
 − �)S + $%������ I*� > 0                                  

To ensure that  �	 ≤ ��X , we substitute (28) into inequality �	 ≤ ��X, and obtain if and only 

if P� ≥ ∆n, then �	 ≤ ��Xwhere 

 ∆n = 9PO + 'J;� �����: �	� + $�� R����� I*� + ����� +,-((�.�) (
 − �)S − $%������ I*�       

                                                                                                                                           (29) 

Based on the above results , the following lemma can be obtained 

Lemma 8     For  � ≤ 
 ≤ �	 

a) if  P� ≥ ∆n,then � = ��X is the optimal value which maximizes �&�X(�, �) . 

b) if P� < ∆n , then � = �	  maximizes �&�X(�, �) . 

proof: the proof is similar to lemma 6. 

Combine Lemmas1-8, and let �∗ denote the optimal replenishment time, we can obtain the 

following main results. 

 

Theorem 1       For � ≤ 
 ≤ �	  and fixed � 

(1) if P� < ∆O , then �&(�∗, �) = max { �&��(
, �), �&��(�, �), �&�X(�	 , �)}. Hence, �∗ 

is � uv 
 uv �	 associate with larger profit. 

(2) if ∆O≤ P� < ∆�  , then �&(�∗, �) = max  {�&��(���, �) , �&�X(�	 , �) } . Hence,  �∗  is ��� uv �	 associate with larger profit. 

(3) if  P� = ∆� , then �&(�∗, �) = max { �&��(���, �), �&��(���, �), �&�X(�	 , �)}. Hence, �∗ is ���or ��� or �	 associate with larger profit. 

(4) if ∆�< P� < ∆� ,then  �&(�∗, �) = max  {�&��(���, �) , �&�X(�	 , �) } .Hence, �∗ V#  ��� uv �	 associate with larger profit. 

(5) if ∆�≤ P� < ∆n  , then �&(�∗, �) = max  {�&��(
, �) , �&�X(�	 , �) } .Hence,  �∗ 

is  
 uv �	 associate with larger profit. 

(6) If   P� ≥ ∆n ,then  �&(�∗, �) = max  {�&��(
, �) , �&�X(��X, �)} . Hence,  �∗ V#  
 uv ��X associate with larger profit. 

Proof  It is immediately follows from the fact that �&��(
, �) = �&��(
, �) for � ≤ 
 ≤ �	  

and the lemma 1,2 and 8. 
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Theorem 2   For  � ≤ �	 ≤ 
 and fixed � 

(1) if P� < ∆O, then  �&(�∗) = wx"{�&�O(�, �), �&��(�	 , �), �&�W(
, �)}. Hence, �∗ is � uv 
 uv �	 associate with larger profit. 

(2) if ∆O≤ P� < ∆W  ,then �&(�∗, �) = wx"{�&�O(��O, �), �&��(�	 , �), �&�W(
, �)} . 

Hence, �∗ is ��O uv �	  uv 
 associate with larger profit. 

(3) if ∆W≤ P� < ∆k  ,then �&(�∗, �) = wx"{�&��(�	 , �), �&�W(
, �)} . Hence,  �∗  is  �	  uv 
 associate with larger profit.  

(4) if ∆k≤ P� < ∆X  ,then  �&(�∗, �) = �&��(���, �) . Hence,  �∗  is ��� associate with 

larger profit. 

(5) if P� = ∆X ,then  �&(�∗, �) = wx"{�&��(���, �), �&�W(��W, �)} . Hence,  �∗  is ��� uv ��W associate with larger profit. 

(6) if  P� > ∆X  , then �&(�∗, �) = �&�W(��W, �). Hence, �∗ is ��W  associate with larger 

profit. 

Proof   It is immediately follows from the fact that �&��(
, �) = �&�W(
, �) for 

 � ≤ �	 ≤ 
   and the lemma 3,4 and 7. 

 

Theorem 3   For  �	 ≤ � ≤ 
 and fixed � 

(1) if P� < ∆l  ,then  �&(�∗, �) = wx"{�&��(�, �), �&�O(
, �)} . Hence,  �∗  is � uv 
  
associate with larger profit . 

(2) if ∆l≤ P� < ∆X,then �&(�∗, �) = �&��(���, �).Hence, �∗ is ��� associate with larger 

profit . 

(3) if P� = ∆X ,then �&(�∗, �) = wx"{�&��(���, �), �&�O(��O, �)} .Hence,  �∗  is ��� uv ��O  associate with larger profit 

(4) if P� > ∆X ,then �&(�∗, �) = �&�O(��O, �) .Hence,  �∗  is ��O   associate with larger 

profit . 

Proof  It is immediately follows from the fact that �&��(
, �) = �&�O(
, �) for �	 ≤ � ≤ 
      

And the lemma 5 and 6. 

 

6. Solution Methodology 

Each �&yz(�, �) is continuous function of p over the set (0,∞). It is clear that �&yz  is not 

maximum if � = 0 or ∞, because �&yz → 0 as  � → ∞ and demand function (�, �) → ∞ as  � → 0 which is impossible.  
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Using Eq.[6] , we obtain that the inequalities � ≤ 
 ≤ �	,  , � ≤ �	 ≤ 
 and �	 ≤ � ≤ 
  

imply  �� ≤ �  , �� ≤ � ≤ �� and � ≤ ��   respectively, where 

 �� = [3(8| {� + 3*+,-(3((�.�)}h�/� and �� = [3(8| {
 + 3*+,-(3((�.�)}h�/�. 

To find optimal total profit , we adopt the following algorithm  

 

6.1    Algorithm 1 

1. Convert the problem of maximizing �&yz(�, �)  into single variable problem �&yz(�(�), �) by substituting �yz = �yz(�)  

2. Determine  �� and  �� 

3. Do a full search over �. 

a) If  � ≤  ��  using Theorem 3, determine the total profit . 

b) If  �� ≤ � ≤  ��  using Theorem 2, determine the total profit . 

c) If  � ≥ ��  using Theorem 1, determine the total profit . 

4. Note value of  � and corresponding value of total profit . Select the � which gives  

maximum  value of total profit  �&. 

 

7.Numerical Examples 

In order to illustrate the above solution procedure, we consider the following examples. 

Example 1.  Given A=$10000 per order,k1=9800000000, k2=400000000, c=$900 per unit, 

h1=$21per unit, h2=$15 per unit ,s=$50 per unit , �=0.01, �=0.6, Ie=.15, Ip=.45, Qd=20 units 

,α =3, x=45; M=150/365 yr = 0.411 yr ,N=100/365 yr =0.274 yr , e=2.5.  

Using propose algorithm, we obtain �� =$ 1783.19 , ��=$2097.11. Fig 1 shows that �& is 

strictly concave function of �. As a result, we are sure that the maximum total profit obtained 

from the proposed algorithm is indeed the global optimum solution. Using algorithm 1 , we 

obtained the following optimal results:  Optimal cycle length (�∗) =��X  =0.75041 years, 

optimal selling price ( �∗ )= $ 2455.871per unit and the optimal total profit ( �&∗) =$ 

27900.3178 per year.  

 

 

 



630 
 

Soumita Kundu and Tripti Chakrabarti 

 

 

Fig 1          Retailer’s optimal total profit for various value of ~ 

To study the effects of change in the value of parameters �	  , �, 
, �,� we use the data of 

Example . 

Table 1   Optimal solutions for different values of �	 

Qd Td p* T* Q* q* TP* 

10 0.30493 2455.871 T24=0.75041 24.60621 24.85476 27900.3178 
20 0.60993 2455.871 T25=0.75041 24.60621 24.85476 27900.3178 
30 0.90533 2445.550 Td=0.90533 30.00000 30.30303 27375.9683 
40 1.36001 2565.019 T11=0.81727 24.03791 24.28072 25832.2750 
50 1.36001 2565.019 T11=0.81727 24.03791 24.28072 25832.2750 

 

Table 1 indicates that when �	is greater than or equal to 30 units, the retailer will take the 

partial delay in payment(i.e., the optimal order quantity �∗< �	) instead of the fully delay in 

payment. 

Table 2  Optimal solutions for different values of � � Td P* T* Q* q* TP* 

0.10 0.61551 2464.85 T25=0.75461 24.51930 27.24367 27692.1935 
0.15 0.61918 2470.70 T25=0.75734 24.46234 28.77922 27557.8608 
0.20 0.62334 2477.33 T25=0.76041 24.39760 30.49700 27407.0618 

 

Table 2  indicates that as � increases , �	∗,�∗ , �∗ and �∗ increase but �&∗ decreases. 
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Table 3  Optimal solutions for different values of 
 and �  

 

Table 3 shows that as N increases while all other parameters remain unchanged, there is 

marginal decrease in �	∗,�∗ , �∗ and �∗ but there marginal is  increase in �&∗ implies that 

offering credit period to his customer would be more profitable for retailer. While as M 

increases, �	∗,�∗ , �∗ and �∗ decrease but there is  increase in �&∗.  

 

Table 4  Optimal solutions for different values of � � Td p* T* Q* q* TP* 

1 0.60491 2450.157 T25=0.74417 24.59279 24.84120 28001.1836 
2 0.60917 2455.012 T25=0.74947 24.60420 24.85272 27915.4546 
3 0.60993 2455.871 T25=0.75041 24.60621 24.85476 27900.3178 
4 0.61008 2456.045 T25=0.75060 24.60661 24.85516 27897.2646 

 

Table 4 presents  that as � increases , �	∗,�∗ , �∗ and �∗ increase but �&∗ decreases. 

 

8. Conclusion  

 In this paper we develop an inventory model under two level trade credit policy with 

defective items by considering the following situations simultaneously: (1) the supplier may 

offer a partial permissible delay in payments even if the order quantity is less than �	.(2) 

retailer offer the credit period to his customer in order to stimulate their demand.(3) demand 

is a function of both the selling price and credit period. A solution procedure is proposed 

which gives the decision rule for obtaining retailer’s cycle length and selling price to  

M N Td p* T* Q* q* TP* 

 50/365 0.67677 2560.093 T25=0.81280 24.01982 24.26245 25547.1024 

80/365 60/365 0.67676 2560.077 T25=0.81277 24.01979 24.26242 25547.3299 

 70/365 0.67673 2560.052 T25=0.81275 24.01974 24.26236 25547.7014 

 50/365 0.65552 2527.639 T25=0.79279 24.18790 24.43222 26201.6515 

100/365 60/365 0.65551 2527.623 T25=0.79277 24.18787 24.43219 26201.8905 

 70/365 0.65549 2527.598 T25=0.79274 24.18781 24.43213 26202.2809 

 50/365 0.63603 2497.298 T25=0.77453 24.35522 24.60124 26870.6886 

120/365 60/365 0.63602 2497.283 T25=0.77452 24.35518 24.60120 26870.9391 

 70/365 0.63599 2497.258 T25=0.77449 24.35512 24.60114 26871.3484 

 50/365 0.61831 2469.227 T25=0.75813 24.52266 24.77037 27552.0669 

140/365 60/365 0.61829 2469.212 T25=0.75811 24.52263 24.77033 27552.3288 

 70/365 0.61827 2469.186 T25=0.75808 24.52257 24.77027 27552.7567 
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maximize the retailer’s profit .Finally, numerical example is presented to illustrate the 

theoretical results followed by the sensitivity of parameters on the optimal solution. 

The proposed model can be extended in several ways. For instance, we may extend the model 

for deteriorating items. Also, we could generalize the model to allow for shortages, quantity 

discounts, time discount and inflation rates, and others. 
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