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Abstract

In this work, we consider the linear inequalities with nonnegative vari-

ables that are infeasible. For correcting this system, we are doing the

minimal correction using L2 norm by changing just the right hand vector.

We show that solving this problem is equivalent to solving a nonlinear

convex problem with nonnegative constraint. We present an active set al-

gorithm (ASA) based on nonmonotone gradient projection step to solving

this problem. Our computational results on various randomly generated

problems show that this method is efficient.
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Optimal correction.
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1 Introduction

One of the frequently encountered issues in applied science is how to deal with

infeasible systems [1, 2, 3].
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In this paper, we consider the following set of linear inequalities that are

infeasible:

Ax ≤ b, (1)

x ≥ 0,

where A ∈ Rm×n and b ∈ Rm. In other words, there is no x ∈ Rn for which (1)

is feasible. The inconsistency in system (1) might be due to various reasons, such

as lack of interaction between different groups who are defining the constraints,

wrong or inaccurate estimates, error in data, over optimistic goals, and many

others. As remodeling of a problem, finding the errors, and generally removing

all the impossible barriers of a system might take remarkable time and expenses,

and also we might eventually get to an infeasible system again; we relinquish

to do so. Correcting system (1) to a feasible system by minimal changes in its

data have been attempted for some time. Up until now several algorithms have

been developed [4, 5]. In this work, for correcting system (1), we will make

the changes just in the right-hand side vector b and obtain an unconstrained

optimization problem with nonnegative variables as follows.

min
x≥0

1

2
‖(Ax− b)+‖2.

We present an active set algorithm (ASA) to solve above problem. The ASA

consists of a nonmonotone gradient projection step, an unconstrained optimiza-

tion step, and a set of rules for branching between the two steps. This paper is

organized as follows. Optimal correction of infeasible linear inequality systems

is demonstrated in Section 2. In Section 3, ASA is reviewed. In Section 4, some

examples on various randomly generated problems are provided to illustrate the

efficiency and validity of our proposed method. Concluding remarks are given

in Section 5. In this work all vectors will be column vectors and we denote the

n-dimensional real space by Rn. We mean A>, and ‖.‖, the transpose of matrix

A and Euclidean norm respectively. By (a)+ we mean a vector that we obtain

from a by replacing the negative component by zero. The gradient ∇f(x) is a

row vector, while g(x) = ∇f(x)T is a column vector; here T denotes transpose.

The gradient at the iterate xk is gk = g(xk).
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2 2-Norm Corrections

The minimal correction using the l2 norm by changing the right hand side vector

is:

min
x≥0, r

1

2
‖r‖2, s.t. Ax ≤ b+ r.

In the following theorem we show how we compute optimal x and r values.

Theorem 1. Let x∗ and r∗ be the optimal solution of (2). Then r∗ = (Ax∗ −
b)+, and x∗ is an optimal solution of

min
x≥0

1

2
‖(Ax− b)+‖2. (2)

Proof. Let us write (2) as:

min
x≥0

min
r

1

2
‖r‖2,

s.t. Ax ≤ b+ r. (3)

Now for a given x ∈ Rn, let us first consider the inner minimization problem

i.e.,

min
r

1

2
‖r‖2,

s.t. Ax ≤ b+ r. (4)

It is obvious that problem (4) is a convex minimization problems. The La-

grangian of the problem (4) is given by

L(r, λ) =
1

2
‖r‖2 − λT (Ax− (b+ r)), λ ≥ 0.

The KKT conditions are necessary and sufficient for optimality that are given

by:

r − λ = 0, (5)

Ax ≤ b+ r, (6)

λT (Ax− b− r) = 0, (7)

λ ≥ 0,

where the vector λ denotes the lagrange multipliers. From the equation (5) one

has r = λ. From the equations(6) and (7), we have that rT (Ax − b − r) = 0,
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r ≥ 0. Therefore we obtain r = (Ax − b)+ (see [6]). By combining these

expressions, we find that the problem (2) can then be written as

min
x≥0

1

2
‖(Ax− b)+‖2.

This completes the proof.

It is obvious that the KKT conditions for above problem are

AT (Ax− b)+ ≥ 0,

xTAT (Ax− b)+ = 0,

x ≥ 0.

3 Hager-Zhang active set algorithm

In this section we apply the Hager-Zhang active set algorithm (HZ-ASA) [7] to

solve the following problem:

min
x≥0

1

2
‖(Ax− b)+‖2.

The main reason for selection of this algorithm is its excellent convergence the-

ories in addition to the promising numerical results reported in [7]. Moreover,

unlink [8, 9], this method admits the superlinear convergence under the same

conditions while it does not need any explicit form of second order information

and/or solution of system of linear equations per cycle. These properties makes

it an ideal choice to solve large scale problems. Unlike the related methods which

use the same interactions in the course of optimization, this method start with a

cheap constrained first-order method and after sufficient progress toward a local

solution, branches to a (more expensive) higher-order unconstrained solver.

Although the gradient projection scheme of the nonmonotone gradient projec-

tion algorithm (NGPA) has an attractive global convergence theory, the con-

vergence rate can be slow in a neighborhood of a local minimizer. In contrast,

for unconstrained optimization, the conjugate gradient algorithm often exhibits

superlinear convergence in a neighborhood of a local minimizer.

In the following algorithm P denotes the projection onto feasible set:

P (x) = arg min
y∈Ω
‖x− y‖ (8)

Starting at the current iterate xk, we compute an initial iterate x̄k = xk− ᾱkgk.

The only constraint on the initial steplength ᾱk is that ᾱk ∈ [αmin, αmax], where
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αmin and αmax are fixed, positive constant, independent of k. Since the nominal

iterate may lie outside Ω, we compute its projection P (x̄k) onto Ω. The search

direction is dk = P (x̄k)− xk, similar to the choice made in SPG2 [10]. Using a

nonmonotone line searche along the line segment connecting xk and P (x̄k), we

arrive at the new iterate xk+1.

In the statement of the NGPA given below, frk denotes the ”reference” function

value. A monotone line search corresponds to the choice frk = f(xk). The

nonmonotone GLL scheme takes frk = fmaxk , where

fmaxk = max{f(xk−i) : 0 ≤ i ≤ min(k,M − 1)}. (9)

Here M > 0 is a fixed integer, the memory. To find a procedure for choosing

the refrence function value based on our CBB scheme see [7].

NGPA PARAMETERS.

• ε ∈ (0,∞), error tolerance

• δ ∈ (0, 1), descent parameter used in Armijo line search

• η ∈ (0, 1), decay factor for stepsize in Armijo line search

• [αmin, αmax] ⊂ (0,∞), interval containing initial stepsiz.

NONMONOTONE GRADIENT PROJECTION ALGORITHM (NGPA). Ini-

tialize k = 0, x0 = starting guess, and fr−1 = f(x0).

While ‖P (xk − gk)− xk‖ > ε

1. Choose ᾱk ∈ [αmin, αmax] and set dk = P (xk − ᾱkgk)− xk.

2. Choose frk so that f(xk) ≤ frk ≤ max{frk−1, f
max
k } and frk ≤ fmaxk in-

finitely often.

3. Let fR be either frk or min{fmaxk , frk}. If f(xk + dk) ≤ fR + δgTk dk, then

αk = 1.

4. If f(xk + dk) > fR + δgTk dk, then αk = ηj , where j > 0 is the smallest

integer such that

f(xk + ηjdk) ≤ fR + ηjδgTk rdk. (10)

5. Set xk+1 = xk + αkdk and k = k + 1.
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End

Further details about NGPA and convergence theory can be found in [7]. Al-

though, the unconstrained algorithm (UA) used in HZ-ASA is the conjugate

algorithm CG-DESCENT [11], a broad class of unconstrained optimization al-

gorithms (UAs) can be applied.

We develop an ASA which uses the NGPA to identify active constraints, and

which uses an unconstrained optimization algorithm, such as the CG-DESCENT,

to optimize f over a face identified by the NGPA.

Now we define some notation for ASA. For any x ∈ Ω, let A(x) and I(x)

denote the active and inactive indices, respectively:

A(x) = {i ∈ [1, n] : xi = 0},

I(x) = {i ∈ [1, n] : xi > 0}.

The active indices are further subdivided into those indices satisfying strict

complementarity and the degenerate indices:

A+(x) = {i ∈ A : gi(x) > 0},

A0(x) = {i ∈ A : gi(x) = 0}.

We let gI(x) denote the vector whose components associated with the set I(x)

are identical to those of g(x), while the components associated with A(x) are

zero:

gIi(x) =

{
0 ifxi = 0,

gi(x) ifxi 6= 0.

An important feature of our algorithm is that we try to distinguish between

active constraints satisfying strict complementarity and active constraints that

are degenerate using an identification strategy, which is related to the idea of

an identification function introduced in [12]. Given fixed parameters α ∈ (0, 1)

and β ∈ (1, 2), we define the (undecided index) set U at x ∈ B as follows:

U(x) = {i ∈ [1, n] : gi(x) ≥ ‖d1(x)‖α and xi ≥ ‖d1(x)‖β}.

In the numerical experiments, we take α = 1
2 and β = 3

2 .

The ASA is presented in the following algorithm. In the first step of the algo-

rithm, we execute the NGPA until we feel that the active constraints satisfying

strict complementarity have been identified. In step 2, we execute the UA until

a subproblem has been solved (step 2a). When new constraints become active
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in step 2b, we may decide to restart either the NGPA or the UA. By restarting

the NGPA, we mean that x0 in the NGPA is identified with the current iterate

xk. By restarting the UA, we mean that iterates are generated by the UA using

the current iterate as the starting point.

ASA PARAMETERS.

• ε ∈ (0,∞), error tolerance, step when ‖d1(xk)‖ ≤ ε

• µ ∈ (0, 1), ‖gI(xk)‖ < µ‖d1(xk)‖ implies subproblem solved

• ρ ∈ (0, 1),decay factor for µ tolerance

• n1 ∈ [1, n), number of repeated A(xk) before switch from the NGPA to the

UA

• n2 ∈ [1, n), used in switch from the UA to the NGPA

ACTIVE SET ALGORITHM (ASA)

1. While ‖d1(xk)‖ > ε execute the NGPA and check the following:

a. If U(xk) = ∅, then

If ‖gI(xk)‖ < µ‖d1(xk)‖, then µ = ρµ.

Otherwise, go to step 2.

b. Else if A(xk) = A(xk−1) = · · · = A(xk−n1
), then if ‖gI(xk)‖ ≥

µ‖d1(xk)‖, then go to step 2.

End

2. While ‖d1(xk)‖ > ε execute the UA and check the following:

a. If ‖gI(xk)‖ < µ‖d1(xk)‖, then restart the NGPA (step 1).

b. If |A(xk−1)| < |A(xk)|, then

If U(xk) = ∅ or |A(xk)| > |A(xk−1)|+ n2, restart the UA at xk.

Else restart the NGPA.

End

Furthermore details about ASA and its convergence theory can be found in [7].
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4 Numerical testing

In this section we present numerical results to obtain optimal correction of

infeasibility system in linear inequality on various randomly generated problems.

We used the ASA for solving (2). The algorithm has been tested using MATLAB

7.9.0 on a Core 2 Duo 2.53 GHz with main memory 4 GB.

The stopping condition was

‖P (x− g)− x‖∞ ≤ 10−8.

In running any of these codes, default values were used for all parameters. In

the NGPA, we chose the following parameter values:

αmin = 10−20, αmax = 1020, η = .5, δ = 10−4, M = 8.

Here M is the memory used to evaluate fmax (see ((9))). In the ASA the

parameter values were as follows:

µ = .1, ρ = .5, n1 = 2, n2 = 1.

In the CBB method, the parameter values were the following:

θ = .975, L = 3, A = 40, m = 4, γ1 = M/L, γ2 = A/M.

Test problems are generated infeasible system (1) by using the following MAT-

LAB code:

——————————————————

Sgen: Generate random infeasible system

( Input:m, n, d (density); Output: A ∈ Rm×n and b ∈ Rm).

pl=inline(’(abs(x)+x)/2’);

m=input(’enter m= ’); n=input(’enter n= ’);

d=input(’enter d= ’); In the numerical experiments, we take d = .1

m1=max(m-round(0.5*m), m-n);

A1=sprand(m1, n, d); A1=1*(A1-0.5*spones(A1));

x=spdiags(rand(n, 1), 0, n, n)*10*(rand(n,1)-rand(n,1));

x=spdiags(ones(n,1)-sign(x), 0, n, n)*10*(rand(n,1)-rand(n,1));

m2=m-m1;

u=randperm(m2); A2=A1(u, :);

b1=A1*x+spdiags((rand(m1,1)), 0, m1, m1)*1*ones(m1,1);
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b2=b1(u)+spdiags((rand(m2,1)), 0, m2, m2)*10*ones(m2,1);

A=100*[A1; –A2];

b=[b1; –b2];

———————————————————-

In Table 1, we present numerical experiment. In this table the first column

indicates the size of matrix A, ‖(Ax∗ − b)+‖ is the objective function of (2)

and ‖x∗‖∞ indicates the norm infinity of solution. The next three columns

correspond to the KKT conditions for (2) and the final column indicates time.

This results show that the ASA for correcting of system of linear inequalities

(1) is efficient with high accuracy in the case where n� m.

Table 1 illustrates effectiveness and performance behavior of our proposed

method.

Table 1: Results of ASA on randomly generated problems

m,n ‖(Ax∗ − b)+‖ ‖x∗‖∞ ‖(−x∗)+‖ x∗T∇f(x∗) ‖(−∇f(x∗))+‖∞ time(s)

50, 10 1.9890e + 001 2.1127e− 001 0 2.4100e− 011 8.7539e− 012 0.2239

200, 100 5.7488e + 001 3.2640e− 001 0 4.8680e− 012 4.7834e− 011 2.2114

300, 100 7.2441e + 001 2.1193e− 001 0 1.5306e− 011 8.2068e− 012 1.7255

500, 250 1.1682e + 002 3.1504e− 001 0 8.1142e− 013 5.5451e− 011 8.9036

700, 300 7.5153e + 001 9.9486e + 001 0 2.6545e− 009 9.7741e− 011 10.3966

800, 400 1.6144e + 002 2.3366e− 001 0 1.2092e− 010 7.6071e− 011 24.9134

1000, 500 1.8941e + 002 3.0364e− 001 0 2.2778e− 011 6.7141e− 011 36.6693

1500, 700 1.8486e + 002 5.1321e + 000 0 9.3400e− 010 6.9567e− 011 65.6876

5 Conclusion

In this article, correction of infeasible linear inequalities with nonnegative vari-

able were studied by applying minimal changes right-hand vector, using 2−norm.

In support of predicted theory, several test examples are solved using ASA. Nu-

merical results , show that the suggested algorithm is correct and efficient in

the usually case where n � m. It is natural to ask whether we can adapt the

suggested approach to solve (2), in the case where, the number of variables is

close to the number of equality.
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