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Abstract 
 

In the present paper we investigate a EOQ model for imperfect items under time variable linear demand. 

The defective items is being screened out by a 100 % screening process and then sold in a single batch by the 

end of the 100% screening process with a salvage price. The unsold perfect item during the cycle is sold at a 

different salvage price at the end of cycle. Two different types for cost parameters are considered namely crisp 

constant and uncertain variable. For each case, optimal policy is obtained. We have considered expected value 

model and uncertain chance constraint programming for the Uncertain EOQ model. Numerical example and 

sensitivity analysis are provided to illustrate the effectiveness of the above models. 
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1  Introduction 
 
Inventory management is the one of the important branch in management sciences. The main key of a successful business is 

to provide the customer his demand within shortest possible time, with the best quality, and all at a competitive price. Using 

proper Inventory Management this is quite possible to achieve. The classical economic order quantity (EOQ) model and its 

variants are popular among researchers and management professionals for their simplicity. Applying the various 

modifications on the traditional EOQ model, academicians and professionals are always interested to develop a model which 

can cope with real life situations in much better way. Every year hundreds of research papers are being published in this area 

in various national and international journals. The fundamental EOQ model developed by Harris(1915) involved the 

assumption of constant demand and perfect quality items ; both of these conditions fail to cope up with the realistic situations 

in the Business scenario. In reality, the production process is not always free of defects. Imperfect quality items are 

unavoidable in an inventory system due to imperfect production process, natural disasters, damages, or many other reasons. 

During last decades lot-of research work were published in the area of EOQ and EPQ of imperfect quality items.Rosenblatt 

and Lee [19] discussed an EPQ model where they assumed that the defective items could be reworked instantaneously at a 

cost and found that the presence of a fraction of defective products motivates smaller lot sizes. Shwaller 
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[20] presented a procedure and assumed that imperfect quality items are present in a known proportions and
considered fixed and variable inspection costs for finding and removing the defective items. Zhang and Gherchak
[21]considered a joint lot sizing and inspection policy with the assumption that a random proportion of lot size are
defective. They assumed that defective items are not reworkable and used the concept of replacement of defective
items by good quality items. Salameh and Jaber[22] assumed that the defective items could be sold at a discounted
price in a single batch by the end of the 100 % screening process and found that the economic lot size quantity
tends to increase as the average percentage of imperfect quality items increases. Goyal et al.[23] made some
modifications in the model of Salameh et al.[22] to calculate actual cost and actual order quantity. Chang [24]
considered inventory problem for items received with imperfect quality, where, upon the arrival of order lot, 100%
screening process is performed and the items of imperfect quality are sold as a single batch at a discounted price,
prior to receiving the next shipment. He assumed defective rate as a fuzzy number. He also presented a model
with fuzzy defective rate and fuzzy demand. Papachristos et al[25] pointed out that the sufficient conditions to
prevent shortages given in Salameh et al.[22] may not really prevent their occurrence and considering the timing
of withdrawing the imperfect quality items from stock, they clarified a point not clearly stated in Salameh et
al.[22]. Wee et al [34] developed a optimal inventory model for items with imperfect quantity and shortages were
backordered. They allowed 100% screening of items in which screening rate is greater than the demand rate. Chung
et al.[27] considered an inventory model with imperfect quality items under the condition of two warehouses for
storing items. Jaber et al. [28] incorporated the concept of entropy cost in the extension of the inventory model
with imperfect quality and they assumed two different types of holding costs for the items with perfect quality and
imperfect quality. Jaber et al.[29] also considered the assumptions of learning curve and shown that percentage
of defective lot size reduces according to the learning curve. A detailed survey of the recent inventory models
with imperfect items are provided by [30]. Along a different viewpoint, [31] considered a production-inventory
model under a process-quality design approach and obtained optimal policy using mathematica software . They
claimed their model enhanced high-quality product at a minimal total cost. [33] considered imperfect production
system with allowable shortages due to regular preventive maintenance for products sold with free minimal repair
warranty to attract customers and determines the optimum buffer level and production run time to minimize per
unit production cost. The cost minimization optimal policy was considered by [32] when the produced item of
imperfect production system obeys general distribution pattern, with its quality being either perfect, imperfect
or defective. The fractions of such items were restricted to constants and they also established that their model
becomes classical EPQ model in case imperfect quality percentage is zero or even close to zero. Recently, [34]
used renewal reward theorem to construct economic production quantity model for imperfect items with shortage
and screening constraint using time interval as decision variable and shown the robustness of the model.

Demand is the one of the important characteristic of an inventory system .Actually, the inventory system exist
because there are demands. Demands provide the revenue in the organization. Higher is the demand larger will be
the profit and performance of organization will be better. To satisfy the demand and avoid shortages, inventories
are kept as buffer; then the organization becomes an inventory system. Demand is not usually constant but have
increasing or decreasing trend with time. The role of demand in an inventory system is something like money in
the wallet; without money wallet is of no use. The traditional EOQ assumes that demand is constant; which is quite
incompatible in the real business scenario. Many authors have worked in the area of time varying demand. Don-
aldson [8] was the first to developed an EOQ model with linearly increasing demand over a finite time horizon.
Wagner and Whitin[13] gave Dynamic Programming (DP) algorithm for the determination of an EOQ by treat-
ing time to be a discrete variable. Silver [12] obtained a simple solution for Donaldsons problem[8] using the
Silver-Meal heuristic. Ritchie [11] developed the exact solution for a linearly increasing demand, for Donaldsons
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problem[8]. Mitra, Cox and Jesse [10] presented an algorithm for adjusting the EOQ model for the case of demand
patterns having linearly increasing or decreasing trends. Goswami et al.[14] considered a finite replenishment rate
inventory model under linear time varying demand allowing shortages.

The world we live is not deterministic, namely it is not the one in which past events fully determine future
ones. So one has to understand that nature of world is full of uncertainty and many theories are developed so far to
handel uncertainty in mathematical models. Wherever we talk about measurement or some calculation, uncertainty
comes naturally. For example,an error in a scientific measurement or calculation means the inevitable uncertainty
that is present in all measurements and they cannot be eliminated. A suitable mathematical approach to deal with
uncertainty in decision-making should also take into consideration the human subjectivity, rather than employing
only objective probability measures. This kind of uncertainty of human behavior led to the development of a new
areas in decision -analysis such as Probability theory,Fuzzy Logic and Uncertainty theory. The probability theory
is based on the results of the previous experiments. By performing an experiment infinitely large number of times
and obtaining the ratio of the number of occurrence of an event to the total number of experiments performed;
the probability of occurrence of that event are calculated. Also for calculating probability one must have complete
information of sample space and to obtain probability a condition of equally likeliness must be imposed. The
concept of a fuzzy set was coined by Zadeh [7] to represent the classes whose boundaries are ill-defined, or
flexible. To denote the level of evidence in support of belongingness or occurrences, membership functions are
defined whose values lie in the interval [0, 1]. Fuzzy methodologies are mainly useful for approximate reasoning,
mainly for the systems in which there is some vagueness and imprecision to deal with the linguistic variables. In
the fundamental paper Zadeh[7] clearly stated that fuzziness deals with vagueness but it shouldnot be considered
identical with uncertainty. So, Probability theory and fuzzy theory are the explicitly the theories of different kind
of uncertainties Also the fuzzy logic is not self-dual. This implies an event occurs and does not occur at the same
time with different level of evidences which is contradictory to human reasoning. So it is quite clear that both
probability and fuzzy theory have their limitations in modeling the uncertainties of human behavior.
Various unpredictable incidents may occur in the market place; such as- the outbreak of war, terrorist attacks,
companys bankruptcy, discount offers, merger or consolidation between companies and so on. When such events
appear, historical data (or forecast) are not able to fully determine the prices. Also the factors like petrol price hikes,
vehicle or labor strikes, inflation, hike in road tax or custom tax occurs suddenly and they highly effect the carrying
costs, labor cost and all other associated costs. Liu[1] in 2007 developed Uncertainty theory which is quite able to
deal with such kind subjective uncertainty. The uncertainty theory concerns an incomplete or imperfect knowledge
of something which is necessary to solve the problem. Peng and Iwamura [3] gave a sufficient and necessary
condition of uncertainty distribution. Gao [4] provided some mathematical properties of uncertain measure. You
[16] proved some convergence theorems of uncertain sequences. In addition, Liu and Ha [6] proved some expected
value formulas for functions of uncertain variables. As an application of uncertainty theory, Liu [2] proposed a
spectrum of uncertain programming that is a type of mathematical programming involving uncertain variables. For
our investigation, we have considered all the costs associated with our inventory model as Uncertain variables. We
have developed expected value model and uncertain chance constrained programming model for the uncertain cost
function to obtain the optimal inventory policy.

In the present paper we have developed first a deterministic EOQ model with imperfect item under time varying
declining demand; then we have modified it to one which consider all the cost parameters as uncertain variables.
Since uncertain model cannot be solved directly we have used two different approaches to transform the uncertain
profit function into its crisp equivalent and then solution procedure is provided. In order to incorporate intuitionistic
implications, we have also discussed the condition under which our model can be transformed into simpler models.
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2 Definitions and Basics of Uncertainty Theory

Before presenting the inventory model in uncertain environment, let us introduce some useful definitions and
fundamental results about Uncertainty theory in brief.

Definition 2.1 (Liu [1]) Let Γ be a nonempty set, and let A be a σ-algebra over Γ. Each Λ ∈ A is called an event
. In order to provide an axiomatic definition of uncertain measure, it is necessary to assign to each event Λ; a
number M{Λ} which indicates the level that Λ will occur. In order to ensure that the number M{Λ} has uncertain
mathematical properties, Liu [1] proposed the following four axioms:

Axiom 1 (Normality) M{Γ }= 1.

Axiom 2 (Self-Duality) M{Λ}+ M{Λc} = 1 for any event Λ .

Axiom 3 (Countable Subadditivity) For every countable sequence of events{Λi}, we have

M{
∞∪
i=1

Λi} ≤
∞∑
i=1

M{Λi} (2.1)

Axiom 4 (Product Measure Axiom) Let Λ1×Λ2 · · · ·×Λn be an uncertain event on the universe Γ1×Γ2 · · · ·×Γn

Then,
M{Λ1 × Λ2 · · · · × Λn} = Min{M{Λ1},M{Λ2} · · · M{Λn}} (2.2)

Definition 2.2 (Liu [1]) The set function M is called an uncertain measure if it satisfies the normality, self-duality,
Countable subadditivity and Product Measure axioms. The triplet (Γ, A, M) is called uncertainty space.

Definition 2.3 (Liu [1]) An uncertain variable is measurable function ξ from an uncertainty space (Γ, A,M) to the
set of Real numbers R, i.e, for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ|ξ{γ} ∈ B} is an event.

Definition 2.4 (Liu [1]) The uncertainty distribution Φ : R → [0, 1] of an uncertain variable ξ is defined by
Φ(x) = M{ξ ≤ x}

Definition 2.5 (Liu [1]) Let ξ be an uncertain variable. Then the expected value of ξ is defined by
E[ξ] =

∫∞
0

M{ξ ≥ r}dr −
∫ 0

−∞ M{ξ ≤ r}dr

Definition 2.6 (Liu [1]) The uncertainty distribution Φ is said to be Regular if its inverse function Φ−1(α) exists
and is unique for each α ∈ (0, 1) .

Definition 2.7 (Liu [1]) Let ξ be an uncertain variable with Regular uncertainty distribution Φ. Then the inverse
function Φ−1 is called the inverse uncertainty distribution of ξ.

Definition 2.8 (Liu [1]) Let ξ be an uncertain variable, and α ∈ (0, 1]. Then
ξinf (α) = inf{r|M{ξ ≤ r} ≥ α} is called the α-pessimistic value to ξ.

Definition 2.9 (Liu [1]) Let ξ and η be two uncertain variables, we say that ξ > η iff E[ξ] > E[η] holds. This is
called Expected value criterion for comparing two uncertain variables.

Definition 2.10 (Liu [1]) Let ξ and η be two uncertain variables, we say that ξ > η iff ξinf (α) > ηinf (α) holds ∀
∈ [0,1]. This is called Pessimistic Value criterion for comparing two uncertain variables.
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2.1 Useful Results

Theorem 2.1 ( Liu [1]) Let ξ be an uncertain variable with uncertainty distribution Φ. If the expected value exists,
then

E[ξ] =

∫ 1

0

ϕ−1(α)dα (2.3)

Theorem 2.2 ( Liu [1]) Let ξ be an uncertain variable with uncertainty distribution Φ. Then its α-pessimistic
value is

ξinf (α) = ϕ−1(α) (2.4)

Theorem 2.3( Liu [1]) Let ξ1, ξ2, ξ3, ...., ξn be independent uncertain variables with uncertainty distributions
Φ1,Φ2,Φ3, ....,Φn respectively. If f is a strictly increasing function. Then

ξ = f(ξ1, ξ2, ξ3, ...., ξn) (2.5)

is an uncertain variable with inverse uncertainty distribution

ϕ−1(α) = f(ϕ−1
1 (α), ϕ−1

2 (α), ϕ−1
3 (α), ...., ϕ−1

n (α)) (2.6)

3 Mathematical Formulation of the Model

3.1 Derivation of the Crisp Model

Notations and Assumptions
Following notations are used in the Crisp model-

λ(t) : variable demand rate;

s : screening rate;

ch : holding cost per unit, per unit time;

co : ordering cost ;

cp : purchasing cost per unit;

cs : screening cost per unit;

v1 : selling price for the good items during selling season.

v2 : salvage price for the good items after selling season.

v3 : salvage price for the imperfect items.

y : lot size;

ts : time taken for screening the lot size;

I1(t): inventory level at time t; t ∈ [0, ts]

I2(t):inventory level at time t; t ∈ (ts, T ]

While developing the crisp model, the following assumptions are made:
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1. Replenishment is instantaneous; Lead time is zero.

2. The time horizon is infinite.

3. Demand is a linear function of time t; given by λ(t) = λ0 − λ1t; where, λ0, λ1 ∈ R such that λ0 > 0

and λ1 < λ0

T .

4. The lot size y is the only decision variable in the model.

5. The defective percentage p is a fixed constant for a lot size.

6. The screening process and demand proceeds simultaneously, but the screening rate is greater than maximum
demand rate, i.e. s > λ0; where λ0 is the maximum demand rate.

7. A single product is considered.

8. All type of costs are considered as constants.

9. To avoid the cost of lost sales, shortage is ignored.

10. The selling price of perfect items during selling season is v1. The price of unsold perfect item is v2 and that
of imperfect item is v3. In general v1 ≥ v2 ≥ v3

Inventory-Time Graph for Imperfect Quantity under Time Varying Demand

The differential equations governing the inventory level at time t ∈ [0, ts]

dI1
dt

= −λ(t)for (0, ts] (3.1)

subject to the initial condition: I1(0) = y.
Solving and applying the initial condition,

I1(t) = y − λ0t+
λ1t

2

2
(3.2)
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The initial inventory at time ts, Is1 = y − λ0
y
s + λ1

y2

2s2

The final inventory at time ts, Is2 = Is1 − py = y(1− p)− λ0
y
s + λ1

y2

2s2

The differential equations governing the inventory level at time t ∈ (ts, T ]

dI2
dt

= −λ(t)fort ∈ (ts, T ] (3.3)

subject to the initial condition: I2(ts) = Is2.

Solution of (3.3) is

I2(t) = y(1− p)− λ0
y

s
+ λ1

y2

2s2
− (λ0t−

λ1t
2

2
) (3.4)

since y = λ0

1−pT = KT (say)
where K = λ0

1−p

Holding cost = h
[ ∫ y/s

0
I1(t)dt+

∫ T

y/s
I2(t)dt

]
= 1

6

T(λ1sT−3λ0s+6 sK−6 psK+6 pK2)ch
s

So the total cost becomes

TC(y) = (Ordering Cost) + (Purchasing Cost) + ( Screening Cost) + (Holding Cost);

or, TC(y) = co + cpy + csy + h
[
Ty − λ0T

2 + λ1
T 3

6 − py(T − y
s )
]

Now, in order to prevent shortage, we must have T = y(1−p)
λ0

where λ0 = λ(0) where λ0 = max{λ(t)} Clearly λ0 ≥

λ0

Sold Items of good quality

=
∫ T

0
(λ0 + λ1t)dt = λ0T − 1

2 λ1T
2

Unsold Items of good quality:

= y(1− p)−
∫ T

0
(λ0 + λ1t)dt = y(1− p)− λ0T − 1

2 λ1T
2

Total Revenue TR = v1
(
λ0T − 1

2 λ1T
2
)
+ v2

(
y (1− p)− λ0T + 1

2 λ1T
2
)
+ v3py

The total average profit is given by the following expression:

TAP (y) = TR−TC
T

= (v1 − v2)(λ0 − 1
2λ1T )− 1

6T
(
λ1T − 3λ0 + 6 sK − 6 pK + 6 pK2

s

)
ch +K(v3p

+v2 (1− p)− cp − cs)− co
T

(3.5)

Differentiating with respect to T successively twice, we get,

TAP ′(T ) =
−1

6

(λ1sT − 3λ0s+ 6 sK − 6 psK + 6 pK2)ch
s

+
1

2
(v2 − v1)λ1 +

co
T 2

= 0

TAP ′′(T ) = −1

3
λ1ch − 2

co
T 3

Since TAP ′′(T ) < 0 ; TAP (T ) is concave.
Thus the optimal solution is given by the equation: TAP ′(y) = 0; which means to solve the cubic obtained from
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following equation:

−1

6

(λ1sT − 3λ0s+ 6 sK − 6 psK + 6 pK2)ch
s

+
1

2
(v2 − v1)λ1 +

co
T 2

= 0 (3.6)

T 3 + [3(v1 − v2) +
6

λ1
(
λ0

2
+

p

s

λ2
0

(1− p)2
)]T 2 − 6co

λ1ch
= 0 (3.7)

We first prove the existence and uniqueness of unique positive root of above cubic equation, which guarantees the
optimal solution to our problem.

Theorem 3.1 There exist a positive root of equation (3.7) and it is unique for all possible parameter values.

Proof : Let us consider the equation (3.7) as, T 3 +A1T
2 −A2 = 0

(3.8)

where A1 = 3(v1 − v2) +
6
λ1
(λ0

2 + p
s

λ2
0

(1−p)2 ); and A2 = 6co
λ1ch

Now it is obvious that A1 > 0 since each term in the ()brackets is positive. Further A2 > 0 since co > 0, λ1 > 0

and ch > 0.
Let A(T ) = T 3 +A1T

2 −A2.
Then it is clearly observed that A(T ) has 1 change of sign,( and A(−T ) has 2 change of sign.) By the Descartes’
rule of sign “the number of positive roots of a polynomial with real coefficients is either equal to the number of sign
changes between consecutive nonzero coefficients, or is less than it by a multiple of 2.” This condition is trivially
satisfied. Thus, we can conclude that A(T ) has exactly 1 positive root. ( and A(−T ) has 2 positive roots.⇒ A(T)
has 2 negative roots.) Hence, the existence and uniqueness follows.

Solution Procedure

In equation (3.8) substituting T = τ − A1

3 , we obtain a new cubic equation
τ3 −B1τ +B2 = 0

B1 =
−A2

2

3 and B2 =
2A3

1−27A2

27

Using Cardano’s procedure of solving cubic equation, the solution is given by

τ∗ =
(−B2

2 +

√
B3

1

27 +
B2

2

4

) 1
3 +

(−B2

2 +

√
B3

1

27 +
B2

2

4

) 1
3

Optimal cycle time T ∗ = τ∗ − A1

3 It can be shown that above EOQ for imperfect items with time varying

demand can be converted to a EOQ model for imperfect items with constant demand and further to traditional
EOQ by some suitable substitutions.
Case 1:
Taking λ1 = 0 in the equation (3.6), we get an EOQ for imperfect items with constant demand.
Governing equation becomes co

T 2 − (pK
2

s +K(1− p)− λ0

2 )ch = 0
co
T 2 − (p λ0

(1−p)2s + λ0

2 )ch = 0

T =
√

co
( p

s(1−p)2
+ 1

2 )λ0ch

which gives y = λ0T
1−p =

√
coλ0

( p
s+

(1−p)2

2 )ch

Case 2:
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Further putting p = 0,
we get:
T =

√
2co
λ0ch

This gives,
y = λ0T =

√
2coλ0

ch

3.2 Modification of crisp model using Uncertainty Theory

Beside the assumptions of Crisp Model following modifications are made:

1. All the cost parameters are independent uncertain variables.

2. Each of the uncertain cost variable has regular uncertainty distribution.

3. For each uncertain cost variable the expected value and pessimistic value exist.

Let:
ξ1 : Ordering cost; an uncertain variable.

ξ2 : Purchase cost per unit; an uncertain variable.

ξ3 : Screening cost per unit; an uncertain variable.

ξ4 : Holding cost per unit per unit time; an uncertain variable.

Φi : Uncertainty distribution of ξi ; (i = 1, 2, 3, 4)

α : a crisp constant such that α ∈ [0, 1]

Then uncertain total average profit is represent by

f(ξ1, ξ2, ξ3, ξ4; y) = (v1 − v2)(λ0 −
1

2
λ1T )−

1

6
T

(
λ1T − 3λ0 + 6 sK − 6 pK + 6

pK2

s

)
ξ4

+K(v3p+ v2 (1− p)− ξ2 − ξ3)−
ξ1
T

(3.9)

Then the uncertain total average profit f being the function of uncertain variables is itself an uncertain variable
with inverse uncertainty distribution Ψ−1(α) where

Ψ−1(α) = (v1−v2)(λ0− 1
2λ1T )− 1

6T
(
λ1T − 3λ0 + 6 sK − 6 pK + 6 pK2

s

)
Φ−1

4 (α)+K(v3p+v2 (1− p)−

Φ−1
2 (α)− Φ−1

3 (α))− Φ−1
1 (α)
T

(3.10)

3.3 Derivation of the Uncertain Expected Value Model

The maximization of an uncertain variable is meaningless. Thus, one has to convert the uncertain variable or some
function of uncertain variable to its expected value so that some mathematical programming method can be applied
to obtain a optimum value for which expected value is minimum.

Let as assume that expectations of the uncertain variables ξi ;(i = 1, 2, 3...n)exist and so that of f(ξ1, ξ2, ξ3, ........., ξn)
also exists. Now we can develop expected value model as follows:
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Maximize E[f(ξ1, ξ2, ξ3, ........., ξn)]

subject to (some suitable constraints).

Above problem is a crisp optimization problem which can be solved using traditional methods.
Here uncertain total average profit function is an uncertain variable, which should be converted to its equivalent

crisp value to obtain the optimal policy of the uncertain model.
Since expectations of the variables ξi exist and so that of f(ξ1, ξ2, ξ3, ξ4; y) also exists.

Now we can define the Uncertain Expected Value Model (UEVM) as follows:

Maximize E[f(ξ1, ξ2, ξ3, ξ4; y)]

Subject to:

y > 0

Here y is the decision variable.

Using the Theorem 2.1 we get ,

E[f(ξ1, ξ2, ξ3, ξ4; y)] =
∫ 1

0
Ψ−1(α)dα

Ψ−1(α) = (v1 − v2)(λ0 − 1
2λ1T )− 1

6T
(
λ1T − 3λ0 + 6 sK − 6 pK + 6 pK2

s

) ∫ 1

0
Φ−1

4 (α)dα

+K(v3p+ v2 (1− p)−
∫ 1

0
Φ−1

2 (α)dα−
∫ 1

0
Φ−1

3 (α)dα)−
∫ 1
0
Φ−1

1 (α)dα

T (3.11)

Equation (3.11) is function of y only and let it be e(y)]. Thus the transformed crisp expected value model can be

written as-
Maximize e(y)

Subject to

y > 0

3.4 Derivation of the Linear Uncertain Expected Value Model

Let us suppose ξi; (i = 1, 2, 3, 4) be Linear uncertain variables. Then, ξi ∼ L(ai, bi) where ai, bi for (i =

1, 2, 3, 4) are real numbers.
Now the Linear Uncertainty distribution functions are given by

Φi(x) =


0 x ≤ ai
x−ai

bi−ai
ai ≤ x ≤ bi

1 x ≥ bi

So the corresponding inverse uncertainty distribution functions are given by :

Φ−1
i (α) = (1− α) ai + α bi; for (i = 1, 2, 3, 4)

Thus, E[ξi] =
ai+bi

2

Now, if we apply the above result to the expected value model developed in section 3.2; we get expected total

profit of the model as
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E[f(ξ1, ξ2, ξ3, ξ4; y)] = (v1 − v2)(λ0 − 1
2λ1T )− 1

6T
(
λ1T − 3λ0 + 6 sK − 6 pK + 6 pK2

s

)
a4+b4

2 +

+K(v3p+ v2 (1− p)− a2+b2
2 − a3+b3

2 )−
a1+b1

2

T

where, ei =
(ai+bi)

2 for i = 1, 2, 3, 4.

Special Cases: Case 1:

Taking λ1 = 0 in the equation (3.6), we get an EOQ for imperfect items with constant demand.
Governing equation becomes

a1+b1
2

T 2 − (pK
2

s +K(1− p)− λ0

2 )a4+b4
2 = 0

a1+b1
2

T 2 − (p λ0

(1−p)2s + λ0

2 )a4+b4
2 = 0

T =

√
a1+b1

2

( p

s(1−p)2
+ 1

2 )λ0
a4+b4

2

which gives y = λ0T
1−p =

√
a1+b1

2 λ0

( p
s+

(1−p)2

2 )
a4+b4

2

Case 2:
Further putting p = 0,
we get:

T =

√
2

a1+b1
2

λ0
a4+b4

2

This gives,

y = λ0T =

√
2

a1+b1
2 λ0

a4+b4
2

3.5 Derivation of the Normal Uncertain Expected Value Model

Let ξi for (i = 1, 2, 3, 4) be Normal uncertain variables.
ie. ξi ∼ N(ei, σi) where ei, σi for (i = 1, 2, 3, 4) are real numbers and σi > 0 for each i.

Now the normal Uncertainty distribution functions are given by

Φi(x) =

(
1 + exp

(π(ei−x)√
3σi

))−1

x ∈ R

Then the corresponding inverse uncertainty distribution functions given by-

Φ−1
i (α) = ei + σi

√
3

π ln

(
α

1−α

)
Thus
E[ξi] =

∫ 1

0
Φ−1

i (α)dα = ei ; for (i = 1, 2, 3, 4)

E[f(ξ1, ξ2, ξ3, ξ4; y)] = (v1 − v2)(λ0 − 1
2λ1T ) − 1

6T
(
λ1T − 3λ0 + 6 sK − 6 pK + 6 pK2

s

)
e4 + K(v3p +

v2 (1− p)− e2 − e3)− e1
T

Using Theorem (3.1) and subsequent solution procedure, we obtain the optimal solution.
Special Cases:
Case 1:
Taking λ1 = 0 in the equation (3.6), we get an EOQ for imperfect items with constant demand:
Governing equation becomes:

e1
T 2 − (pK

2

s +K(1− p)− λ0

2 )e4 = 0

e1
T 2 − (p λ0

(1−p)2s + λ0

2 )e4 = 0

T =
√

e1
( p

s(1−p)2
+ 1

2 )λ0e4
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which gives y = λ0T
1−p =

√
e1λ0

( p
s+

(1−p)2

2 )e4

Case 2:
Further putting p = 0,
we get:
T =

√
2e1
λ0e4

This gives,
y = λ0T =

√
2e1λ0

e4
-which is the required EOQ .

It can be shown that above Uncertain EOQ model for imperfect items with time varying demand in both Linear

and Normal variable case can be converted to corresponding Crisp EOQ models and also to an Uncertain and Crisp
EOQ models for imperfect items with constant demand and further to traditional EOQ by suitable substitutions.

3.6 Derivation of the Uncertain Chance-Constrained Programming model

Introduced by Charnes and Cooper in 1959 , chance constrained programming (CCP) has been one of the successful
methods for solving optimization problems under uncertainty. The main idea of CCP is that inequality constraints
in uncertain model will hold with a pre-specified uncertainty value to ensure a certain level of satisfaction. That
means the decision maker will provide the value of satisfaction level α such that the constraint will hold atleast α
of time. Here we choose the pessimistic value α as the satisfaction criteria of the model.

Assume that the pessimistic value criterion holds. If we want to Maximize the pessimistic value of the objective
function subject to some uncertain chance constraints, the corresponding uncertain chance-constrained program-
ming problem becomes,

Maximize f

Subject to:

M{f(ξ1, ξ2, ξ3, ...., ξn; y) ≤ f} ≥ α

where α is a predetermined confidence level and min f is α− pessimistic return.

We have:
ξinf (α) = Ψ−1(α)

= f(ϕ−1
1 (α), ϕ−1

2 (α), ϕ−1
3 (α), ...., ϕ−1

n (α))

= fc(α)(say).

So, we obtain a crisp chance constraining problem as follows:
Maximize fc(α)

Subject to:
(some equality or inequality constraints.)

This crisp problem also can be solved by the method which is based on Theorem(3.1).
ξinf (α) = Ψ−1(α)

Ψ−1(α) = {Φ−1
1 (α)
y + (Φ−1

2 (α) + Φ−1
3 (α)) λ0

(1−p) +Φ−1
4 (α)

[
y − λ0

y(1−p)
2λ0

+ λ1
y2(1−p)2

6λ∗2 − py(1− λ0

(1−p)s )
]

The corresponding crisp chance constraining problem as follows:

Maximize Ψ−1(α)

Subject to: y > 0
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Remark:

for α = 0.5, the result of linear or normal uncertain chance constrained programming become identical with
corresponding expected value model.

3.7 Derivation of the Linear uncertain chance constrained programming model

For solving the chance constrained programming model, we substitute the pessimistic value of linear uncertain
variable :
Φ−1

i (α) = (1− α) ai + α bi = ci(say)
which gives

fc(α) = (v1−v2)(λ0− 1
2λ1T )− 1

6T
(
λ1T − 3λ0 + 6 sK − 6 pK + 6 pK2

s

)
c4+K(v3p+v2 (1− p)−c2−c3)− c1

T

Special Cases

Case 1:

Taking λ1 = 0 in the equation (3.6), we get an EOQ for imperfect items with constant demand:
Governing equation becomes c1

T 2 − (pK
2

s +K(1− p)− λ0

2 )c4 = 0

or, c1
T 2 − (p λ0

(1−p)2s + λ0

2 )c4 = 0

which gives,

T =
√

c1
( p

s(1−p)2
+ 1

2 )λ0c4

In particular, for α = 0 we have, T0 =
√

a1

( p

s(1−p)2
+ 1

2 )λ0a4

which gives y0 = λ0T
1−p =

√
a1λ0

( p
s+

(1−p)2

2 )a4

Again, for α = 1 we have,

T1 =
√

b1
( p

s(1−p)2
+ 1

2 )λ0b4

which gives y1 = λ0T
1−p =

√
b1λ0

( p
s+

(1−p)2

2 )b4

Thus we have for all α ∈ [0, 1];
min{T0, T1} ≤ T ≤ max{T0, T1}

Case 2:

Further putting p = 0,
we get:
T =

√
2c1
λ0c4

This gives,
y = λ0T =

√
2c1λ0

c4
-which is the crisp EOQ for imperfect quality items. similar implications hold as of previous

case.
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3.8 Derivation of the Normal uncertain chance constrained programming model

For solving the chance constrained programming model, like previous case, we substitute the pessimistic value of
normal uncertain variable
Φ−1

i (α) = ci where, ci = ei + σi

√
3

π ln

(
α

1−α

)
which gives

fc(α) = (v1−v2)(λ0− 1
2λ1T )− 1

6T
(
λ1T − 3λ0 + 6 sK − 6 pK + 6 pK2

s

)
c4+K(v3p+v2 (1− p)−c2−c3)− c1

T

y∗ =
√

2c1λ0

(1−p)
[
c4

(
2−λ0

λ0
(1−p)−2p

(
1− λ0

(1−p)s

))
−2

λ1
λ0

(1−p)(s−v1)
]

y∗ =

√√√√ 2(e1 + σ1

√
3

π ln
(

α
1−α

)
λ0

(1− p)
[(
e4 + σ4

√
3

π ln
(

α
1−α

)(
2− λ0

λ0
(1− p)− 2p

(
1− λ0

(1−p)s

)
− 2λ1

λ0
(1− p)(s− v1)

]
-which is the crisp EOQ for imperfect quality items.
For, α = .5 , we obtain

y∗ =
√

2e1λ0

(1−p)
[
e4

(
2−λ0

λ0
(1−p)−2p

(
1− λ0

(1−p)s

))
−2

λ1
λ0

(1−p)(s−v1)
]

which is the expression for optimal EOQ.

3.9 Numerical Examples

Example-1.
We consider following data for our model:

Demand per unit time is given by λ(t) = 350− 2t per month; which means λ0 = 350, λ1 = 2

Defective item percentage p = 5% items per lot i.e. p = 0.05,
Screening rate s = 370/ month,
Purchase cost c = 5$per unit ,
Holding cost ch = 5$ per unit per month,
Ordering cost co = 100 $,
Screening cost cs = .5$ per unit,
Selling price of perfect items v1 = 40 $ per unit,
Salvage price for unsold perfect items v2 = 25 $ per unit,
Salvage price for imperfect items v3 = 5 $ per unit
Using equation (3.7),

3.333T 3 + 996.712T 2 − 100.0 = 0

which gives the optimal scheduling period T = 0.319 month = 9.6 days(approximately) ,
optimal lot size y∗ = 111.92 unit, and optimal profit TAP ∗ = 3214.52$ per cycle.

The sensitivity of decision variable and total average profit for changes in costs namely ordering cost co, hold-
ing costch, purchase cost cp and screening costcs are shown in table 1. It is observed that :
1. Optimal lot size decreases with decreasing ordering cost, but optimal profit increases gradually; which is natural
because the declining in ordering cost motivates decision maker to order less because of cost involved in storage
etc can be reduced. This suggest the hike in optimal profit.
2. Optimal lot size decreases with increasing holding cost and optimal profit decreases accordingly; which is due
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co ch cp cs T ∗ y∗ TAP ∗

-40% .247 87.32 9738.18

-20% .285 100.75 9663.06

+20% .349 123.38 9537.02

+40% .377 133.28 9481.99

-40% .410 144.95 9735.65

-40% .356 125.86 9661.96

+20% .292 103.23 9537.93

+40% .272 96.16 9483.68

-40% .319 112.78 11070.55

-20% .319 112.78 10333.71

+20% .319 112.78 8860.02

+40% .319 112.78 8123.18

-40% .319 112.78 9670.55

-20% .319 112.78 9633.71

+20% .319 112.78 9560.02

+40% .319 112.78 9523.18

Table 1: Effect of various cost parameters on the optimal policy

to the fact that increment in holding cost motivates decision maker to order less because of cost involved in storage
can be reduced. This results in profit decrement.
3. Purchase and screening costs have no tendency to change the lot size but the increase in these costs have slightly
reduction effects in optimal profit.

Example-2.

If the Ordering cost ξ1, Purchase cost ξ2 , Screening cost ξ3 and Holding cost ξ4 have Linear uncertainty distri-

bution. Let them be
ξ1 ∼ L(90, 110), ξ2 ∼ L(4, 6), ξ3 ∼ L(0, 1), ξ4 ∼ L(4.5, 5.5),

Then, using the formula derived in the UEVM for Linear Uncertain variables, we get:

the optimal scheduling period T = 0.319 month = 9.6 days(approximately) ,
optimal lot size y∗ = 111.92 unit, and
optimal profit TAP ∗ = 3214.52$ per cycle.
The reason behind identical result is that we have adjusted our parameters of linear uncertain variables in such a
way that the expected value of each uncertain variable is the corresponding crisp value.
Then, using the formula derived in the UCCP for Linear Uncertain variables, for α = 0.9

we obtain the optimal scheduling period T = 0.264 month = 7.9 days(approximately) ,
optimal lot size y∗ = 93.33 unit, and
optimal profit TAP ∗ = 2846.31$ per cycle.
Example-3

Let the Ordering cost ξ1, Purchase cost ξ2 , Screening cost ξ3 and Holding cost ξ4 follow Normal Uncertainty
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Distribution. Let them be
ξ1 ∼ N(100, 4), ξ2 ∼ N(10, 2), ξ3 ∼ N(0.5, .1) , ξ4 ∼ N(5, 3)

Now using the formula derived in the UEVM for Normal uncertain variables; we get

the optimal scheduling period T = 0.319 month = 9.6 days(approximately) ,
optimal lot size y∗ = 111.92 unit, and
optimal profit TAP ∗ = 3214.52$ per cycle.
(Here too, we have considered normal uncertain variables in such a way that the expected value of each uncertain
variable is the corresponding crisp value.)
Then, using the formula derived in the UCCP for Normal Uncertain variables, for α = 0.9, we get
the optimal scheduling period T = 0.256 month = 7.7 days(approximately) ,
optimal lot size y∗ = 90.50 unit, and optimal profit TAP ∗ = 2751.52$ per cycle.

4 Conclusion

We have first developed a crisp inventory model for linearly decreasing time varying demand for imperfect
quality items. We have considered that the imperfect items are screened out after a 100 % screening process and
sold at the reduced price. Also the unsold items after the selling season is sold at a reduced price. The Uncertain
programming approach is applied to modify the aforementioned model into one with uncertain cost variables. We
developed the Uncertain Expected value model as an approach of Uncertain Programming and we have shown
that above model can be reduced to corresponding crisp model and traditional EOQ model subjected to certain
conditions. Using the numerical examples we have first considered the crisp case and then uncertain case. Using
sensitivity analysis, we have observed the effect of various crisp cost parameters in our model and discussed its
significance. The ucertain cases are illustrated with the help of two numerical examples.
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