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Abstract

In the present paper, we move forward in the study of multiobjective programming

problems and establish sufficient optimality conditions under generalized (Hp, r)-invexity

assumptions. Weak, strong and strict converse duality theorems are also derived for

Mond-Weir type dual model in order to relate efficient solutions of primal and dual

problems.
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1. Introduction

The field of multiobjective programming problems, also known as vector optimiza-

tion problems, has grown remarkably in different directions in the setting of optimality

conditions and duality theory. Such problems can arise in practically every field of sci-

ence, engineering and business, and the need for efficient and reliable solution methods

is increasing. Multiobjective optimization has been applied in many cases where optimal

decisions need to be taken in the presence of trade-offs between two or more conflicting ob-
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jectives. A decision maker is needed to provide additional preference information and to

identify the most satisfactory solution. Minimizing weight while maximizing the strength

of a particular component, and maximizing performance whilst minimizing fuel consump-

tion and emission of pollutants of a vehicle are examples of multiobjective optimization

problems involving two and three objectives, respectively.

Convex analysis has been linked with the theory of multiobjective mathematical pro-

gramming problem since it evolved from multiobjective linear programming problem. In

order to ensure that necessary conditions for optimality are sufficient under convexity,

we establish optimality conditions, duality theorems, saddle point analysis etc.. This

development in multiobjective programming problems was originated by the growth of

generalizations of invexity, introduced by Hanson [9]. The definition of invexity in the

sense of Hanson reduces to the notion of convexity when η(x, x0) = x − x0, which were

extended by many of the authors in recent past see, [2, 7, 12, 18, 19, 20] and the references

cited therein.

Egudo and Hanson [8] discussed differentiable multiobjective duality results between

primal problems and its Wolfe type dual problems under invexity assumptions. Liang

et al. [15] introduced (F, α, ρ, d)-convexity as extension of several concepts of generalized

convexity and obtained some corresponding optimality conditions and duality results

for the multiobjective fractional programming problem. Agarwal et al. [1] proposed

a new class of generalized d − ρ − (η, θ) type I invex functions for a nondifferentiable

multiobjective programming problem and obtained optimality conditions and duality

results for efficient/weak efficient solutions. Jayswal et al. [11] considered (p, r) − ρ −

(η, θ)-invex functions to establish sufficient conditions and duality theorems for a class of

multiobjective fractional programming problems. Recently, Lai and Ho [13] discussed the

optimality conditions and duality results for a subdifferentiable multiobjective fractional

programming problem involving exponential V -r-invex Lipschitz functions.

In the course of generalization of convex functions, Avriel [6] first introduced the

definition of r-convex functions and established some characterizations and the relations

between r-convexity and other generalization of convexity. Antczak [3] introduced the

concept of a class of r-preinvex functions which is a generalization of r-convex functions

and preinvex functions, and obtained some optimality results under r-preinvexity as-

802



Generalized (Hp, r)-invexity in multiobjective programming problems

sumption for constrained optimization problems. Lee and Ho [14] established necessary

and sufficient conditions for efficiency of multiobjective fractional programming problems

involving r-invex functions and investigated the parametric, Wolfe and Mond-Weir type

dual for multiobjective fractional programming problems concerning r-invexity. In order

to generalize the notion of invex and pre-invex functions, Antczak [4] introduced p-invex

sets and (p, r)-invex functions and derived sufficient optimality conditions for a nonlinear

programming problem involving (p, r)-invex functions.

Yuan et al. [20] introduced the concept of locally (Hp, r, α)-pre-invex functions and

locally Hp-invex sets, respectively and derived necessary optimality conditions, sufficient

optimality conditions and duality theorems for nonlinear programming problems. Liu

et al. [16] proposed the concept of (Hp, r)-invex function and proved sufficient optimality

conditions to multiple objective programming problem and mulitiobjective fractional pro-

gramming problem but no steps are taken to establish duality theorems for the considered

problems.

(Hp, r)-invex functions are extension of (p, r)-invex functions and r-invex functions.

Since many practical and real situations give rise to exponential and logarithmic functions,

so a powerful tool is needed to tackle such problem. Up to some extent (Hp, r)-invexity

can handle such types of problems. In the present paper, our aim is to establish sufficient

optimality conditions and duality results to meet the above mentioned demand.

The paper is organized as follows. In Section 2, we recall some notations and defi-

nitions needed in the sequel of the paper. In Section 3, we derive sufficient optimality

conditions under generalized (Hp, r)-invexity assumptions for a class of multiobjective

programming problems (MOP). Weak, strong and strict converse duality theorems for

Mond-Weir dual problem (MOP) are discussed in Section 4. In the last Section 5, we hae

discussed conclusions and future possible works that might take in this direction.

2. Notations and Preliminaries

Throughout the paper, let Rn be the n-dimensional Euclidean space, Rn+ = {x ∈

Rn | x ≥ 0} and Ṙn+ = {x ∈ Rn | x > 0}. If x, y ∈ Rn, then x � y is used to denote the

case xi ≤ yi, i = 1, 2, · · · , n and x 6= y.

Definition 2.1 [4] Let a1, a2 > 0, λ ∈ (0, 1) and r ∈ R. Then the weighted r-mean of a1
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and a2 is given by

Mr(a1, a2;λ) =

 (λa1
r + (1− λ)ar2)

1
r , for r 6= 0,

aλ1a
(1−λ)
2 , for r = 0,

where λ ∈ (0, 1) and r ∈ R.

Definition 2.2 [16] A subset X ⊂ Rn is said to be Hp-invex set, if for any x,u ∈ X,

there exists a vector function Hp : X ×X × [0, 1]→ Rn, such that

Hp(x, u; 0) = eu, Hp(x, u;λ) ∈ Ṙn+,

ln(Hp(x, u;λ)) ∈ X, ∀λ ∈ [0, 1], p ∈ R.

In the above definitions, the logarithm and the exponentials appearing in the ex-

pressions are understood to be taken componentwise.

Now, we illustrate an example to show the existence of an Hp-invex set but not

p-invex.

Example 2.1 Let S ⊂ R2 defined by S = {x = (x1, x2) : x2 = f(x1)}, where f : [0, 1]→

R is given by f(t) = t2

1+t2
. For any given x, u ∈ S, the function Hp is defined by

Hp(x, u;λ) =


hp(x;λ), u = (0, 0)T , λ ∈ [0, 1],

(eu1,e
u21

1+u21 ), u 6= (0, 0)T , λ ∈ [0, 1],

where x = (x1, x2)T , u = (u1, u2)T , 0 < p < 1 and

hp(x;λ) =

 (1, 1)T , λ = 0,

(eλ, e
λ2

1+λ2 ), λ ∈ (0, 1].

Clearly, the set S defined above isHp-invex set but not p-invex as ln(Mp(e
η(x,u)+u, eu;λ)) 6∈

S, ∀λ ∈ [0, 1].

For convenience throughout the paper, we assume that X be a Hp-invex set, Hp is

right differentiable at 0 with respect to the variable λ for each given pair x, u ∈ X, and

f : X → R is differential on X. The symbol

H
′
p(x, u; 0+) , (H

′
p1(x, u; 0+), ...,H

′
pn(x, u; 0+))T

denotes the right derivative of Hp at 0 with respect to the variable λ for each given pair

x, u ∈ X; ∇f(x) , (∇1f(x), ...,∇nf(x))T denotes the differential of f at x, and so ∇f(u)
eu

denotes (∇1f(u)
eu1 , ..., ∇nf(u)

eun )T .
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Definition 2.4 [16] A differentiable function f : X → R is said to be (strictly) (Hp, r)-

invex at u ∈ X, if for all x ∈ X, we have

1

r
erf(x) ≥ 1

r
erf(u)

[
1 + r

∇f(u)T

eu
H
′
p(x, u; 0+)

]
(>) for r 6= 0,

f(x)− f(u) ≥ ∇f(u)T

eu
H
′
p(x, u; 0+) (>) for r = 0.

If the above inequalities are satisfied at any point u ∈ X, then f is said to be

(Hp, r)-invex (strictly (Hp, r)-invex) on X.

The existence of (Hp, r)-invex functions is revealed by an example given in Jayswal

et al. [10].

Special cases:

(i) If Hp(x, u;λ) = Mp(e
η(x,u)+u, eu;λ) and a(x, u) = 1 for all x, u ∈ X, then the above

Definition 2.4 becomes (p, r)-invex with respect to η on X given in Antczak [4].

(ii) In addition to (i), if we take p = 0, then Definition 2.4 reduces to r-invex with respect

to η on X given in Antczak [5].

(iii) In addition to (i) and (ii), if we take r = 0, then Definition 2.4 reduces to definition

of invex function given in Hanson [9].

Definition 2.5 [10] A differentiable function f : X → R is said to be (Hp, r)-pseudoinvex

at u ∈ X, if for all x ∈ X, the relations

∇f(u)T

eu
H
′
p(x, u; 0+) ≥ 0 ⇒ 1

r
[er(f(x)−f(u) − 1] ≥ 0, for r 6= 0,

∇f(u)T

eu
H
′
p(x, u; 0+) ≥ 0 ⇒ f(x)− f(u) ≥ 0, for r = 0,

hold. If the above inequalities are satisfied at any point u ∈ X, then f is said to be

(Hp, r)-pseudoinvex on X.

Definition 2.6 A differentiable function f : X → R is said to be strict (Hp, r)-pseudoinvex

at u ∈ X, if for all x ∈ X, the relations

∇f(u)T

eu
H
′
p(x, u; 0+) ≥ 0 ⇒ 1

r
[er(f(x)−f(u) − 1] > 0, for r 6= 0,

∇f(u)T

eu
H
′
p(x, u; 0+) ≥ 0 ⇒ f(x)− f(u) > 0, for r = 0,

hold. If the above inequalities are satisfied at any point u ∈ X, then f is said to be strict

(Hp, r)-pseudoinvex on X.
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It revealed by an example given in Jayswal et al. [10] that there exist (Hp, r)-

pseudoinvex functions but not (Hp, r)-invex.

Definition 2.7 [10] A differentiable function f : X → R is said to be (Hp, r)-quasiinvex

at u ∈ X, if for all x ∈ X, the relations

1

r
[er(f(x)−f(u) − 1] ≤ 0 ⇒ ∇f(u)T

eu
H
′
p(x, u; 0+) ≤ 0, for r 6= 0,

f(x)− f(u) ≤ 0 ⇒ ∇f(u)T

eu
H
′
p(x, u; 0+) ≤ 0, for r = 0,

hold. If the above inequalities are satisfied at any point u ∈ X, then f is said to be

(Hp, r)-quasiinvex on X.

It revealed by an example given in Jayswal et al. [10] that there exist (Hp, r)-

quasiinvex functions but not (Hp, r)-pseudoinvex.

Remark 2.1 All the theorems in the subsequent parts of this paper will be proved only in

the the case when r 6= 0. The proofs in other case are easier than in this one. Moreover,

without loss of generality, we shall assume that r > 0 (in the case when r < 0, the

direction some of the inequalities in the proof of the theorems should be changed to the

opposite one).

Consider the following multiobjective programming problem:

(MOP) Minimize f(x) , (f1(x), f2(x), ..., fq(x))

subject to

g(x) ≤ 0, x ∈ X,

where f : X → Rq and g : X → Rm are differentiable functions on a nonempty Hp-invex

setX. Let S denotes the set of all feasible solution to (MOP), i.e. S = {x ∈ X : g(x) ≤ 0}.

Definition 2.8 A feasible solution u ∈ S of (MOP) is said to be an (weak) efficient

solution if there exist no other feasible solution x ∈ S such that

f(x) � (<) f(u).

3. Sufficient optimality conditions

In the present section, we establish some sufficient optimality conditions under gen-

eralized (Hp, r)-invex functions introduced in previous sections.

Theorem 3.1 (Sufficient optimality conditions). Let S be a Hp-invex set with the respect
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to the same Hp. Let u ∈ X be a feasible solution of (MOP), and there exist scalars

λ ∈ Rq, λ > 0, µ ∈ Rm, µ ≥ 0 such that the following conditions hold:

q∑
i=1

λi∇fi(u) +

m∑
j=1

µj∇gj(u) = 0, (1)

m∑
j=1

µjgj(u) = 0. (2)

If
∑q

i=1 λifi is (Hp, r)-pseudoinvex and
∑m

j=1 µjgj is (Hp, r)-quasiinvex at u ∈ X. Then

u is an efficient solution to (MOP).

Proof. Suppose contrary to the result that u is not an efficient solution to (MOP). Then

there exists x ∈ S such that

f(x) � f(u).

Since λ > 0, after some algebraic transformations, the above inequality yields

1

r
[er(

∑q
i=1 λifi(x)−

∑q
i=1 λifi(u)) − 1] < 0.

From the assumption that
∑q

i=1 λifi is (Hp, r)-pseudoinvex at u ∈ X, we have

(∑q
i=1 λi∇fi(u)

eu

)T
H
′
p(x, u; 0+) < 0. (3)

Since µ ≥ 0, from the feasibility of x and (2), we have

m∑
j=1

µjgj(x) ≤
m∑
j=1

µjgj(u),

which in turn after some algebraic transformations yields

1

r
(er(

∑m
j=1 µjgj(x)−

∑m
j=1 µjgj(u)) − 1) ≤ 0.

Using the quasiinvexity of
∑m

j=1 µjgj at u ∈ X, we get

(∑m
j=1 µj∇gj(u)

eu

)T
H
′
p(x, u; 0+) ≤ 0. (4)

Adding (3) and (4), we obtain

(∑q
i=1 λi∇fi(u) +

∑m
j=1 µj∇gj(u)

eu

)T
H
′
p(x, u; 0+) < 0,

which contradicts (1). This completes the proof.
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The proof of the following theorems along the similar lines of Theorem 2.1, and hence

being omitted.

Theorem 3.2 (Sufficient optimality conditions). Let S be a Hp-invex set with the respect

to the same Hp. Let u ∈ X be a feasible solution to (MOP), and there exists scalars

λ ∈ Rq, λ ≥ 0, µ ∈ Rm, µ ≥ 0 such that the following conditions hold:

q∑
i=1

λi∇fi(u) +
m∑
j=1

µj∇gj(u) = 0, (5)

m∑
j=1

µjgj(u) = 0. (6)

If
∑q

i=1 λifi is strict (Hp, r)-pseudoinvex and
∑m

j=1 µjgj is (Hp, r)-quasiinvex at u ∈ X.

Then u is an efficient solution to (MOP).

Theorem 3.3 (Sufficient optimality conditions). Let S be a Hp-invex set with the respect

to the same Hp. Let u ∈ X be a feasible solution to (MOP), and there exists scalars

λ ∈ Rq, λ � 0, µ ∈ Rm, µ ≥ 0 such that the following conditions hold:

q∑
i=1

λi∇fi(u) +
m∑
j=1

µj∇gj(u) = 0, (7)

m∑
j=1

µjgj(u) = 0. (8)

If
∑q

i=1 λifi is (Hp, r)-pseudoinvex and
∑m

j=1 µjgj is (Hp, r)-quasiinvex at u ∈ X. Then

u is a weakly efficient solution to (MOP).

4. Mond-Weir type duality

We now consider the following Mond-Weir type dual problem related to (MOP):

(MWD) Maximize f(y) , (f1(y), f2(y), . . . , fp(y))

subject to

q∑
i=1

λi∇fi(y) +

m∑
j=1

µj∇gj(y) = 0, (9)

m∑
j=1

µjgj(y) ≥ 0, (10)

y ∈ X, λ ≥ 0, µ ≥ 0. (11)

Theorem 4.1 (Weak duality). Let x and (y, λ, µ) be feasible solutions to (MOP)

and (MWD), respectively. Assume that λ > 0,
∑q

i=1 λifi is (Hp, r)-pseudoinvex and
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∑m
j=1 µjgj is (Hp, r)-quasiinvex. Then

f(x) � f(y).

Proof. Suppose contrary to the result that

f(x) � f(y).

Since λ > 0, after some algebraic transformations, the above inequality yields

1

r
[er(

∑q
i=1 λifi(x)−

∑q
i=1 λifi(y)) − 1] < 0.

From the assumption that
∑q

i=1 λifi is (Hp, r)-pseudoinvex at y,(∑q
i=1 λi∇fi(y)

ey

)T
H
′
p(x, y; 0+) < 0. (12)

Since µ ≥ 0, from the feasibility of x and (10), we have

m∑
j=1

µjgj(x) ≤
m∑
j=1

µjgj(y),

which in turn after some algebraic transformations yield

1

r
(er(

∑m
j=1 µjgj(x)−

∑m
j=1 µjgj(y)) − 1) ≤ 0.

Using the quasiinvexity of
∑m

j=1 µjgj at y, we obtain(∑m
j=1 µj∇gj(y)

ey

)T
H
′
p(x, y; 0+) ≤ 0. (13)

Adding (12) and (13), we get(∑q
i=1 λi∇fi(y) +

∑m
j=1 µj∇gj(y)

ey

)T
H
′
p(x, y; 0+) < 0,

which contradicts the dual constraint (9). This completes the proof.

The proof of the following theorem along the similar lines of Theorem 4.1, and hence

being omitted.

Theorem 4.2 (Weak duality). Let x and (y, λ, µ) be feasible solutions to (MOP) and

(MWD), respectively. Assume that λ ≥ 0,
∑q

i=1 λifi is strict (Hp, r)-pseudoinvex and∑m
j=1 µjgj is (Hp, r)-quasiinvex. Then

f(x) � f(y).
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Theorem 4.3 (Strong duality). Let x̄ be an efficient solution for (MOP)and x̄ satisfies a

constraints qualification for (MOP) in Marusciac [17]. Then there exist λ̄ ∈ Rq, µ̄ ∈ Rm

such that (x̄, λ̄, µ̄) is feasible for (MWD). If any of the weak duality in Theorms 4.1-4.2

also hold, then (x̄, λ̄, µ̄) is an efficient solution to (MWD).

Proof. Since x̄ is an efficient solution to (MOP) and satisfies the constraint qualification

for (MOP), then from Kuhn-Tucker necessary optimality condition, there exist λ̄ > 0, µ̄ ≥

0 such that
q∑
i=1

λ̄i∇fi(x̄) +

m∑
j=1

µ̄j∇gj(x̄) = 0,

m∑
j=1

µ̄jgj(x̄) = 0,

which yields that (x̄, λ̄, µ̄) is feasible for (MWD). The efficiency (x̄, λ̄, µ̄) for (MWD)

follows from weak duality theorems. This completes the proof.

Theorem 4.4 (Strict converse duality). Let x̄ be a feasible solution for (MOP) and

(ȳ, λ̄, µ̄) be feasible solution for (MWD). Let
∑q

i=1 λ̄ifi be strict (Hp, r)-pseudoinvex and∑m
j=1 µ̄jgj be (Hp, r)-quasiinvex such that

q∑
i=1

λ̄ifi(x̄) ≤
q∑
i=1

λ̄ifi(ȳ). (14)

Then x̄ = ȳ, i.e. ȳ is an efficient solution for (MOP).

Proof. We assume the contarary that x̄ 6= ȳ, and exhibit a contradiction. Since µ̄ ≥ 0,

from the feasibility of x̄ and (ȳ, λ̄, µ̄) for (MOP) and (MWD), respectively, we obtain

m∑
j=1

µ̄jgj(x̄) ≤
m∑
j=1

µ̄jgj(ȳ),

which in turn after some algebraic transformations yield

1

r
(er(

∑m
j=1 µ̄jgj(x̄)−

∑m
j=1 µ̄jgj(ȳ)) − 1) ≤ 0.

Using the quasiinvexity of
∑m

j=1 µ̄jgj at ȳ, we get

(∑m
j=1 µ̄j∇gj(ȳ)

eȳ

)T
H
′
p(x̄, ȳ; 0+) ≤ 0.

The above inequality together with (9) yields(∑q
i=1 λ̄i∇fi(ȳ)

eȳ

)T
H
′
p(x̄, ȳ; 0+) ≥ 0.
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From the assumption that
∑q

i=1 λ̄ifi is strict (Hp, r)-pseudoinvex at ȳ, we have

1

r
[er(

∑q
i=1 λ̄ifi(x̄)−

∑q
i=1 λ̄ifi(ȳ)) − 1] > 0.

Using the fundamental property of exponential functions, we have

q∑
i=1

λ̄ifi(x̄) >

q∑
i=1

λ̄ifi(ȳ),

which contradicts the the assumptions (14). This completes the proof.

6. Conclusion

In this paper, we have established sufficient optimality conditions for a class of multi-

obective programming problems by using the concept of (strict) (Hp, r)-pseudoinvex and

(Hp, r)-quasiinvex functions and derived weak, strong and strict converse duality theo-

rems for Mond-Weir type dual problem in order to relate efficient solutions of primal and

dual problems. It will be interest to obtain optimality conditions and duality results for

a class of minimax programming problems. This will orient the future research of the

authors.
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