FRENET FRAME OF INVOLUTE CURVES OF BIHARMONIC CURVES IN THE HEISENBERG GROUP

TALAT KÖRPINAR AND ESSIN TURHAN

Abstract

In this paper, we study involute curves of biharmonic curves in the Heisenberg group Heis ${ }^{3}$. Finally, we find Frenet frame of invulute curves of biharmonic curves in the Heisenberg group Heis ${ }^{3}$.

1. Introduction

Heisenberg group Heis ${ }^{3}$ can be seen as the space \mathbb{R}^{3} endowed with the following multipilcation:

$$
(\bar{x}, \bar{y}, \bar{z})(x, y, z)=\left(\bar{x}+x, \bar{y}+y, \bar{z}+z-\frac{1}{2} \bar{x} y+\frac{1}{2} x \bar{y}\right)
$$

Heis 3 is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The Riemannian metric g is given by

$$
g=d x^{2}+d y^{2}+(d z-x d y)^{2}
$$

The Lie algebra of Heis^{3} has an orthonormal basis

$$
\begin{equation*}
\mathbf{e}_{1}=\frac{\partial}{\partial x}, \quad \mathbf{e}_{2}=\frac{\partial}{\partial y}+x \frac{\partial}{\partial z}, \quad \mathbf{e}_{3}=\frac{\partial}{\partial z} \tag{1.1}
\end{equation*}
$$

for which we have the Lie products

$$
\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]=\mathbf{e}_{3}, \quad\left[\mathbf{e}_{2}, \mathbf{e}_{3}\right]=\left[\mathbf{e}_{3}, \mathbf{e}_{1}\right]=0
$$

with

$$
g\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=g\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=g\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=1
$$

Let $\gamma: I \longrightarrow$ Heis 3 be a non geodesic curve on the Heisenberg group Heis ${ }^{3}$ parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the Heisenberg group Heis ${ }^{3}$ along γ defined as follows:

[^0][^1]\mathbf{T} is the unit vector field γ^{\prime} tangent to γ, \mathbf{N} is the unit vector field in the direction of $\nabla_{\mathbf{T}} \mathbf{T}$ (normal to γ), and \mathbf{B} is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:
\[

$$
\begin{aligned}
\nabla_{\mathbf{T}} \mathbf{T} & =\kappa \mathbf{N} \\
\nabla_{\mathbf{T}} \mathbf{N} & =-\kappa \mathbf{T}+\tau \mathbf{B} \\
\nabla_{\mathbf{T}} \mathbf{B} & =-\tau \mathbf{N}
\end{aligned}
$$
\]

where κ is the curvature of γ and τ is its torsion and

$$
\begin{aligned}
& g(\mathbf{T}, \mathbf{T})=1, g(\mathbf{N}, \mathbf{N})=1, g(\mathbf{B}, \mathbf{B})=1, \\
& g(\mathbf{T}, \mathbf{N})=g(\mathbf{T}, \mathbf{B})=g(\mathbf{N}, \mathbf{B})=0 .
\end{aligned}
$$

Theorem 1.1. Let $\gamma: I \longrightarrow H e i s^{3}$ be a unit speed biharmonic curve with non-zero natural curvatures. Then, the parametric equations of γ are

$$
\begin{aligned}
x(s) & =\cos \mathcal{C} s+\mathcal{B}_{3} \\
y(s) & =\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\mathcal{B}_{4} \\
z(s) & =\frac{1}{\mathcal{B}_{1}^{2}} \sin \mathcal{C} \cos \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \cos \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \\
& +\frac{\mathcal{B}_{3}}{\mathcal{B}_{1}} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]-\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\mathcal{B}_{5}
\end{aligned}
$$

where $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}$ are constants of integration.

2. Involute Curves of Biharmonic Curves in the Lorentzian Heisenberg Group Heis ${ }^{3}$

Definition 2.1. Let unit speed curve $\gamma: I \longrightarrow$ Heis 3 and the curve $C: I \longrightarrow$ Heis ${ }^{3}$ be given. For $\forall s \in I$, then the curve \mathbb{C} is called the involute of the curve γ, if the tangent at the point $\gamma(s)$ to the curve γ passes through the tangent at the point $\mathcal{C}(s)$ to the curve \lceil and

$$
g\left(\mathbf{T}^{*}(s), \mathbf{T}(s)\right)=0
$$

Let the Frenet-Serret frames of the curves γ and $\left\lceil\right.$ be $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ and $\left\{\mathbf{T}^{*}, \mathbf{N}^{*}, \mathbf{B}^{*}\right\}$, respectively.

Theorem 2.2. Let $\gamma: I \longrightarrow$ Heis 3 be a unit speed biharmonic curve and \mathbb{C} its involute curve on Heis^{3}. Then, the parametric equations of \subset are
$\complement(s)=\left[\partial \cos \mathcal{C}+\mathcal{B}_{3}\right] \mathbf{e}_{1}+\left[(\partial-s) \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\mathcal{B}_{4}\right] \mathbf{e}_{2}$

$$
\begin{align*}
& +\left[\frac{1}{\mathcal{B}_{1}^{2}} \sin \mathcal{C} \cos \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \cos \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right. \tag{2.1}\\
& +\frac{\mathcal{B}_{3}}{\mathcal{B}_{1}} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]-\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\mathcal{B}_{5} \\
& \left.-\left[\cos \mathcal{C} s+\mathcal{B}_{3}\right]\left[\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\mathcal{B}_{4}\right]+(\partial-s) \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right] \mathbf{e}_{3}
\end{align*}
$$

where $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}$, D are constants of integration.
Proof. The involute curve of γ curve may be given as

$$
\begin{equation*}
\mathbf{C}(s)=\gamma(s)+(\partial-s) \mathbf{T}(s), \tag{2.2}
\end{equation*}
$$

where ∂ is constant of integration.
From Theorem 1.1, we get

$$
\mathbf{T}=\cos \mathcal{C} \mathbf{e}_{1}+\sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \mathbf{e}_{2}+\sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \mathbf{e}_{3} .
$$

Again by using Theorem 1.1, and (2.2) we get (2.1). Hence the proof is completed.

Theorem 2.3. Let $\gamma: I \longrightarrow$ Heis 3 be a unit speed biharmonic curve and \mathbb{C} its involute curve on Heis ${ }^{3}$. Then, the parametric equations of \lceil are

$$
\begin{aligned}
x_{\mathrm{C}}(s) & =\left[\partial \cos \mathcal{C}+\mathcal{B}_{3}\right] \\
y_{\mathrm{C}}(s) & =\left[(\partial-s) \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\mathcal{B}_{4}\right], \\
z_{\mathrm{C}}(s) & =\left[\partial \cos \mathcal{C}+\mathcal{B}_{3}\right]\left[(\partial-s) \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\mathcal{B}_{4}\right] \\
& +\left[\frac{1}{\mathcal{B}_{1}^{2}} \sin \mathcal{C} \cos \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \cos \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right. \\
& +\frac{\mathcal{B}_{3}}{\mathcal{B}_{1}} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]-\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\mathcal{B}_{5} \\
& \left.-\left[\cos \mathcal{C} s+\mathcal{B}_{3}\right]\left[\frac{1}{\mathcal{B}_{1}} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\mathcal{B}_{4}\right]+(\supset-s) \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right],
\end{aligned}
$$

where $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}$ are constants of integration.
Proof. It is obvious from Theorem 2.2.
Theorem 2.4. Let $\gamma: I \longrightarrow$ Heis 3 be a unit speed biharmonic curve and \subset its involute curve on Heis ${ }^{3}$. Then, Frenet frame of \lceil are

$$
\begin{aligned}
\mathbf{T}^{*} & =\frac{1}{\kappa} \sin ^{2} \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \mathbf{e}_{1}-\frac{1}{\kappa} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\left(\mathcal{B}_{1}+\cos \mathcal{C}\right) \mathbf{e}_{2} \\
& +\frac{1}{\kappa} \mathcal{B}_{1} \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \mathbf{e}_{3}, \\
\mathbf{N}^{*} & =\left[-\wp \kappa \cos \mathcal{C}+\frac{\wp \tau}{\kappa}\left[\mathcal{B}_{1} \sin ^{2} \mathcal{C} \cos ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\sin ^{2} \mathcal{C} \sin ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\left(\mathcal{B}_{1}+\cos \mathcal{C}\right)\right]\right] \mathbf{e}_{1} \\
& +\left[-\wp \kappa \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]-\frac{\wp \tau}{\kappa}\left[\mathcal{B}_{1} \cos \mathcal{C} \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right.\right. \\
& \left.\left.-\sin ^{3} \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \sin ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right]\right] \mathbf{e}_{2} \\
& +\left[-\wp \kappa \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]-\frac{\wp \tau}{\kappa}\left[\cos \mathcal{C} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\left(\mathcal{B}_{1}+\cos \mathcal{C}\right)\right.\right. \\
& \left.\left.+\sin ^{3} \mathcal{C} \cos ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right]\right] \mathbf{e}_{3},
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{B}^{*} & =\left[\wp \tau \cos \mathcal{C}+\wp\left[\mathcal{B}_{1} \sin ^{2} \mathcal{C} \cos ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]+\sin ^{2} \mathcal{C} \sin ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\left(\mathcal{B}_{1}+\cos \mathcal{C}\right)\right]\right] \mathbf{e}_{1} \\
& +\left[\wp \tau \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]-\wp\left\lceil\left[\mathcal{B}_{1} \cos \mathcal{C} \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right.\right.\right. \\
& \left.\left.-\sin ^{3} \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \sin ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right]\right] \mathrm{e}_{2} \\
& +\left[\wp \tau \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]-\wp\left[\cos \mathcal{C} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\left(\mathcal{B}_{1}+\cos \mathcal{C}\right)\right.\right. \\
& \left.\left.+\sin ^{3} \mathcal{C} \cos ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right]\right] \mathrm{e}_{3},
\end{aligned}
$$

where $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}$ are constants of integration and

$$
\wp=\frac{1}{\sqrt{\kappa^{2}+\tau^{2}}} .
$$

Proof. Assume that γ be a unit speed spacelike biharmonic curve and \mathbb{C} its involute curve on Heis^{3}. Then,

$$
\mathrm{C}^{\prime}(s)=(\partial-s) \kappa(s) \mathbf{N}(s) .
$$

Also, we have

$$
\mathbf{T}^{*}=\mathbf{N} \text { and } \mathbf{T}^{*}=-\mathbf{N} .
$$

Now, we suppose that

$$
\begin{equation*}
\mathbf{T}^{*}=\mathbf{N} . \tag{2.3}
\end{equation*}
$$

Using Theorem 2.2 and (2.3) we get

$$
\begin{align*}
\mathbf{T}^{*} & =\frac{1}{\kappa} \sin ^{2} \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \mathbf{e}_{1} \\
& -\frac{1}{\kappa} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\left(\mathcal{B}_{1}+\cos \mathcal{C}\right) \mathbf{e}_{2} \tag{2.4}\\
& +\frac{1}{\kappa} \mathcal{B}_{1} \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \mathbf{e}_{3} .
\end{align*}
$$

On the other hand, using (2.4) we obtain

$$
\begin{aligned}
\mathbf{N}^{*} & =\left[-\wp \kappa \cos \mathcal{C}+\frac{\wp \tau}{\kappa}\left[\mathcal{B}_{1} \sin ^{2} \mathcal{C} \cos ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right.\right. \\
& \left.\left.+\sin ^{2} \mathcal{C} \sin ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\left(\mathcal{B}_{1}+\cos \mathcal{C}\right)\right]\right] \mathbf{e}_{1} \\
& +\left[-\wp \kappa \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]-\frac{\wp \tau}{\kappa}\left[\mathcal{B}_{1} \cos \mathcal{C} \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right.\right. \\
& \left.\left.-\sin ^{3} \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \sin ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right]\right] \mathbf{e}_{2} \\
& +\left[-\wp \kappa \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]-\frac{\wp \tau}{\kappa}\left[\cos \mathcal{C} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\left(\mathcal{B}_{1}+\cos \mathcal{C}\right)\right.\right. \\
& \left.\left.+\sin ^{3} \mathcal{C} \cos ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right]\right] \mathbf{e}_{3} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\mathbf{B}^{*} & =\left[\wp \tau \cos \mathcal{C}+\wp\left[\mathcal{B}_{1} \sin ^{2} \mathcal{C} \cos ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right.\right. \\
& \left.\left.+\sin ^{2} \mathcal{C} \sin ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\left(\mathcal{B}_{1}+\cos \mathcal{C}\right)\right]\right] \mathbf{e}_{1} \\
& +\left[\wp \tau \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]-\wp\left[\mathcal{B}_{1} \cos \mathcal{C} \sin \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right.\right. \\
& \left.\left.-\sin ^{3} \mathcal{C} \cos \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \sin ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right]\right] \mathbf{e}_{2} \\
& +\left[\wp \tau \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]-\wp\left[\cos \mathcal{C} \sin \mathcal{C} \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\left(\mathcal{B}_{1}+\cos \mathcal{C}\right)\right.\right. \\
& \left.\left.+\sin ^{3} \mathcal{C} \cos ^{2}\left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right] \sin \left[\mathcal{B}_{1} s+\mathcal{B}_{2}\right]\right]\right] \mathbf{e}_{3} .
\end{aligned}
$$

Thus, we have theorem and the proof is finished.

3. Some pictures

In this section we draw some pictures about γ and \mathbb{C} :

Fig. 1
Fig.1: A unit speed biharmonic curve.

Fig. 2
Fig.2: Involute curve of a unit speed biharmonic curve.

Fig. 3
Fig.3: Using Mathematica both involute curve and its mate.

References

[1] L. R. Bishop: There is More Than One Way to Frame a Curve, Amer. Math. Monthly 82 (3) (1975) 246-251.
[2] S. K. Bose: An Introduction to the General Relativity, Wiley Eastern Limited, 1980.
[3] R. Caddeo, C. Oniciuc, P. Piu: Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group, Rend. Sem,. Mat. Univ. Politec. Torino 62 (2004), 265-278.
[4] J. Eells, J.H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
[5] A. Einstein: Zur Electrodynamik Dewegter Krper Annalen Derphysic, On the Electrodynamics of Moving Bodies, 17 (1905), 891-921.
[6] A. Einstein: The Meaning of Relativity, Elec. Book, London, 1997.
[7] T. Körpınar, E. Turhan, V. Asil: Biharmonic \mathfrak{B}-General Helices with Bishop Frame In The Heisenberg Group Heis ${ }^{3}$, World Applied Sciences Journal 14 (10) (2010), 1565-1568.
[8] S. Rahmani: Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302.
[9] E. Turhan and T. Körpınar: Parametric equations of general helices in the sol space $\mathfrak{S o l}^{3}$, Bol. Soc. Paran. Mat. 31 (1) (2013), 99-104.
[10] T. J. Wilmore: An Introduction to Differential Geometry, Oxford Univ. Press, 1988.
Muş Alparslan University, Department of Mathematics,49250, Muş, Turkey- Firat University, Department of Mathematics, 23119, Elaziğ, Turkey

E-mail address: talatkorpinar@gmail.com, essin.turhan@gmail.com

[^0]: 2000 Mathematics Subject Classification. Primary 53B25; Secondary 53C40.
 Key words and phrases. Invulute Curve, Heisenberg group.

[^1]: *AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

