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Abstract. In this paper we first convert the multi-objective optimal
control problems to the multi-objective optimization problems in mea-
sure space. The fuzzy goals characterized by linear membership func-
tions are assigned to objectives and the metamorphosed problem is re-
placed with an equivalent optimization problem whose solution is com-
promised Pareto optimal, using Zimmerman’s fuzzy approach. The re-
sulting optimization problem, which is linear with infinite dimensional
in space of all pairs in Cartesian product of real numbers set and mea-
sure space, is approximated with a linear programming (LP) problem
that its solution is used to construct a solution in piecewise constant
level. Finally, some illustrative numerical examples are worked out to
indicate the efficiency of the proposed method.
Keywords: Multi-objective optimal control, Measure theory, Fuzzy

goal programming, Linear programming.

1. Introduction

Let I = [0, τ ], A = A1 × . . . × An ⊆ Rn and U = U1 × . . . × Um ⊆ Rm

be compact sets and Ω = I × A × U . Denote the space of all real valued
continuous functions on Ω by C(Ω). Consider the following multi-objective
optimal control problem (MOOCP),

Minimize(J1(x, u), . . . , Jk(x, u)) (1.1)

Subject to
ẋ = g(t, x, u), (1.2)

x(0) = x0, x(τ) = xτ , (1.3)
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where x : t ∈ I −→ x(t) ∈ A is the time-varying differentiable state variable
and u : t ∈ I −→ u(t) ∈ U is the time-varying measurable control vari-
able. Moreover, g : (t, x, u) ∈ Ω −→ g(t, x, u) ∈ Rn is a continuous vector
representing the dynamic system equations (on the interval I) with initial
and terminal conditions given by the vectors x0 and xτ . Each individual
objective function is:

Ji(x, u) =
∫ τ

0
fi(t, x, u)dt, (1.4)

where fi ∈ C(Ω), i = 1, . . . , k. The final time τ may be fixed or free. Con-
trary to single objective optimization, typically no single solution exists in
multiple objective optimization. Because of this fact, the notion of Pareto
optimality has been introduced. A solution is Pareto optimal if there exists
no other solution that would improve some objective values without worsen-
ing at least one criterion, simultaneously. The MOOCPs have been studied
by many authors. Some authors have used fuzzy set theory in conjunc-
tion with linear programming techniques as a very efficient tool for linear
lumped and distributed parameter systems (See [1] and references therein).
The Normal Boundary Intersection (NBI) [2] and the Normalized Normal
Constraint (NNC) [3], which have been found to mitigate the disadvantages
of the weighted sum (WS) method [4], have been successfully combined with
direct optimal control approaches for the efficient solution of multi-objective
optimal control problems. For example, in [5], a successful application of
NBI and NNC for the multiple objective optimal control of (bio) chemical
processes has been reported, and in [6] several scalarisation techniques for
multi-objective optimization, e.g., WS, NNC and NBI have been integrated
with fast deterministic direct optimal control approaches. Using the mea-
sure theory for solving optimal control problems based on the idea of Young
[7], which was applied for the first time by Wilson and Rubio [8], has been
theoretically established by Rubio in [9] . Considerable attention has been
given to the optimal control problems by applying measure theoretical ap-
proach and this approach has proved to be a very efficient tool for nonlinear
systems [10-13]. In this paper we follow this approach and propose a solution
in piecewise constant level for MOOCPs.

In section 2, the MOOCP is transformed into a multi-objective optimiza-
tion problem in measure space applying a measure theoretical approach.
In section 3, a fuzzy goal is assigned for each objective, which is described
by a linear membership function elicited through an interaction with the
DM, and an infinite dimensional fuzzy goal programming is proposed with
the final goal of finding a Pareto optimal solution which has the best sat-
isfaction performance among other Pareto optimal solutions. Moreover, in
section 4 the infinite dimensional fuzzy goal programming problem is ap-
proximated by an LP model, and a piecewise constant solution is achieved.
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Some numerical experiments are provided in section 5. The last section is
the conclusion.

2. measure space

Let B is an open ball containing I × A, and Ć(B) is the space of all
continuously differentiable real-valued functions on it. Denote the set of all
continuously differentiable functions ψ on I that ψ(0) = ψ(τ) = 0 by D(I),
and the set of functions υ ∈ C(Ω) that depend only on time by C1(Ω). As
discussed in [9], (1.2)-(1.3) can be written in the integral forms as:∫ τ

0
ϕg(t, x, u)dt = ϕ(τ, xτ )− ϕ(0, x0) = ∆ϕ,∀ϕ ∈ Ć(B), (2.1)

∫ τ

0
ψj(t, x, u)dt = 0,∀ψ ∈ D(I), j = 1, . . . , n, (2.2)

∫ τ

0
υ(t)dt = aυ,∀υ ∈ C1(Ω), (2.3)

where, ϕg(t, x) = ϕx(t, x)g(t, x, u) +ϕt(t, x), ψj = xjψ́+ gj(t, x, u)ψ and aυ

is the integral of υ over I. By the Riesz representation theorem [9], there
exists a unique positive Radon measure µ on Ω that∫ τ

0
F (t, x(t), u(t))dt =

∫
Ω
F (t, x, u)dµ = µ(F ),∀F ∈ C(Ω). (2.4)

Therefore, the MOOCP (1.1)-(1.3) is converted into another optimization
problem in measure space given by,

Minimize
µ∈M+(Ω)

(µ(f1), . . . , µ(fk)) (2.5)

Subject to

µ(ϕg) = ∆ϕ,ϕ ∈ Ć(B), (2.6)

µ(ψj) = 0, ψ ∈ D(I), j = 1, . . . , n, (2.7)

µ(υ) = aυ, υ ∈ C1(Ω), (2.8)

where M+(Ω) denotes the space of all positive Radon measures on Ω. Ac-
cording to the concept of Pareto optimality, the number of Pareto optimal
solutions for optimization problems with multiply objectives can be infinite.
There are several methods to find a Pareto optimal solution which, among
other Pareto optimal solutions, has the best satisfaction of DM [14]. The
next section deals with finding such solution.



556 HASSAN ZAREI

3. fuzzy goal programming

One of the frequently used methods proposed by Zimmermann [15] in 1979
is based on incorporating the fuzzy goals for objectives and considering the
equilibrium problem in terms of maximization of the degree of attainment
for the aggregated fuzzy goals. The fuzzy goals are quantified by eliciting
the corresponding membership functions, which usually are linear, through
the interaction with the DM. For notational convenience, we express the
multi-objective programming problem (2.5)-(2.8) as:

Minimize
µ∈Q

(µ(f1), . . . , µ(fk)) (3.1)

where Q is the set of all positive Radon measures on Ω , satisfying (2.6)-
(2.8). Since we are interested in minimizing the objective functions, it is
quite nature to define the linear membership function σ(µ(fi)), i = 1 . . . , k
for the fuzzy goal of the DM as

σ(µ(fi)) =


1 µ(fi) < µ

i
µi−µ(fi)

µi−µ
i

µ
i
≤ µ(fi) ≤ µi

0 µi < µ(fi),
(3.2)

where µi and µ
i

are, respectively a minimum value and a maximum value
of totally desirable levels for µ(fi). Assume that µi, i = 1, . . . , k minimizes
µ(fi) over Q . The existence of µi is guaranteed due to continuity of µ ∈
Q→ µ(fi) and compactness of Q with the weak*-topology [9]. As discussed
in [14], the DM assesses suitable values for µ

i
and µi , within µmin

i and
µm

i , given by µmin
i = µi(fi) and µm

i = max
j=1,...,k

µj(fi). Following the fuzzy

decision of Bellman and Zadeh [15], the multi-objective problem (3.1) can
be interpreted as:

Maximize
µ∈Q

Minimum
j=1,...,k

σ(µ(fj)). (3.3)

By introducing the auxiliary variable λ, problem (3.3) can be equivalently
transformed as

Maximize λ (3.4)
Subject to

µ(fi) + λ(µi − µ
i
) ≤ µi, i = 1, . . . , k, (3.5)

µ ∈ Q. (3.6)
If this problem has a unique optimal solution (µ∗, λ∗), then µ∗ is a Pareto
optimal solution of (3.1). If this sufficiently condition for Pareto optimality
of µ∗ doesn’t satisfied, then we can test the Pareto optimality for µ∗ by con-
sidering another auxiliary problem (for more details see [14]). Since Q is an
infinite dimensional space, the problem (3.4)-(3.6) is an infinite-dimensional
optimization problem and we are mainly interested in approximating it. The
next is devoted to this subject.
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4. Approximation

The maximization is considered not over the set Q, but over a subset of
it denoted by requiring that only a finite number of constraints (2.6)-(2.8)
be satisfied. Let, ϕi, i = 1, . . . ,K1, ψ`, ` = 1, . . . ,K2 and υs, s = 1, . . . , S are
taken from a total subset of Ć(B), D(I) and C1(Ω), respectively. Consider
the following problem:

Maximize λ (4.1)
Subject to

µ(fi) + λ(µi − µ
i
) ≤ µi, i = 1, . . . , k, (4.2)

µ(ϕg
i ) = ∆ϕi, i = 1 . . .K1, (4.3)

µ(ψj
` ) = 0, ` = 1 . . .K2, j = 1, . . . , n, (4.4)

µ(υs) = aυs , s = 1 . . . S. (4.5)
It can be verified that the solution of problem (4.1)-(4.5) tends to the solu-
tion of problem (3.4)-(3.6) as K1, K2 and S tend to infinity [10]. Assume
that ΩN = {y1, . . . , yN} is a countable dense subset of Ω. It has been proved
that the problem has an optimal solution (µ∗, λ∗) with µ∗ ≈

∑N
j=1 αjδ(yj),

where αj ≥ 0 and δ(y) is unitary atomic measure with the support being
the singleton set {y} characterized by δ(y)(F ) = F (y),∀F ∈ C(Ω)(for more
details see [10]). Therefore, the problem (4.1)-(4.5) is approximated by an
LP problem as follows:

Maximize
α≥0

λ (4.6)

Subject to,
N∑

j=1

αjfi(yj) + λ(µi − µ
i
) ≤ µi, i = 1, . . . , k, (4.7)

N∑
j=1

αjϕ
g
i (yj) = ∆ϕi, i = 1, . . . ,K1, (4.8)

N∑
j=1

αjψ
h
` (yj) = 0, ` = 1, . . . ,K2, h = 1, . . . , n, (4.9)

N∑
j=1

αjυs(yj) = aυs , s = 1, . . . , S. (4.10)

We note that µi, i = 1, . . . , k, is approximated by solving an LP problem
which consists of minimizing the function

∑N
j=1 αjfi(yj) over the constraints

given by (4.8)-(4.10). For problems with the fixed or free final time τ , the
dense set ΩN and the total functions ϕis, ψ`s and υss are chosen according
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Figure 1. The approximate optimal control u.

to the discussions in [11, 12]. The procedure of constructing piecewise con-
stant control functions from the solution of LP problem (4.6)-(4.10) which
approximate the action of optimal measure is based on the analysis in [9].
Of course, we need only to construct the control function u, since x can be
obtained by solving the ODEs (1.2).

5. numerical results

In this section, the approximate optimal solution for several MOOCPs
in piecewise constant levels are achieved using the described method. We
note that in each example the suitable total functions and the dense set ΩN

have been chosen through a series of numerical experiments, but the details
are omitted here.
Example 1. consider the following example:

Minimize (J1(x, u), J2(x, u))

subject to,

ẋ =
1
2
x2sinx+ u,

x(0) = 0, x(1) = 0.5,

where, J1(x, u) =
∫ 1
0 u

2(t)dt and J2(x, u) =
∫ 1
0 x

2(t)dt. Calculating the in-
dividual minimum µi for these objective functions yields µ1(f1) = 0.2563,
µ1(f2) = 0.0993, µ2(f1) = 0.4437 and µ2(f2) = 0.0622. Therefore, we set
µ

1
= µmin

1 = µ1(f1) = 0.2563 and µ1 = µm
1 = max

j=1,2
µj(f1) = 0.4437. Imple-

menting the corresponding LP model (4.6)-(4.10), we achieve λ∗ = 0.6307,
and an optimal measure µ∗ with µ∗(f1) = 0.3254 and µ∗(f1) = 0.0759.
Therefore, σ(µ∗(f1)) = 0.6313 and σ(µ∗(f2)) = 0.6303. The resulting con-
trol function and the response of the system to this function are depicted in
Fig. 1 and Fig. 2, respectively. Moreover, we found x(1) = 0.4940, which is
close to the exact value.

Example2 [6]. let x1(t), x2(t) and u(t) denote the position, the velocity
and the acceleration of a car at time t, respectively. The acceleration of the
car is controlled by pushing the accelerator, or hitting the brakes. A simple
dynamic model for the car is ẋ1 = x2 and ẋ2 = u. The aim is to drive 400 m,
starting and ending at rest, while minimizing on the one hand, the control
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Figure 2. Dynamic behavior of the state variable x(t) ver-
sus time .

Figure 3. The approximate optimal control for the car example.

effort for accelerating (which can by interpreted as the fuel consumption)
and on the other hand traveling time. Therefore, we have a MOOCP as:

Minimize (J1(x, u), J2(x, u))

Subject to,
ẋ1 = x2,

ẋ2 = u,

x1(0) = 0, x1(τ) = 400,
x2(0) = 0, x2(τ) = 0,

where, J1(x, u) =
∫ τ
0 |u(t)|dt and J2(x, u) =

∫ τ
0 dt. Objectives J1 and J2 are

obviously conflicting objectives since a small traveling time requires a high
speed, and, hence, also a large consumption of fuel for reaching this velocity.
Since infinitely fast accelerating and decelerating is impossible, the control
is bounded between −5 ≤ u(t) ≤ 8.5. Additional constraint is speed limit
given by x2(t) ≤ 40. Calculating the individual minimum µi for these
objective functions yields µ1(f1) = 46.9589, µ1(f2) = 36.2393, µ2(f1) =
155.5059 and µ2(f2) = 32.8075. Therefore, we set µ

1
= 46.9589, µ1 =

155.5056, µ
2

= 32.8075 and µ2 = 36.2393. Implementing the corresponding
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Figure 4. Optimal position of the car.

Figure 5. Optimal velocity of the car.

LP model (4.6)-(4.10), we achieve λ∗ = 0.7505 , and an optimal measure
µ∗ with µ∗(f1) = 74.0425 and µ∗(f2) = 33.6638. Therefore, σ(µ∗(f2)) =
σ(µ∗(f1)) = 0.7505. The resulting suboptimal control and the response of
the system to the obtained control function are depicted in Fig. 1 and Fig. 2,
respectively. Moreover, we found x1(33.6638) = 399.6622 and x2(33.6638) =
0.0008, which are close to the exact values. The resulting control and the
trajectories of this example are plotted in Figures 3-5.
Example3 (Reactor model) [5]. Consider the reactor model based on the 1D
plug flow model with an irreversible first-order reaction which is given by
a highly nonlinear model with independent variable the position z ∈ [0, 1]
along the reactor as :

d

dz
x1(z) =

α

v
(1− x1)e

γx2
1+x2

d

dz
x2(z) =

α

v
δ(1− x1)e

γx2
1+x2 +

β

v
(u− x2)
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Figure 6. Optimal jacket temperature of the reactor.

Figure 7. Optimal concentrations of the reactor.

with initial conditions x(0) = (0, 0), where, x1 = (CF−C)
CF

is the dimensionless

reactant concentration C, x2 = (T−TF )
TF

the dimensionless reactor tempera-

ture T , and u = (Tw−TF )
TF

, the dimensionless jacket temperature Tw. Bounds
are imposed on the reactor and jacket temperatures for constructive reasons:

x2min ≤ x2(z) ≤ x2max, umin ≤ u(z) ≤ umax.

The aim is to derive an optimal profile along the reactor for the jacket
temperature profile u(z). The two objectives considered are similar to the
conflicting ones treated in [17], i.e., maximizing the conversion, which is
related to minimizing the reactant concentration at the outlet:

J1(x, u) = −x1(`) =
∫ `

0

α

v
(1− x1)e

γx2
1+x2 dz

and maximizing the net heat transfer between the reactor and its jacket,
where heat transferred from the reactor to the jacket is assumed to a profit:

J2(x, u) =
∫ `

0
(u(z)− x2(z))dz.

Parameter values can be found in [5]. Calculating the individual minimum
µi for these objective functions yields µ2(f1) = −0.4416, µ2(f2) = −0.0054,
µ1(f1) = −0.9508 and µ1(f2) = 0.0690. Therefore, we set µ

1
= −0.9508,
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Figure 8. Optimal reactor temperature.

µ1 = −0.4416, µ
2

= −0.0054 and µ2 = 0.0690. Implementing the cor-
responding LP model (4.6)-(4.10), we achieve λ∗ = 0.5296 , and an op-
timal measure µ∗ with µ∗(f1) = −0.7113 and µ∗(f2) = 0.0296; hence,
σ(µ∗(f1)) = 0.5297 and σ(µ∗(f2)) = 0.5296. Figs 6-8 displays the optimal
control and state profiles.

6. conclusion

In this paper we used the measure theoretical approach and studied the
optimal control problems with multiple objectives in measure space. A fuzzy
goal programming is proposed by assigning fuzzy goals to objective function-
als and then by using the Zimmermann’s fuzzy approach we faced with an
optimization problem whose solution is compromise Pareto optimal. The
resulting optimization problem which is linear with infinite dimension is
approximated by an LP problem which its solution obtained by simplex
method is used to construct a solution in piecewise constant level. The nu-
merical examples demonstrated the flexibility and efficiency of the proposed
method.
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