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Abstract

The purpose of this work is the analysis of responsiveness of remote knewbesits (KBS).
ResponsivenesR(s),is seen here as a measure of service quality that desgrtiization.
The chosen method is operational analysis, i.e. a variant of classat@sic theory relying
upon measurements over finite observation peribls.analysis incorporates service ability,
elapsed time, and throughput. From these metrics, estimai{s)aire derived analytically.
Critical points indicating congestion are obtained, and a dondir efficient flow balance
is also stated. A numerical example is the basis for disgugerformance improvement.
The results of this study should be of interest to experts respofmilvhanaging knowledge
resources across the Internet.
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1. Introduction

Knowledge bases are key elements of today’s information economsoaisdy [1].
The efficiency of knowledge bases (KBs) relies largely on #palailities of high-
speed telecommunications networks. Key features include broadbaastrindtures,
intelligent access forms, and improved quality of service. Botk siathorities and
Internet providers offer a wide range of services in a fullypstitive environment.
Such services include on-line searching in digital libraries, transfée®find video,
and forms of collaborative work such as multicast conferencing ecidion-making
across national borders. Developments have been strongly suppontedulation
and standardization in many countries. In the European Union such developments are
now part of EU’s Digital Agenda [2]. Similar activities aeking place among most
of the OECD member states [3].
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KBs can be classified as either machine-readable or humaaitead@he former
contain rules used for automated reasoning under variable conditions.tfEne la
which are examined here, are used for retrieval of knowledgespaaific rules.
Human-readable KBs are widely distributed across the world wiele and are
typically accessed by search engines. These engines art abiee data in KBs.
Modern knowledge-based systems incorporate artificial intellgéechniques that
aid in the decision-making procedures [4].

Knowledge bases are integral parts of today’'s web-based systdmch support
a wide range of human activities. Of special interest todayvab-learning support
systems with advanced designs, frameworks and functions [5], basnssistems for
automatic information discovery within the invisible world wide web [Bje latter
include advanced query routing mechanisms for locating the requir@uenation,
extracting/integrating files and other forms of media, and thennidading the
entire hidden web content.

KB-offered services vary widely. Yet, there are some commspeas which are
often seen as problems from the users’ viewpoint. Complaintsn&esl lwith poor
performance as exemplified by long waiting times, connectdnrés, and so on.
Thus, performance is often described as inadequate or unacceptdhleesffect to
KB management, typical problems are slow system responsg tmaeproductivity,
and sometimes system saturation.

The purpose of this paper is the of study responsiveness when indorrsat
requested from distant KB hosts. The method consists of three etenfi¢ran
operational view of user-system communication, (ii) the introductiora afew
performance measure callédesponsiveness to service requests&ind (iii) the
performance analysis of workflow. Responsiveness is obtained irddlmse and its
evaluation requires a few input data. Critical points indicatimggestion are also
obtained analytically. Finally, an illustrative example servesaaframework for
discussing performance improvement.

2. Definitions

Let us consider Figure 1. The link shown contains a finite number of servers, denoted
byS;, S, S, ..., &, the last server being the KB host. Users ocddpyorkstations

from which they generate their requests. At any time, a portidh v$ers, denoted
by N, will be active while the redl-N users will be in a thinking state.

The routing of requests follows the direction of the arrows. The conwation
system is assumed capable of servidMgequests withN constant during some
period of usage. This assumption is realistic when the above idoa pémheavy
demand;then a backlog of requests is formed in the users’ area. Whequast
completes service, the next in-line request is admitted vianpgut/output port: this
action keepd\ constant. Periods of heavy system usage are especiallysiimgre
from a management perspective.
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From the above, it follows that the traffic at the 1/0O port sthoalways be
regulated on-line, and this is true with all protocols in use todagh Sctive
regulation keepdl practically constant at a number called Wiedow sizelLater we
explore a range of values for and then find the maximum allowable value, when
the system becomes congested and thus liable to performancgisatururther,
with reference to Figure 1, we define the following performance metrics:

(i) Total service ability of system(s). the sum of service times) of its servers.

(i1) Elapsed timeE(N): time required for service completion including queueing
delays at the nodes.

(iii) Think time,T(u). user time measured from the instant of service completion
to the issue of next request.

OEOO—®)E
KB
Host
=
R

Number of active user$\

S —

Figure 1: Cyclic gueueing model of a communication system including a KB host.
The total service ability of the systeats), is by definition as follows:
0o(S)= (Syts,+ + +5¢) 1)

From metrics (i), (ii) and (iii) defined above we introducehis twork the following
composite performance measuResponsiveness to service requests, R(fptal

service ability of the systgnf {this quantity augmented by the corresponding mean
elapsed time}i.e.:

R(sk a(s)f{ a(s) + E(N)} 2)
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All measurements across the network of Figure 1 are asstonadle place during
finite observation periods. The basic performance measures typitalige event
counters and timers. Time stamps are often used to indicateirtiereals from
requests originating from user terminals and arrivals aKihdost. More complex
measures are derived from these, and are typically callechtmperl quantities.
Invariant relations among operational quantities that hold in anyaiser period
of interest are called operational laws.

3. Operational analysis

A performance model has a central role in system evaluatigivels estimates about
the system’s operation, and it can also provide management witbrmpanice
predictions under alternative choices. When a capacity planning exercgystem
redesign is due, such predictions can be of significant value.

3.1. Modelling alternatives

Several types of performance models have been developed over theBader
models were mainly empirical, based on methods from stat®is as regression.
Simulation has also been a favourite techniqgue amongst many peréaraaalysts.
Analytical models based tochastic analysigqueueing theory) were later thought
to be a better alternative. They became widely acceptatdeaeaain so, because of
the following reasons: (a) they are easier to construct andatali(b) they can be
realized using standard programming languages, and (c) resufjsv@mein closed-
form expressions with clearer interpretations.

An interesting departure from classical stochastic theoopésational analysis
This method retains the basic form of stochastic analysikiding the advantages
listed above. However, it is based upon a group of so-called operatithvaal ttzan
probabilistic laws. Operational analysis does not seek to reptedgses based on
gueueing theory, but to interpret previously known results using meadatad
Many of the steady-state limit theorems of stochastic arsahave their equivalent
operational laws. The operational interpretation was introduced rodlgiiy-five
years ago, when performance analysts realized that the farnofilatochastic
gueueing systems worked very well in real computer networks thargh the
traditional Markovian assumptions did not seem to hold in reality.

In their seminal paper, Denning and Buzaid the foundations of operational
analysis by describing the laws of this method [7]; these are as follows:

(i) All quantities should be defined so as to fecicely measurableand all
assumptions stated so as talbectly testable.

(if) The system must biéow-balanced,.e. the number of arrivals at a given device
must be (almost) the same as the number of departures froatethed during
the observation period.
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(iii) The devices must deomogeneous,e. the routing of jobs must be independent
of local queue lengths at the devices, and the mean timesdretservice
completions must not depend on the queue lenghts of other devices.

These principles lead to mathematical equations that are equit@bkiet traditional
Markovian assumptions. Algorithms for computing performance meastinet®erest

such as queue lengths, throughputs, and response times can be found in several books
and edited volumes [8,9,10]. In this article, we introduce a form of opeadti
analysis that allows for the study of user-system intenactihile requiring minimal
computational effort. This form is also useful for the examinaticsysfem transient
behaviour during peak usage.

3.2. Evaluation of responsiveness

The total service ability of the system(s), can easily be evaluated from known
server specifications. The main task is to estiniAté) in Equation (2). An exact
estimation is possible using operational analysis; however, thisquae is iterative
with each value oE(N) depending on previous values. An acceptable approximation
in closed-form might be preferable, as this would give a dirdch&® of E(N) for
any value ofN. Such an approximation can be obtained by taking into account the
systems’ maximum throughput, as explained below.

Let p; be the utilization of serve§ andy; its mean throughput. In operational

analysis, this utilization can be expressed as the product of thegkiput and the
corresponding service time, i.g; = y;-. As the system takes larger valuesNothe

queues of requests in front of the servers will become longer. Eilgnthare will
be some instant when the slowest server will have to completeatvagkmaximum:
at that instant, its utilization will have reached 100%. Thisiratégéd server then
becomes a limiting factor drottleneckof the system.

Let us denote b, ,, the bottleneck server, by, its utilization and by,,,, the

corresponding throughpug,,,, is the slowest server because it has the largest mean
service time, which we denote by:

$hax- Max {s;, S, ..., ®3)

Then, as in the case of the mean valpgs:= ymaxSmax = 1. Thereforey .= 1/Snax

Let y(N) be the mean system throughput, i.e. the mean rate (in secondsichat w
requests leave served, with N requests present. Singg,,, is the maximum

throughput anywhere in the system, it follows that the maximumevafw(N),
denoted by", could be closely approximated fy,,, i.€.:

Y = Ymar 1/ Shax 4)
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A well-known property of operational analysis states that inosed queueing
system the number of “customers” being served is equal to rbugs of the
system’s throughput and the waiting time (with all quantitissnaans). This
expression is an adaptation of Little’s law from classical stochastlgsas

In our notation, mean number of “customers” are the user requetite mean
system throughput igN), and the mean waiting time E{N). Little’s law will also

apply wheny(N) reaches its maximum, in which cabe= y"-E(N). Substituting* as
Y = 1[shax@nd solving folE(N) this expression gives the following approximation:

E(N) NS 5)

After the above result, Equation (2) takes the following form:

R(sk a(s)f{ a(s) + N-Spat (6)

Note that the equal sign in Equation (2) has become a near gonailue to the
approximation introduced previously. When the system is emptyy £€), R(s)~ 1.:

this is an ideal case (i.e. 100% responsiveness), which cleariptdae expected in
an operational system. When user activity increases Neml onwards, theR(s)
decreases proportionately as in Equation (6). In the limiting, ¢a&s whenN — oo,
which practically means th&t has exceeded some critical point (to be determined),
it follows thatR(s)— 0. This is seen by the users as inability to communicate w
the distant KB host.

3.3. Congestion and saturation

WhenN=1, there is no contention. TherefoE{l) reduces to the sun(s). Little’s
law implies thaty(1)-E(1) = 1 or elsey(1) = 1fa(s). This is the minimum value of

throughput. The corresponding maximum value was found approximbtgly,.
Therefore, the mean throughput is constrained as follofegs)1< y(N) < 1/Spa
Thus,s(5)7(N) < o(S)/Smax

As already stateds(s)-y(N) is the mean number of “customels; therefore N <
6(9)[Smax Then, aN increases, which means that user transactignalgo follow,

there will be some point, denoted bY, for which this inequality will eventually
become an equality. Then, for suchMra N

N= [6(9)/snad 1 (7)
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The near-equal sign in Equation (7) comes from the approximgtieri/s,,,, and

the square brackets denote augmentation of the fraction to the egerinalue. The
quantityN" is called here théinternal critical point” of the system. Admission of

requestdN with N > N* will increase congestion and eventually lead to saturation.
As previously discussed, requests for service are genendtieel isers’ area. The
mean throughput generated frgm-N) users with an average think tifiéu) will be

definition be(M-N)/T(u). Consequently, the ratio:

Jin = (M-N)/ (T (u)n) (8)

is the mean input rate into the system. WNereaches its critical poilN*, its active
partM will also reach a corresponding poMfin the users’ area. Then, the system
will have reached its maximum throughput as in Equation (4). Thespamding
maximum input, denoted by, , will be 1, = (M"-N")/ T(u}n = 1/s,,, Solution for

M" implies that:
M= N+ [T(U)N [ (9)

The square brackets denote augmentation of the fraction to the next iNtegeuld
be interpreted as follows. For an internal (i.e. inside the systeitidal point N*
there is a correspondirigxternal critical point” M, which inicates the number of
users when saturation appears. This will be evident at the slearmestr. Therefore,

the pair N, M) is an index of the system’s ability to accommodate effelstiits
population of users.

4. Limits of responsiveness

Information retrieval withK servers is a good example of user-host communication.
A link between a group of local users and their host may then be formed as sliggeste
by Figure 1. Server§,, S, ... ,S¢; are used for the relay of user queries whje
houses the distant KB. ServiceStincludes scheduling of user queries, searching in
system files, and internal communications. For illustration, wanassa moderate
valueK = 15. Mean service times (seconds) are in the interval (0, 1), a choice
reflecting a practical range of server speeds. Table 1 below showsstrentalata.

The slowest server 5, with s, S;,= 0.965 seconds. The system’s total service
ability is o(s) = 10.140 seconds. Application of Equation (6) for several successive
values ofN has given an array of results f&(s)which are shown in Table 2. Then,
assuming a mean af = 10 number of transactions per session, application of
Equation (7) giveN'= 110. Also, assuming that the average user n&ags= 15
seconds of think time, application of Equation (9) gives the Wlwe270.
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Table 1: Service times for théservers of Figure 1.

Service Value (seconds)

$; ... 0546 0467 0847 0325 6.64
S-S 0835 0965 0628 0617 0.56
S;1.-S;5 0.873 0674 0694 0726 0.73

Smax= S7= 0.965  o(s)=10.140

Finally, the pair (110, 270) indicates the critical points of tkegple system. It
may be concluded that the KB host should be allowed to serve up to 280otiser
which 110 should be active at any time.

Table 2: Responsiveness to service requedtsiasreases.

N (users) R(s) (%)

1. 5. 913 840 77.8 .472 67.8
6 .. 10: 63.7 60.0 56.8 9*63.51.3
11 ... 15: 48,9 46.7 447 42.A1.2

* * *
N'=110 M'=270 R'(s)=8.75

From Table 2 we note that fof = 11, responsiveness standfkéd)= 48.9%, i.e. at
less than half of its ideal value. If more requests are aflan® the systemR(s)
will continue to decline moderately, as shown in Table 2\ftnrom 12 to 15. Going
further up to the critical poir"= 110, we note thaR(s)declines sharply and now
stands aR’(s) = 8.75%. In this limiting case, the maximum number of userslare
active thus bringing the whole system to saturation.

4.1. Workflow balance

In the example, the slowest serv&r)(is placed about halfway throudh and the
KB host. If one attempts to eliminate the bottlenect,dty replacing this server by

a faster one, then a new bottleneck could appear elsewhere. Tipsoldbly be at
S,; as this server is the second slowest &giTable 1). In fact, any cyclic system

that is not properly regulated may contain several bottlenecksefdhera global
strategy will be needed to keep workflow unrestricted on an end-to-end basis.
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The above may be seen as a problem of assigning input flows vierssan
proportion to their service ability. Such an assignment must be adsbetpl
dynamically for all servers. This is a fairly complex peohlin its general form.
Solution may be obtained by optimization techniques; but, even in that tbes
solution will have to be adjusted periodically as the system Wwovkthanges
dynamically following user behaviour. Such behaviour is never kreopaiori and it
might exhibit fluctuations that produce a high delay variance.

We will not address this complex problem here, since our aita keep the
analysis as simple as possible. Readers may see, for inssahdégns based on
scheduling processes and multi-criteria methods [11,12].

4.2. KB host as the slowest server

From Table 1, the following sequence is evident:
§>S11"S$5>S% > Sis (10)

Therefore S, is the slowest server, and the system’s throughput is domibwatied
WhenN = N'= 110, the system throughput is at its maximum, ¥:es: 1/~ 1fs;

= 1/0.965 = 1.036. Let alse, be the utilization (fraction of busy time) of sen&r
From operational analysis, this quantity is the product of throughgliteamqmean
service time: thusy, =y*-s;, = 1. This indicates that serv@y is saturated which was
expected to be so, sinbdehas reached its critical point. By comparispp=p,. =

Y-S5 = 1.036*0.734 = 0.769. Therefore:
P <1 (11)
which indicates that the hoSt is in steady-state.

Let us now assume th&, becomes the slowest server. This can be done by
interchanging the values sf ands; in Table 1. Thenp, = 1, which confirms that

the host is now the saturated server. Our goal here isive atra new utilization
factor forS,, sayp,(new), which would bringS, back to its steady-state. To achieved

that aim we will need to study the host in (partial) isolati@mmfthe rest of servers.
The isolation is achieved by a technique knowle@sompositionThis technique is
best known from Econometrics, where it has been applied in the anafysirge-
scale systems with many variables. Later, it was appliedessfully in the study of
computer and communication systems. For a closed queueing netwok sathiers
which models a large-scale system with a KB host, the aboweige of
decomposition may be stated as follows.
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Consider serve$, and then replace the entire network by a two-server system only

consisting ofS, and one “composite”, flow-quivalent server, Syln our example,

this server iglow-equivalento S, S,, ... ,S; in the sense that the throughput of the
{K-1 system equals the arrival rateSatwith the same numbé}.

Assume that the decomposition principle is applied to the netwoHRigofe 1.
Note that the throughput of serv@y representing the firs{-1 servers, equals the

arrival rate atS, (host). Calling the first quantityy{|(K-1)} and the second ong
this gives, = {y|(K-1)}. The mean value of the last quantity is not knawpriori.

We may use the arguments of the previous section to estimaexismum value,
say {ye*|(K-1)}. This is done by observing that the slowest server inKRE) (system

Is §;, with s;; = 0.873. Then, as in the case of the entire system studied previously,
we see that " |(K-1)} = 1/spa-1) = Ifs;; = 1/0.873 = 1.145.

From this result, it follows thaty{|(K-1)} < 1.145. Let us assume for illustration
that this unknown mean is about three-quarters of its maximum{;i.KK-1)} =~
(3437, I(K-1)} = (3/4)1.145~ 0.859. Note thas, is now 0.965, because of the
interchange betweesy ands,, which makes the host the slowest server. From these
results, the new utilization &, sayp,(new), may be obtained ag(new) = A, =
{7(K-1)}-s, = 0.859*0.965 = 0.829.

We easily see that (new) = 0.829 < 1, which indicates that the host is brought
back to itssteady-stateTherefore, the equation:

A ={y J(K-1)} (12)
(flow-equivalent communicating system)

is a sufficient operational condition for achievithgw balancebetween the KB host
and system of the red{{(1) servers.

5. Concluding remarks

The purpose of this work was the study of responsiveness in user caratiuns
involving remote knowledge bases (KBs). Analysis was carried oud loyclic
gueueing model based on operational analysis. The performance metasdueed
was namedresponsiveness to service request3his was obtained in a simple,
closed-form expression: its evaluation required only a few input, datd the
calculations were direct, i.e. without any iterations.
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The type of network introduced in this study can be viewed aslecwoh of
users and servers. Each active user generates transactiorts,avehjorocessed by
the intermediate servers, until ultimately a response is returned to the user

Critical points N*,M"), which indicate system congestion, were obtained
analytically. The performance of the KB host was also studyetthdo application of
decomposition and flow-equivalent aggregation. Equation (12) is then iaienff
condition for achieving flow balance between the KB host and th&rgstervers.

Responsiveness was considered here as a measure of serligeagusuchR(s)
may also be seen as amdex of user satisfactionVhen this index is within its
normal limits, users should appreciate the benefits from usingethieces offered by
their host. WherR(s)declines, so does the picture of the communication system as
seen by the its users. Limits on the number of admissible requestsn the number
of connected users were previously considered necessary in oraevidosystem
congestion and possible saturation.

The example given illustrates that bottleneck analysis isn@&rat issue when
trying to forecast values of throughput and response times. The opatadaws
incorporated in the present work can easily be coupled with batkleargalysis to
offer a simple but powerful method for performance analysis. Firthkk operational
laws lead to the creation of flow-balanced networks.

Equating the flow out o§, with the flow intoS, ensures that no one dominates

the other. The above results suggest the following rule of goodgerémt managing
the KB host §,) effectively:

“If the host is the slowest server, its input rate should be &xventil it matches the
throughput of a composite server.XSvhich is flow-equivalent to the system of the

rest (K-1) request-relaying servers”.
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