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Abstract 
 
The purpose of this work is the analysis of responsiveness of remote knowledge bases (KBs). 
Responsiveness, R(s), is seen here as a measure of service quality that deserves optimization. 
The chosen method is operational analysis, i.e. a variant of classical stochastic theory relying 
upon measurements over finite observation periods. The analysis incorporates service ability, 
elapsed time, and throughput. From these metrics, estimates of R(s) are derived analytically. 
Critical points indicating congestion are obtained, and a condition for efficient flow balance 
is also stated. A numerical example is the basis for discussing performance improvement. 
The results of this study should be of interest to experts responsible for managing knowledge 
resources across the Internet. 
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1. Introduction 
 
Knowledge bases are key elements of today’s information economy and society [1]. 
The efficiency of knowledge bases (KBs) relies largely on the capabilities of high-
speed telecommunications networks. Key features include broadband infrastructures, 
intelligent access forms, and improved quality of service. Both state authorities and 
Internet providers offer a wide range of services in a fully competitive environment. 
Such services include on-line searching in digital libraries, transfer of files and video, 
and forms of collaborative work such as multicast conferencing and decision-making 
across national borders. Developments have been strongly supported by regulation 
and standardization in many countries. In the European Union such developments are 
now part of EU’s Digital Agenda [2]. Similar activities are taking place among most 
of the OECD member states [3]. 
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 KBs can be classified as either machine-readable or human-readable. The former 
contain rules used for automated reasoning under variable conditions. The latter, 
which are examined here, are used for retrieval of knowledge via specific rules. 
Human-readable KBs are widely distributed across the world wide web and are 
typically accessed by search engines. These engines are able to mine data in KBs. 
Modern knowledge-based systems incorporate artificial intelligence techniques that 
aid in the decision-making procedures [4]. 
 Knowledge bases are integral parts of today’s web-based systems, which support 
a wide range of human activities. Of special interest today are web-learning support 
systems with advanced designs, frameworks and functions [5], as well as systems for 
automatic information discovery within the invisible world wide web [6]. The latter 
include advanced query routing mechanisms for locating the required information, 
extracting/integrating files and other forms of media, and then downloading the 
entire hidden web content. 
 KB-offered services vary widely. Yet, there are some common aspects which are 
often seen as problems from the users’ viewpoint. Complaints are linked with poor 
performance as exemplified by long waiting times, connection failures, and so on. 
Thus, performance is often described as inadequate or unacceptable. With respect to 
KB management, typical problems are slow system response times, low productivity, 
and sometimes system saturation. 
 The purpose of this paper is the of study responsiveness when information is 
requested from distant KB hosts. The method consists of three elements: (i) an 
operational view of user-system communication, (ii) the introduction of a new 
performance measure called “responsiveness to service requests”, and (iii) the 
performance analysis of workflow. Responsiveness is obtained in closed form and its 
evaluation requires a few input data. Critical points indicating congestion are also 
obtained analytically. Finally, an illustrative example serves as a framework for 
discussing performance improvement. 
 
 
 
2. Definitions 
 
Let us consider Figure 1. The link shown contains a finite number of servers, denoted 
by S1, S2, S3, ... , SK, the last server being the KB host. Users occupy M workstations 
from which they generate their requests. At any time, a portion of M users, denoted 
by N, will be active while the rest M-N users will be in a thinking state. 
 The routing of requests follows the direction of the arrows. The communication 
system is assumed capable of servicing N requests with N constant during some 
period of usage. This assumption is realistic when the above is a period of heavy 
demand; then a backlog of requests is formed in the users’ area. When a request 
completes service, the next in-line request is admitted via the input/output port: this 
action keeps N constant. Periods of heavy system usage are especially interesting 
from a management perspective. 
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 From the above, it follows that the traffic at the I/O port should always be 
regulated on-line, and this is true with all protocols in use today. Such active 
regulation keeps N practically constant at a number called the window size. Later we 
explore a range of values for N and then find the maximum allowable value, when 
the system becomes congested and thus liable to performance saturation. Further, 
with reference to Figure 1, we define the following performance metrics: 
 
(i)   Total service ability of system, σ(s): the sum of service times (si) of its servers. 
(ii)  Elapsed time, E(N): time required for service completion including queueing   
  delays at the nodes. 
(iii) Think time, T(u): user time measured from the instant of service completion  
  to the issue of next request. 
 

 
Figure 1: Cyclic queueing model of a communication system including a KB host. 

 
The total service ability of the system, σ(s), is by definition as follows: 
 

         σ(s) = (s1+s2+ .... +sK)         (1) 
 
From metrics (i), (ii) and (iii) defined above we introduce in this work the following 
composite performance measure: Responsiveness to service requests, R(s) = {total 

service ability of the system} / {this quantity augmented by the corresponding mean 

elapsed time}, i.e.: 
 

        R(s) = σ(s)/{ σ(s) + E(N)}          (2) 
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All measurements across the network of Figure 1 are assumed to take place during 
finite observation periods. The basic performance measures typically include event 
counters and timers. Time stamps are often used to indicate time intervals from 
requests originating from user terminals and arrivals at the KB host. More complex 
measures are derived from these, and are typically called operational quantities. 
Invariant relations among operational quantities that hold in any observation period 
of interest are called operational laws. 
 
 
 
3. Operational analysis 
 
A performance model has a central role in system evaluation: it gives estimates about 
the system’s operation, and it can also provide management with performance 
predictions under alternative choices. When a capacity planning exercise or system 
redesign is due, such predictions can be of significant value. 
 
3.1. Modelling alternatives 
 
Several types of performance models have been developed over the years. Earlier 
models were mainly empirical, based on methods from statistics such as regression. 
Simulation has also been a favourite technique amongst many performance analysts. 
Analytical models based on stochastic analysis (queueing theory) were later thought 
to be a better alternative. They became widely acceptable, and remain so, because of 
the following reasons: (a) they are easier to construct and validate, (b) they can be 
realized using standard programming languages, and (c) results are given in closed-
form expressions with clearer interpretations. 
 An interesting departure from classical stochastic theory is operational analysis. 
This method retains the basic form of stochastic analysis, including the advantages 
listed above. However, it is based upon a group of so-called operational rather than 
probabilistic laws. Operational analysis does not seek to replace analysis based on 
queueing theory, but to interpret previously known results using measured data. 
Many of the steady-state limit theorems of stochastic analysis have their equivalent 
operational laws. The operational interpretation was introduced roughly thirty-five 
years ago, when performance analysts realized that the formulas of stochastic 
queueing systems worked very well in real computer networks even though the 
traditional Markovian assumptions did not seem to hold in reality. 
 In their seminal paper, Denning and Buzen laid the foundations of operational 
analysis by describing the laws of this method [7]; these are as follows: 
 
(i) All quantities should be defined so as to be precicely measurable, and all 
 assumptions stated so as to be directly testable. 
(ii) The system must be flow-balanced, i.e. the number of arrivals at a given device 
  must be (almost) the same as the number of departures from that device during 
  the observation period. 
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(iii) The devices must be homogeneous, i.e. the routing of jobs must be independent 
  of local queue lengths at the devices, and the mean times between service 
 completions must not depend on the queue lenghts of other devices. 
 
These principles lead to mathematical equations that are equivalent to the traditional 
Markovian assumptions. Algorithms for computing performance measures of interest 
such as queue lengths, throughputs, and response times can be found in several books 
and edited volumes [8,9,10]. In this article, we introduce a form of operational 
analysis that allows for the study of user-system interaction while requiring minimal 
computational effort. This form is also useful for the examination of system transient 
behaviour during peak usage. 
 
 
3.2. Evaluation of responsiveness 
 
The total service ability of the system, σ(s), can easily be evaluated from known 
server specifications. The main task is to estimate E(N) in Equation (2). An exact 
estimation is possible using operational analysis; however, this procedure is iterative 
with each value of E(N) depending on previous values. An acceptable approximation 
in closed-form might be preferable, as this would give a direct estimate of E(N) for 
any value of N. Such an approximation can be obtained by taking into account the 
systems’ maximum throughput, as explained below. 
 Let  ρi be the utilization of server Si  and γi its mean throughput. In operational 

analysis, this utilization can be expressed as the product of the throughput and the 

corresponding service time, i.e.  ρi = γi.si. As the system takes larger values of N, the 

queues of requests in front of the servers will become longer. Eventually, there will 
be some instant when the slowest server will have to complete work at its maximum: 
at that instant, its utilization will have reached 100%. This saturated server then 
becomes a limiting factor or bottleneck of the system. 
 Let us denote by Smax the bottleneck server, by ρmax its utilization and by γmax the 

corresponding throughput. Smax is the slowest server because it has the largest mean 
service time, which we denote by: 
 

        smax= max { s1, s2, ... , sK}         (3) 
 

Then, as in the case of the mean values: ρmax= γmax
.smax = 1. Therefore, γmax= 1/smax. 

Let γ(N) be the mean system throughput, i.e. the mean rate (in seconds) at which 
requests leave server SK with N requests present. Since γmax is the maximum 
throughput anywhere in the system, it follows that the maximum value of γ(N), 
denoted by γ*, could be closely approximated by γmax, i.e.: 
 

         γ* ≈ γmax= 1/smax           (4) 
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A well-known property of operational analysis states that in a closed queueing 
system the number of “customers” being served is equal to the product of the 
system’s throughput and the waiting time (with all quantities as means). This 
expression is an adaptation of Little’s law from classical stochastic analysis. 
 In our notation, mean number of “customers” are the user requests N, the mean 
system throughput is γ(N), and the mean waiting time is E(N). Little’s law will also 

apply when γ(N) reaches its maximum, in which case: N = γ*.E(N). Substituting γ* as 
γ* ≈ 1/smax and solving for E(N) this expression gives the following approximation: 

 

          E(N) ≈ N.smax             (5) 
 
After the above result, Equation (2) takes the following form: 
 

        R(s) ≈ σ(s)/{ σ(s) + N.smax}          (6) 

 
Note that the equal sign in Equation (2) has become a near equal sign due to the 
approximation introduced previously. When the system is empty, i.e. N = 0, R(s) ≈ 1: 
this is an ideal case (i.e. 100% responsiveness), which clearly cannot be expected in 
an operational system. When user activity increases from N = 1 onwards, then R(s) 
decreases proportionately as in Equation (6). In the limiting case, i.e. when  N → ∞, 
which practically means that N has exceeded some critical point (to be determined), 
it follows that R(s) → 0. This is seen by the users as inability to communicate with 
the distant KB host. 
 
 
3.3. Congestion and saturation 
 
When N=1, there is no contention. Therefore, E(1) reduces to the sum σ(s). Little’s 

law implies that γ(1).E(1) = 1 or else γ(1) = 1/σ(s). This is the minimum value of 

throughput. The corresponding maximum value was found approximately 1/smax. 

Therefore, the mean throughput is constrained as follows: 1/σ(s) ≤ γ(N) ≤ 1/smax. 

Thus, σ(s).γ(N) ≤ σ(s)/smax. 

 As already stated, σ(s).γ(N) is the mean number of “customers” N; therefore, N ≤ 
σ(s)/smax. Then, as N increases, which means that user transactions (n) also follow, 

there will be some point, denoted by N*, for which this inequality will eventually 
become an equality. Then, for such an N = N*: 
 

         N*≈ [σ(s)/smax].n          (7) 

 
 



 255 

Limits of responsiveness for geographically remote knowledge bases 
 
The near-equal sign in Equation (7) comes from the approximation γ* ≈ 1/smax and 

the square brackets denote augmentation of the fraction to the next integer value. The 
quantity N* is called here the “internal critical point”  of the system. Admission of 
requests N with N > N* will increase congestion and eventually lead to saturation. 
 As previously discussed, requests for service are generated in the users’ area. The 
mean throughput generated from (M-N) users with an average think time T(u) will be 
definition be (M-N)/T(u). Consequently, the ratio: 

 
        λin = (M-N)/ (T(u).n)          (8) 

 
is the mean input rate into the system. When N reaches its critical point N*, its active 
part M will also reach a corresponding point M* in the users’ area. Then, the system 
will have reached its maximum throughput as in Equation (4). The corresponding 

maximum input, denoted by λ*in , will be λ*in = (M*-N*)/ T(u).n ≈ 1/smax. Solution for 

M* implies that: 
 

         M*≈ N*+ [T(u).n /smax]         (9) 

 
The square brackets denote augmentation of the fraction to the next integer. M* could 
be interpreted as follows. For an internal (i.e. inside the system) critical point N* 
there is a corresponding “external critical point” M*, which inicates the number of 
users when saturation appears. This will be evident at the slowest server. Therefore, 
the pair (N*, M*) is an index of the system’s ability to accommodate effectively its 
population of users. 
 
 
4. Limits of responsiveness 
 
Information retrieval with K servers is a good example of user-host communication. 
A link between a group of local users and their host may then be formed as suggested 
by Figure 1. Servers S1, S2, ... , SK-1 are used for the relay of user queries while SK 
houses the distant KB. Service at SK includes scheduling of user queries, searching in 
system files, and internal communications. For illustration, we assume a moderate 
value K = 15. Mean service times si (seconds) are in the interval (0, 1), a choice 
reflecting a practical range of server speeds. Table 1 below shows the relevant data. 
 The slowest server is S7 with smax= s7= 0.965 seconds. The system’s total service 
ability is σ(s) = 10.140 seconds. Application of Equation (6) for several successive 
values of N has given an array of results for R(s) which are shown in Table 2. Then, 
assuming a mean of n = 10 number of transactions per session, application of 
Equation (7) gives N*= 110. Also, assuming that the average user needs T(u) = 15 
seconds of think time, application of Equation (9) gives the value M*= 270. 
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Table 1: Service times for the K servers of Figure 1. 
__________________________________________ 
Service    Value (seconds) 
__________________________________________ 
 
s1 ..... s5   0.546      0.467      0.847      0.325      0.645 

s6 ..... s10   0.835      0.965      0.628      0.617      0.564 

s11 .... s15   0.873      0.674      0.694      0.726      0.734 

 
smax= s7= 0.965  σ(s) = 10.140 
__________________________________________ 
 
 Finally, the pair (110, 270) indicates the critical points of this example system. It 
may be concluded that the KB host should be allowed to serve up to 270 users of 
which 110 should be active at any time. 
 
 
Table 2: Responsiveness to service requests as N increases. 
____________________________________________ 
N (users)   R(s) (%) 
____________________________________________ 
 
  1 .....   5:     91.3      84.0      77.8      72.4      67.8 
  6 ..... 10:     63.7      60.0      56.8      53.9      51.3 
11 ..... 15:     48.9      46.7      44.7      42.9      41.2 
 

N*= 110  M*= 270  R*(s) = 8.75 
____________________________________________ 
 
From Table 2 we note that for N = 11, responsiveness stands at R(s) = 48.9%, i.e. at 
less than half of its ideal value. If more requests are allowed into the system, R(s) 
will continue to decline moderately, as shown in Table 2 for N from 12 to 15. Going 
further up to the critical point N*= 110, we note that R(s) declines sharply and now 
stands at R*(s) = 8.75%. In this limiting case, the maximum number of users are all 
active thus bringing the whole system to saturation. 
 
 
4.1. Workflow balance 
 
In the example, the slowest server (S7) is placed about halfway through S1 and the 

KB host. If one attempts to eliminate the bottleneck at S7 by replacing this server by 

a faster one, then a new bottleneck could appear elsewhere. This will probably be at 
S11 as this server is the second slowest after S7 (Table 1). In fact, any cyclic system 

that is not properly regulated may contain several bottlenecks. Therefore, a global 
strategy will be needed to keep workflow unrestricted on an end-to-end basis. 
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 The above may be seen as a problem of assigning input flows to servers in 
proportion to their service ability. Such an assignment must be accomplished 
dynamically for all servers. This is a fairly complex problem in its general form. 
Solution may be obtained by optimization techniques; but, even in that case, the 
solution will have to be adjusted periodically as the system workflow changes 
dynamically following user behaviour. Such behaviour is never known a priori and it 
might exhibit fluctuations that produce a high delay variance. 
 We will not address this complex problem here, since our aim is to keep the 
analysis as simple as possible. Readers may see, for instance, solutions based on 
scheduling processes and multi-criteria methods [11,12]. 
 
 
4.2. KB host as the slowest server 
 
From Table 1, the following sequence is evident: 
 

        s7 > s11 > s3 > s6 > s15         (10) 
 
Therefore, S7 is the slowest server, and  the system’s throughput is dominated by it. 

When N = N*= 110, the system throughput is at its maximum, i.e.: γ* ≈ 1/smax= 1/s7 

= 1/0.965 = 1.036. Let also ρ7 be the utilization (fraction of busy time) of server S7. 

From operational analysis, this quantity is the product of throughput and its mean 

service time: thus, ρ7 = γ*.s7 = 1. This indicates that server S7 is saturated, which was 

expected to be so, since N has reached its critical point. By comparison, ρK = ρ15 = 

γ*.s15 = 1.036*0.734 = 0.769. Therefore: 
 

           ρK < 1            (11) 
 
which indicates that the host SK is in steady-state. 
 
 Let us now assume that SK becomes the slowest server. This can be done by 

interchanging the values of s7 and s15 in Table 1. Then, ρK = 1, which confirms that 

the host is now the saturated server. Our goal here is to arrive at a new utilization 
factor for SK, say ρK(new), which would bring SK back to its steady-state. To achieved 
that aim we will need to study the host in (partial) isolation from the rest of servers. 
The isolation is achieved by a technique known as decomposition. This technique is 
best known from Econometrics, where it has been applied in the analysis of large-
scale systems with many variables. Later, it was applied successfully in the study of 
computer and communication systems. For a closed queueing network with K servers 
which models a large-scale system with a KB host, the above principle of 
decomposition may be stated as follows. 
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Consider server SK and then replace the entire network by a two-server system only 

consisting of SK and one “composite”, flow-quivalent server, say Se. In our example, 

this server is flow-equivalent to S1, S2, ... , SK-1 in the sense that the throughput of the 
{ K-1 system equals the arrival rate at SK with the same number N}. 

 Assume that the decomposition principle is applied to the network of Figure 1. 
Note that the throughput of server Se, representing the first K-1 servers, equals the 

arrival rate at SK (host). Calling the first quantity {γ
e
|(K-1)} and the second one λK 

this gives: λK = {γ
e
|(K-1)}. The mean value of the last quantity is not known a priori. 

We may use the arguments of the previous section to estimate its maximum value, 
say {γ

e
* |(K-1)}. This is done by observing that the slowest server in the (K-1) system 

is S11, with s11 = 0.873. Then, as in the case of the entire system studied previously, 

we see that  {γ
e
* |(K-1)} ≈ 1/smax(K-1) = 1/s11 = 1/0.873 = 1.145. 

 
 From this result, it follows that {γ

e
|(K-1)} ≤ 1.145. Let us assume for illustration 

that this unknown mean is about three-quarters of its maximum, i.e.: { γ
e
|(K-1)} ≈ 

(3/4).{ γ
e
* |(K-1)} ≈ (3/4)*1.145 ≈ 0.859. Note that sK is now 0.965, because of the 

interchange between s7 and sK, which makes the host the slowest server. From these 

results, the new utilization of SK, say ρK(new), may be obtained as ρK(new) = λK
.sK = 

{ γ
e
|(K-1)}.sK = 0.859*0.965 = 0.829. 

 We easily see that ρK(new) = 0.829 < 1, which indicates that the host is brought 
back to its steady-state. Therefore, the equation: 
 

              λK = {γ
e
|(K-1)}          (12) 

(flow-equivalent communicating system) 
 
is a sufficient operational condition for achieving flow balance between the KB host 
and system of the rest (K-1) servers. 
 
 
 
5. Concluding remarks 
 
The purpose of this work was the study of responsiveness in user communications 
involving remote knowledge bases (KBs). Analysis was carried out by a cyclic 
queueing model based on operational analysis. The performance measure introduced  
was named “responsiveness to service requests”. This was obtained in a simple, 
closed-form expression: its evaluation required only a few input data, and the 
calculations were direct, i.e. without any iterations. 
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 The type of network introduced in this study can be viewed as a collection of 
users and servers. Each active user generates transactions, which are processed by 
the intermediate servers, until ultimately a response is returned to the user. 
 Critical points (N*,M*), which indicate system congestion, were obtained 
analytically. The performance of the KB host was also studied by the application of 
decomposition and flow-equivalent aggregation. Equation (12) is then a sufficient 
condition for achieving flow balance between the KB host and the rest K-1 servers. 
 Responsiveness was considered here as a measure of service quality: as such, R(s) 
may also be seen as an index of user satisfaction. When this index is within its 
normal limits, users should appreciate the benefits from using the services offered by 
their host. When R(s) declines, so does the picture of the communication system as 
seen by the its users. Limits on the number of admissible requests and on the number 
of connected users were previously considered necessary in order to avoid system 
congestion and possible saturation. 
 The example given illustrates that bottleneck analysis is a central issue when 
trying to forecast values of throughput and response times. The operational laws 
incorporated in the present work can easily be coupled with bottleneck analysis to 
offer a simple but powerful method for performance analysis. Finally, the operational 
laws lead to the creation of flow-balanced networks. 
 Equating the flow out of Se with the flow into SK ensures that no one dominates 

the other. The above results suggest the following rule of good practice for managing 
the KB host (SK) effectively: 
 
“ If the host is the slowest server, its input rate should be lowered until it matches the 
throughput of a composite server (Se), which is flow-equivalent to the system of the 

rest (K-1) request-relaying servers”. 
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