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Abstract

In the present communication, three new divergence measures be-
tween fuzzy sets are proposed. The validity of these divergence mea-
sures is examined axiomatically. Relation of the proposed divergence
measures with the cardinality of a universe of discourse is established.
Some properties of these divergence measures are established. Relation
of divergence between fuzzy sets with aggregation operations is investi-
gated, and some properties are established. Application of divergence
measures between fuzzy sets in strategic decision making is illustrated
with numerical.
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1 Introduction

Proposed by [Zadeh, 1965], fuzzy set theory based upon the assumption that
there are sets in which the degree of membership of an element lie between
zero and one, gained vital interdisciplinary importance in many fields such as
pattern recognition, image processing, fuzzy aircraft control, feature selection,
Bio-informatics and many more. Uncertainty and fuzziness are basic elements
of the human perspective and of many real-world objectives. The main use
of information is to remove the uncertainty and fuzziness. The measure of
uncertainty removed is the information measure while the measure of vagueness
is a measure of fuzziness.

[Kullback and Leibler, 1951] introduced a divergence measure between
two probability distributions (observed and proposed ) of a random variable.
[Bhandari and Pal, 1993] introduced a divergence measure between fuzzy sets
(Fuzzy directed divergence) corresponding to probabilistic divergence mea-
sure introduced by [Kullback and Leibler, 1951]. [Verma and Sharma, 2011]
proposed divergence measure between fuzzy sets corresponding to Inaccuracy
measure introduced by [Kerrige, 1961]. [Bhatia and Singh, 2012] proposed gen-
eralized fuzzy directed divergence corresponding to generalized probabilistic
divergence measures introduced by [Taneja, 2005a,2005b]. Many researchers
studied the concept of fuzzy directed divergence from the point of view of
the theory or from the point of view of applications. In this paper, both the
aspects are studied.

In the present communication, some preliminaries related with the con-
cept of fuzziness, probabilistic and fuzzy divergence measures are presented in
section 2. In section 3, we introduce three new divergence measures between
fuzzy sets, and some properties of these divergence measures are presented. In
section 4, relation of divergence measures between fuzzy sets with aggregation
operation is investigated, and some properties are established. In section 5, a
model for strategic decision making is proposed, and same is explained by the
help of a numerical. In section 6, conclusion is presented.
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2 Prelimineries

2.1 Preliminaries On Fuzzy Set Theory

Definition 1 Let a universe of discourse X = {x1, x2, x3...xn} then a fuzzy
subset of universe X is defined as

A = {(x, µA(x)) | x ∈ X,µA(x) ∈ [0, 1]}

Where µA(x) : X → [0, 1] is a membership function defined as follow:

µA(x) =


0 if x does not belong to A and there is no ambiguty
1 if x belong to A and there is no ambiguty
0.5 if there is maximum ambiguity whether x belongs to A or not

In fact µA(x) associates with each x ∈ X a grade of membership of the set
A. Some notions related to fuzzy sets which we shall need in our discussion
[18].

Containment ; A ⊂ B ⇔ µA(x) ≤ µB(x) for all x ∈ X
Equality ; A = B ⇔ µA(x) = µB(x) for all x ∈ X
Compliment ; Ā = Compliment of A ⇔ µA(x) = 1− µA(x) for all x ∈ X
Union ; A∪B = Union of A and B⇔ µA∪B(x) = max.{µA(x), µB(x)} for

all x ∈ X
Intersection ; A∩B = Intersection of A and B⇔ µA∩B(x) = min.{µA(x), µB(x)}

for all x ∈ X
Product ; AB = Product of A and B ⇔ µAB(x) = µA(x)µB(x) for all

x ∈ X
Sum; A⊕B = Sum of A and B⇔ µA⊕B(x) = µA(x)+µB(x)−µA(x)µB(x)

for all x ∈ X

2.2 Probabilistic Divergence Measures

The relative entropy is a measure of the distance between two probability dis-
tributions. In statistics, it arises as the expected logarithm of the likelihood
ratio. The relative entropy or the divergence measure between two probabil-
ity distributions, K(P,Q) is the measure of inefficiency of assuming that the
distribution is Q when the true distribution is P. For example, if we knew the
true distribution of the random variable, then we could construct a code with
average description length H(P ). If, instead, we used the code for a distribu-
tion Q , we would need H(P ) + K(P,Q) bits on the average to describe the
random variable[Kullback and Leibler, 1951].
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The relative entropy or Kullback Leibler distance between two probability
distributions is defined as

K(P,Q) =
n∑
i=1

pi log
pi
qi

(1)

where P,Q ∈ Γn and Γn = {P = (p1, p2, p3...pn)|pi ≥ 0,
∑n

i=1 pi = 1, n ≥ 2} is
the set of all complete finite discrete probability distributions.

With the development in literature, many parametric and non-parametric
measures were suggested, based on applicability in different situations.

2.3 Divergence Measures Between Fuzzy sets

Definition 2. [Couso et al., 2004] Let a universal set X and F (X) be the set
of all fuzzy subsets . A mapping D : F (X)×F (X)→ R is called a divergence
between fuzzy subsets if and only if the following axioms hold:

d1 : D(A,B) = D(B,A)
d2 : D(A,A) = 0
d3 : max. {D(A∪C,B∪C), D(A∩C,B∩C)} ≤ D(B,A) for any A,B,C ∈

F (X)
Instead of axiom d3 if D(A,B) is convex in A and B even then it a valid measure
of divergence.

[Bhandari and Pal, 1993] Introduced a measure of divergence between fuzzy
sets corresponding to information theoretic divergence measure(1)as

D(A,B) = − 1
n

∑
i{µA(xi) log µA(xi)

µB(xi)
+ (1− µA(xi)) log (1−µA(xi))

(1−µB(xi))
} (2)

Axioms d1, d2, d3 are used to define a new divergence measure. Many di-
vergence measures between fuzzy sets were defined in literature corresponding
to existing probabilistic divergence measures.

3 Three New Symmetric Divergence Measures

Between Fuzzy Sets

[Bhatia et al., 2011] proposed the following symmetric divergence measures
between discrete probability distributions P and Q .
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MCA(P,Q) =
n∑
i=1

[(
p2i + q2i
pi + qi

)− (
pi + qi

2
)] (3)

MCG(P,Q) =
n∑
i=1

[(
p2i + q2i
pi + qi

)−√piqi] (4)

MCH(P,Q) =
n∑
i=1

[(
p2i + q2i
pi + qi

)− (
2piqi
pi + qi

)] (5)

where P,Q ∈ Γn and Γn = {P = (p1, p2, p3...pn)|pi ≥ 0,
∑n

i=1 pi = 1, n ≥
2} is the set of all complete finite discrete probability distributions.

Corresponding to these divergence measures we propose the following di-
vergence measure between fuzzy sets respectively.

M1(A,B) =
n∑
i=1

(µA(xi)− µB(xi))
2

2
[

1

(µA(xi) + µB(xi))

+
1

(2− µA(xi)− µB(xi))
] (6)

M2(A,B) =
∑n

i=1[
(µA(xi))

2+(µB(xi))
2

µA(xi)+µB(xi)
−
√
µA(xi)µB(xi)

+
n∑
i=1

[
(1− µA(xi))

2 + (1− µB(xi))
2

2− µA(xi)− µB(xi)
−
√

(1− µA(xi))(1− µB(xi))] (7)

M3(A,B) =
n∑
i=1

(µA(xi)− µB(xi))
2[

1

(µA(xi) + µB(xi))

+
1

(2− µA(xi)− µB(xi))
] (8)

Theorem 3.1 M1(A,B),M2(A,B) and M3(A,B) are valid measures of di-
vergence between fuzzy sets.

Proof Axiom d1 and d2 are obviously satisfied by M1(A,B),
M2(A,B) and M3(A,B).

∂2M1(A,B)

∂2µA(xi)
=

4(µB(xi))
2

(µA(xi) + µB(xi))4
+ 2[

4− (µA(xi))
2 + (µB(xi))

2

(2− µA(xi)− µB(xi))2
] ≥ 0
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∂2M1(A,B)

∂2µB(xi)
=

4(µA(xi))
2

(µA(xi) + µB(xi))4
+ 2[

4− (µA(xi))
2 + (µB(xi))

2

(2− µA(xi)− µB(xi))2
] ≥ 0

Therefore, M1(A,B) is convex function of fuzzy sets A and B. Hence in view
of axioms d1 and d2 and the convexity property M1(A,B) is a valid measure
of divergence between fuzzy sets A and B. Similarly M2(A,B) and M3(A,B)
are also found to be valid measures of divergence between fuzzy sets A and B
.

Theorem 3.2 Let A and B be two fuzzy subsets of X then Mi(A ∪B,A ∩B)
= Mi(A,B) , where i= 1,2,3 .

Proof consider the sets

W1 = {x|x ∈ X, µA(xi) ≥ µB(xi)}

and
W2 = {x|x ∈ X, µA(xi) < µB(xi)}

Using definitions in section (2.1), In set W1,
A ∪B = Union of A and B ⇔ µA∪B(x) =
max.{µA(x), µB(x)} = µA(x) and A∩B = Intersection of A and B⇔ µA∩B(x)
= min.{µA(x), µB(x)} = µB(x)
In set W2,
A ∪ B = Union of A and B ⇔ µA∪B(x) = max.{µA(x), µB(x)} = µB(x) and
A ∩B = Intersection of A and B ⇔ µA∩B(x) =
min.{µA(x), µB(x)} = µA(x)
we have
M1(A ∪B,A ∩B) =

∑
W1

[ (µA(xi)−µB(xi))
2

2
[ 1
(µA(xi)+µB(xi))

+ 1
(2−µA(xi)−µB(xi))

]]

+
∑

W2
[ (µA(xi)−µB(xi))

2

2
[ 1
(µA(xi)+µB(xi))

+ 1
(2−µA(xi)−µB(xi))

]]

=
∑

X [ (µA(xi)−µB(xi))
2

2
[ 1
(µA(xi)+µB(xi))

+ 1
(2−µA(xi)−µB(xi))

]]

=M1(A,B)
that is , M1(A ∪B,A ∩B) = M1(A,B)
similarly ,M2(A ∪B,A ∩B) = M2(A,B) and M3(A ∪B,A ∩B) = M3(A,B)
Thus proof of theorem follows.
Theorem (3.2) shows that the divergence between max.{A,B} and min.{A,B}
is same as divergence between A and B.
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Theorem 3.3 Let a universe of discourse X = {x1, x2, x3...xn} ,A be a crisp
set and AF be most fuzzy set then M1(A,AF ) + M3(A,AF ) = n= cardinality
of X.

Proof Since AF is the most fuzzy set therefore µAF
(xi) = 0.5 therefore

using equation (8)

M1(A,AF ) =
n∑
i=1

(2µA(xi)− 1)2

4
[

1

(2µA(xi) + 1)
+

1

(3− 2µA(xi))
] (9)

Also , when A is a crisp set then µA(xi) = 0 or 1
consequently , M1(A,AF ) = n

3

Similarly ,M3(A,AF ) = 2n
3

Thus proof of theorem follows.
Theorem(3.3) shows that for a given universe of discourse, the divergence of
the most fuzzy set from an arbitrary fuzzy set remains constant.

Theorem 3.4 Let a universe of discourse X = {x1, x2, x3...xn} , A be fuzzy
subset of A with complement A , then
a. Max. M1(A,A) = n
b. Max. M2(A,A) = 2n
c. Max. M3(A,A) = 2n
This occurs when a is a non fuzzy (crisp)set.

Proof Using definitions in section (2.1), Ā = Compliment of A ⇔ µA(x) =
1− µA(x) from equations (8),(9),(10) the respective equations are

M1(A,A) =
n∑
i=1

(2µA(xi)− 1)2 (10)

M2(A,A) =
n∑
i=1

[(2µA(xi)− 1)2 + (1−
√
µA(xi)(1− µA(xi))] (11)

M3(A,A) =
n∑
i=1

2(2µA(xi)− 1)2 (12)

when A is a crisp set then µA(xi) = 0 or 1
Thus for a crisp set A equations (10),(11) and (12) gives the desired result.
The divergence of an arbitrary fuzzy set is maximum from its compliment .
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Theorem(3.4) shows that maximum value of divergence depends on the
cardinality of the universe of discourse. Thus, on dividing the right-hand side
of equations (6), (7) and (8) with n, 2n and 2n respectively we obtain three
normalized divergence measures (value lie between 0 and 1) between fuzzy sets.

Theorem 3.5 :Let A ,B ∈ F (X) then
a. Mi(A,B) = Mi(A,B)
b. Mi(A,A) = Mi(A,A)
c. Mi(A,B) = Mi(A,B)
d.Mi(A,B) +Mi(A,A) = Mi(A,B) +Mi(A,B)
where i= 1,2,3

Proof Proofs of (a) , (b) and (c) directly follow from the definition of Mi(A,B)
and (d) is a consequence of (b) and (c).

4 Relation of Divergence Measures with Ag-

gregation Operations

4.1 Aggregation Operations

The aggregation operations for fuzzy sets are the operations by which several
fuzzy sets are combined to produce a single set. e.g fuzzy union and fuzzy
intersection are special cases of aggregation operations.

Definition 3 [Klir and Folger, 1988]: An aggregation operation is defined
by the function M : [0, 1]n → [0, 1] verifying
1.) M(0, 0, 0...0) = 0 , M(1, 1, 1...1) = 1 (Boundary Conditions)
2.) M is Monotonic in each argument. (Monotonicity)

The use of monotone functions is justified in many decision making contexts,
since it ensures consistency and reliability. The boundary conditions here are
specified with the assumption that inputs are provided on the unit interval;
however in certain cases, inputs naturally expressed on different intervals can
be scaled appropriately. Aggregation functions are classed depending upon
their behavior relative to the inputs. The most commonly used in application
are averaging functions, which are usually interpreted as being representative
of a given set of inputs or input vector.
An aggregation operation may be examined for some properties:

242



On Some Divergence Measures between Fuzzy Sets and...

• Idempotent element

• Symmetry

• Neutral element

• Associativity

• Shift-Invariant

• Homogeneity

• Absorbing element

• Lipschitz’s Continuous

4.2 Aggregation Operations and Divergence Measures
between Fuzzy Sets

Theorem 4.1 Let h1, h2, ..., hn be n mappings, hi : [0, 1] × [0, 1] → [0, 1] for
i = 1, 2, ..., n verifying
a. hi(x, x) = 0 for all x ∈ [0, 1]
b. hi(x, y) = hi(y, x) for all x, y ∈ [0, 1]
c. hi(1, 0) = hi(0, 1) = 1
d. hi(, y) is non decreasing function over [0,y] and non decreasing over [y,1].
Let Φ be an aggregation operation. Then,
D(A,B) = tΦ(h1(µA(x1), µB(x1)), h2(µA(x2), µB(x2)), ...,

hn(µA(xn), µB(xn)))) (13)

with t > 0 is a divergence measure between fuzzy sets A and B.

Proof Here Φ is an aggregation operation and let us see that D is a divergence
measure.

• D(A,B) = D(B,A) is trivial by given condition 2

• D(A,A) = tΦ(
−→
0 ) = 0 using condition 1 over hi
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• D(A ∪ C,B ∪ C) = tφ(h1(µA∪C(x1), µB∪C(x1))),
h2(µA∪C(x2), µB∪C(x2)), ..., hn(µA∪C(xn), µB∪C(xn)))

Now it can be proved that hi(µA∪C(xi), µB∪C(xi))) ≤ hi(µA(xi), µB(xi)) we
have three cases:

1. If µC(xi) ≥ µA(xi), µC(xi) ≥ µB(xi), then
hi(µA∪C(xi), µB∪C(xi))) = hi(µC(xi), µC(xi))) = 0
≤ hi(µA(xi), µB(xi)))

2. If µA(xi) ≥ µC(xi),≥ µB(xi) or µB(xi) ≥ µC(xi),≥ µA(xi), then (con-
sidering the first possibility )
hi(µA∪C(xi), µB∪C(xi))) = hi(µA(xi), µC(xi)))
≤ hi(µA(xi), µB(xi)))
because hi(x, z) ≥ hi(x, y) if x ≥ y ≥ z (using condition 4 on hi ).

3. If µA(xi) ≥ µC(xi), µB(xi) ≥ µC(xi), then
hi(µA∪C(xi), µB∪C(xi))) = hi(µA(xi), µB(xi)))

The same holds for the intersection. Hence D(A,B) is a divergence measure
between fuzzy sets A and B.

Remarks:

1. The constant t > 0 is needed to normalize the divergence measure
D(A,B)
2. Divergence measure D obtained in theorem verify that: If hi(µA(xi), µB(xi))) =
hi(µA(xi), µB(xi))), for all i , then D(A,B) = D(C,D) as Φ is applied over the
same vectors.

Theorem 4.2 Let D be a divergence measure. Then

Φ(−→p ) =
D(A, φ)

D(X,φ)
(14)

with µA(xi) = pi and
−→p = (p1, p2, ..., pn) is an aggregation operation.

Proof We check the axioms of aggregation operation

• Φ(
−→
1 ) = D(X,φ)

D(X,φ)
and thus Φ(

−→
1 ) = 1.

Now Φ(
−→
0 ) = D(φ,φ)

D(X,φ)
and thus Φ(

−→
0 ) = 0.
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• Let µA(xi) = pi and µB(xi) = qi , −→p = (p1, p2, ..., pn) and −→q =
(q1, q2, ..., qn) −→p ≤ −→q ⇒ pi ≤ qi ⇒ µA(xi) ≤ µB(xi))
Now using third condition of the divergence measure

D(B, φ) ≥ D(B ∩ A, φ ∩ A) = D(A, φ)

we have
Φ(−→p ) ≤ Φ(−→q )

Hence Φ is an aggregation operation.

Example: Using the result of theorem(4.2) the divergence measures pro-
posed in equations (8),(9) and (10) produces the aggregation functions Φ1, Φ2

and Φ3 respectively as follows.

Φ1(
−→p ) =

1

n

n∑
1

pi
2− pi

Φ2(
−→p ) =

1

2n

n∑
1

[pi +
1 + (1− pi)2

2− pi
−

√
1− pi]

Φ3(
−→p ) =

2

n

n∑
1

pi
2− pi

5 Applications of Divergence Measures between

Fuzzy Sets in Strategic Decision Making

Let the organization X want to apply m strategies S1, S2, ..., Sm to meet a
target. Let each strategy has varied degrees of effectiveness if cost associated
with it is varied, let {C1, C2, ..., Cn} be cost set . Let the fuzzy set X denotes
the effectiveness of a particular strategy with uniform cost. Therefore

X = {(X,µX(Si))|i = 1, 2, ...m}

Further, let Cj be a fuzzy set denotes the degree of effectiveness of a strategy
when it implemented with cost Cj.

Cj = {(Cj, µCj
(Si))|i = 1, 2, ...,m}

where j= 1,2...,n.
Taking A = X and B = Cj in the divergence measures defined in section 3,
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and calculate Mk(X,Cj) where k = 1,2,3.
Then Min{Mk(X,Cj)}1≤j≤n determines the suitability of Cj. Let the mini-
mum value is attained at Ct , 1 ≤ t ≤ n .With this Ct find Max.{µCt(Si)}1≤i≤m
, let it correspond to Sp ,1 ≤ p ≤ m.
Thus if the strategy Sp is implemented with budget of Ct the organization will
meet its target in the most cost-effective manner.
Illustrative Example
Let m = n = 5 in the above model.
Table 1 shows the effectiveness of strategies at uniform cost and Table 2 shows

Table 1:

µX(S1) µX(S2) µX(S3) µX(S4) µX(S5)
0.8 0.9 0.6 0.5 0.7

the effectiveness of strategies at particular cost.

Table 2:

Cj µCj
(S1) µCj

(S2) µCj
(S3) µCj

(S4) µCj
(S5)

C1 0.6 0.7 0.5 0.8 0.7
C2 0.9 0.8 0.6 0.4 0.8
C3 0.7 0.6 0.8 0.4 0.6
C4 0.6 0.8 0.6 0.7 0.9
C5 0.3 0.7 0.4 0.6 0.5

Table 3 shows the divergence between X and Cj , j = 1,2,3,4,5.

Table 3

Cj M1(X,Cj) M2(X,Cj) M3(X,Cj)
C1 0.21912 0.33290 0.43824
C2 0.06265 0.09453 0.12530
C3 0.20204 0.30883 0.40408
C4 0.17139 0.25994 0.34278
C5 0.40679 0.62216 0.81358

246



On Some Divergence Measures between Fuzzy Sets and...

According to the divergence measures presented in the Table 3 budget C2

is more suitable and after examining the Table 2, it is observed that strategy
S1 is most effective. Therefore, the organization will achieve its target in the
most cost-effective manner if the strategy S1 is implemented with a budget C2.
Apart from application in decision making the divergence measures between
fuzzy sets have applications in Bio-informatics [Poletti et al., 2012], image
thresholding [Fan et al., 2011], [Bhatia and Singh, 2013].

6 Conclusion and Discussion

Three new divergence measures between fuzzy sets have been proposed in the
present paper. Some properties of these divergence measures are established.
Application of these measures has been studied in strategic decision making.
Relation of divergence measures with aggregation operations established. Fur-
ther, In order to provide more flexibility of applications in certain situations
one or two parametric generalization of this type of divergence measures be-
tween fuzzy sets may be possible. The characterization of divergence measures
between fuzzy sets is under study and will be reported separately.
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