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Abstract

Optimal control theory is applied to a system of ordinary differential equations modeling my-
ocardial infarction due to diabetes epidemiology model. For this model, controls representing
prevention and recovery are incorporated to reduce the population with myocardial infarction
via the application of the Pontryagins Maximum Principle of optimal control theory. The
optimal controls are characterized in terms of the optimality system, which is solved numeri-
cally for several scenarios.
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1 Introduction

Diabetes Mellitus(DM) is a chronic non-communicable disease widespread around the world. It
refers to a group of common metabolic disorders that share the phenotype of hyperglycemia.
Several distinct types of DM exist and are caused by a complex interaction of genetics and envi-
ronmental factors.Depending on the etiology of the DM, factors contributing to hyperglycemia in-
clude reduced insulin secretion, decreased glucose utilization, and increased glucose production[1].
A global epidemic of diabetes is expected[2].

Myocardial infarction (MI) or acute myocardial infarction (AMI), commonly known as a heart
attack, results from the interruption of blood supply to a part of the heart, causing heart cells to
die. Immediately after an acute coronary occlusion, blood flow ceases in coronary vessels beyond
the occlusion except for small amount of collateral flow form surrounding vessels. The area of
muscle that has either zero flow or so little flow that it cannot sustain cardiac muscle function is
said to be infarcted. The overall process is called a myocardial infarction. We must mention that
if there is even as much as 15 to 30 per cent of normal resting coronary blood flow, the muscle
will not die. However for blood flow is less than this, the muscle does die.[3].

Diabetes has been confirmed to be an independent risk factor for the occurence of coronary
disease. The link between diabetes and coronary diseases has been known for some 70 years[4].
A risk for diabetics to suffer from coronary diseases is 2-4 times higher than in nondiabetics[5].
Alajbegovic et al[6] shows that MI is prevalent and more significant in diabetics patient than non-
diabetics patients. Control program for myocardial has been attributable to efforts in primary
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prevention as well as improved therapies for myocardial infarction. Most primary-prevention
efforts have focused on the major modifiable determinants of risk: cigarette smoking, an elevated
blood cholesterol level, hypertension, and a sedentary lifestyle. In addition, the modification
of other known coronary risk factors such as obesity and diabetes has been studied. Attention
has most recently been directed toward the possible benefits of estrogen-replacement therapy
in postmenopausal women, moderate alcohol consumption, and low-dose aspirin prophylaxis in
apparently healthy people[7]. Furthermore, a quality control programme methodology, showed
that the chronology of MI management could be improved by appropriate interventions and
monitoring of intervention times[8].

Some past epidemiological model of myocardial infarction have considered the prevalence
and significant of the disease based on Chi-square test[6] and stability analysis of the model[9].
The effectiveness of the diffusion of data, implementation of correctives measures and updated
protocols has been used in reducing time to reperfusion in myocardial infarction (MI) manage-
ment in the out-of-hospital setting[8].In particular, an interesting literature has been devoted to
studies collecting, analyzing and validating data concerning diabetes populations. A variety of
mathematical models, statistical methods and computer algorithms have been proposed in order
to understand different aspects of diabetes such as: glucose-insulin dynamics, epidemiology of
diabetes and its complications, cost of diabetes and cost-effectiveness of strategies dealing with
diabetes [9]. However, these models did not account for time-dependent control strategies since
their discusion are based on prevalence of the MI on diabetic patients. Time dependent con-
trol strategies have been studied for Tuberculosis models (see [10] and [11]). Both approaches of
studying control strategies produce valuable results which can be used to design control programs.
Depending on a chosen goal(goals) various objective criteria may be developed.

The numbers of diabetic patients are increasing very fast all over the world, because of
that, in this paper we consider(time dependent) optimal control strategies for prevention and
recovery from myocardial infarction on diabetic patients for myocardial infarction due to diabetes
epidemiology model developed by Khajehnasiri et al in [9]. Introduced into the model are control
mechanisms representing prevention and recovery for individual diabetic patient with or without
myocardial infarction.

The paper is organized as follows: Section 2 describes the myocardial infarction due to diabetes
epidemiology model with control terms. Our objective functional is also introduced in this section.
The analysis of the optimal controls is given in Section 3. Section 4 includes some numerical
studies of the optimal controls and discusses our result.

2 Materials and Methods

The myocardial infarction recovery model from Khajehnasiri et. al.[9] divides the diabetes human
population (N(t)) into the following sub-groups: diabetes individuals(D

MI
(t)), diabetes individ-

uals that have myocardial infarction(M
MI

(t)) and those with diabetes and have recovered from
myocardial infarction (R

MI
(t)). Thus, the total variable diabetic population size at time t is

given by,
N(t) = D

MI
(t) + M

MI
(t) + R

MI
(t).

It is assumed that diabetic patients are recruited into the population at per capita rate Λ.
The model parameters incorporated are µ (the natural mortality rate) and λ (the probability of

224



Optimal Control of Myocardial Infarction due to Diabetes

diabetic person having myocardial infarction). Hence,

dD
MI

(t)

dt
= Λ − λD

MI
− µD

MI
.

The population of myocardial infarcted individuals is generated following a diabetic patient
having myocardial infarction at the rate λ. This population is decreased by death due to my-
ocardial infarction, recovery, patients who become severely disabled and which disability cannot
be cured, and natural mortality at the rates δ, α, ν, µ, respectively. Hence,

dM
MI(t)

dt
= λDMI(t) − δMMI(t) − αMMI(t) − νMMI(t) − µMMI(t).

Finally, the recovered population is increased by myocardial infarction patients who recovered
at the rate α and decreases by the natural mortality at the rate µ. Thus,

dR
MI

(t)

dt
= αM

MI
− µR

MI
.

In summary, the model system in [9] is given as:

dDMI(t)

dt
= Λ − λDMI − µDMI , (2.1)

dMMI(t)

dt
= λDMI − δMMI − αMMI − νMMI − µMMI , (2.2)

dRMI(t)

dt
= αMMI − µRMI . (2.3)

According to Alajbegovic et al [6] recovered patients can relapse and have myocardial infarc-
tion. Assuming a relapse rate σ, then the model (2.1)-(2.3) becomes

dDMI(t)

dt
= Λ − λD

MI
− µD

MI
, (2.4)

dMMI(t)

dt
= λD

MI
+ σR

MI
− δM

MI
− αM

MI
− νM

MI
− µM

MI
, (2.5)

dRMI(t)

dt
= αM

MI
− σR

MI
− µR

MI
. (2.6)

Hence, introducing the controls representing the level of efforts on prevention and recovery,
the model (2.4)-(2.6) becomes

dDMI(t)

dt
= Λ − λ(1 − u1(t))DMI

− µD
MI

, (2.7)

dMMI(t)

dt
= λ(1 − u1(t))DMI

+ σ(1 − u1(t))RMI
− (δ + αu2(t))MMI

− (ν + µ)M
MI

, (2.8)

dRMI(t)

dt
= αu2(t)MMI

− σ(1 − u1(t))RMI
− µR

MI
. (2.9)

Where DMI(0), MMI(0), RMI(0) are given and the definitions of above model parameters are
listed in Table 2.1. The control functions, u1(t) and u2(t) are bounded, Lebesgue integrable
functions. The control, (1− u1(t)), represents the effort on prevention of diabetic patient having
myocardial infarction to reduce the number of diabetic individuals that may develop myocardial
infarction. While the control u2(t) is the effort on recovery from myocardial infarction to increase
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the number of recovered individuals.

Parameter Description Baseline value Reference

Λ Recruitment rate 0.1964 [6]
µ Natural death rate 0.7 [9]
δ Mortality rate due to myocardial infarction 0.04 [9]
α Recovery rate 0.2 [9]
ν Rate at which diabetic patients with MI become severely disabled 0.04 [9]
λ Probability of a diabetic person having myocardial infarction 0.01 − 0.7 [9]
σ Modification parameter 0.9 assumed

Table 2.1: Description of Parameters of the Model (2.7)-(2.9).

Our objective functional to be minimized is

J(u1, u2) = min
u1,u2

∫ tf

0

(

A1MMI
+ B1u

2
1 + B2u

2
2

)

dt (2.10)

where we want to minimize the diabetic myocardial infarction group while also keeping the cost
of prevention and recovery low. We assume that the cost of prevention and cost of recovery are
nonlinear and take quadratic form here. The coefficients A1, B1, B2 are balancing cost factors
due to scales and importance of the four parts of the objective function and tf is the final time.
We seek to find an optimal control pair, u∗

1 and u∗

2 such that

J(u∗

1, u
∗

2) = min{J(u1, u2)|u1, u2 ∈ U} (2.11)

where U={(u1(t), u2(t)) ∈ L2(0, tf )|ai ≤ (u1(t), u2(t)) ≤ bi, i = 1, 2, t ∈ [0, tf ]} is the control set.

3 Results

The necessary conditions that an optimal control pair must satisfy come from Pontryagin’s Max-
imum Principle[12]. This principle converts (2.7)-(2.9) and (2.10) into a problem of minimizing
pointwise a Hamiltonian, H, with respect to u1 and u2:

H = A1MMI
+ B1u

2
1 + B2u

2
2 +

i=3
∑

i=1

λigi (3.1)

where gi is the right hand side of the differential equation (2.7)-(2.9), of the ith state variable.
By applying Pontryagin’s Maximum Principle[12] and the existence result for the control pairs
from [13], we obtain

Theorem 1. There exists an optimal control pair u∗

1, u∗

2 and corresponding solution, D∗

MI
,M∗

MI

and R∗

MI
, that minimizes J(u1, u2) over U. Furthermore, there exists adjoint variables λ1 =

λD
MI

,λ2 = λM
MI

, λ3 = λR
MI

satisfying

dλD
MI

dt
= λ(1 − u1)λD

MI
+ µλD

MI
− λ(1 − u1)λM

MI
, (3.2)

dλM
MI

dt
= −A1 + (δ + αu2 + ν + µ)λM

MI
− αu2λR

MI
, (3.3)

dλR
MI

dt
= −σ(1 − u1)λM

MI
+ σ(1 − u1)λR

MI
+ µλR

MI
, (3.4)
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with transversality conditions

λDMI
(tf ) = 0, λMMI

(tf ) = 0, λRMI
(tf ) = 0, (3.5)

and N∗ = D∗

MI + M∗

MI + R∗

MI .

The following characterizations hold

u∗

1 = min

{

b1, max

[

a1,
σR

MI
(λM

MI
− λR

MI
) − λD

MI
(λD

MI
+ λM

MI
)

2B1

]}

(3.6)

and

u∗

2 = min

{

b2, max

[

a2,
αMMI (λMMI

− λRMI
)

2B2

]}

(3.7)

Proof. Corollary 4.1 of [13] gives the existence of an optimal control pair due to the convexity
of integrand of J with respect to (u1, u2), a priori boundedness of the state solutions, and the
Lipschitz property of the state system with respect to the state variables. Applying Pontryagin’s
Maximum Principle, we obtain

dλDMI

dt
= −

∂H

∂DMI
, λDMI

(tf ) = 0,

dλMMI

dt
= −

∂H

∂MMI
, λMMI

(tf ) = 0,

dλRMI

dt
= −

∂H

∂RMI
, λRMI

(tf ) = 0,

evaluated at the optimal control pair and corresponding states, which results in the stated adjoint
system (3.2)-(3.4). By considering the optimality conditions,

∂H

∂u1
= 0,

∂H

∂u2
= 0

and solving for u∗

1, u∗

2 subject to the constraints, the characterizations(3.6) and (3.7) can be
derived.

Next, we discuss the numerical solutions of the optimality system and the corresponding
optimal control pairs, the parameters choices, and the interpretations from various cases.

4 Discussion

In this section, we study numerically an optimal control of myocardial infarction strategy of
our myocardial infarction diabetes model. The optimal control strategy is obtained by solving
the optimality system, consisting the state equations (2.7)-(2.9) and adjoint equations (3.2)-
(3.4), using the parameters in Table 2.1 and initial conditions: DMI(0) = 2000, MMI(0) = 500,
RMI(0) = 0 and final time(tf ) is 20 years . All computations were performed in the MATLAB
environment, Version 7.10.0.499 Release(2010a) running on Microsoft Windows 7 operating with
an Intel(R)Pentium(R) Dual Processor running at 2.10 GHZ. We solve the state equations with a
guess for the controls over simulated time using forward fourth order Runge-Kutta scheme. Then
those state variables are used to solve the adjoint equation equations backward in time with the
final conditions(3.5), again using a fourth order Runge-Kutta method. The control u1 and u2
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are updated and used to solve the state and then the adjoint system. The iterative process is
terminated when the current states, adjoint, and control values converges sufficiently.

4.1 Optimal prevention only

With this strategy, optimal prevention only (u1) is utilized in the control of myocardial infarction
due to diabetes while the recovery control (u2) is set to zero, with weight factors A1 = 50,
B1 = 5000, B2 = 0. For this strategy, we observed that the number of diabetic individuals
susceptible is higher than when optimal prevention and recovery are absent, where the number of
diabetic patients susceptible to myocardial infarction tend to zero asymptotically as seen in Figure
1. For the number of diabetic patients with myocardial infarction, the population decreases and
lesser than the number of diabetic individuals with myocardial infarction when optimal prevention
and recovery are absent, where the population asymptotically tends to zero in about two years
as seen in Figure 1.
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Figure 1: Simulations of the MI model (2.7)- (2.9) showing the effect of optimal prevention rate
on both diabetic patients without and with myocardial infarction populations

4.2 Optimal recovery only

Here the control (u2) on recovery is utilized while the control (u1) on prevention is set to zero,
with weight factors A1 = 50, B1 = 0, B2 = 500. For this strategy, we observed in Figure 2 that the
presence of control on recovery speeds up the rate at which the total number of diabetic individuals
with myocardial infarction tends to zero compares with when optimal prevention and recovery
are absent. In the case recovered population, the total number of recovered diabetic individuals
is higher than the total number of recovered diabetic individuals when optimal prevention and
recovery are absent, as seen in Figure 2.
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Figure 2: Simulations of the MI model (2.7)- (2.9) showing the effect of optimal recovery rate on
both myocardial infarction and recovery populations

4.3 Optimal prevention and recovery

With this strategy, the controls on prevention (u1) and recovery(u2) are ulitized with weight
factors A1 = 50, B1 = 5000, B2 = 500. For this strategy we observed in Figure 3, that the total
number of diabetic individuals is lesser than the diabetic population in the absence of optimal
prevention and recovery. In Figure 4, we observed that the diabetic individual with myocardial
infarction decreases and approaches zero faster than in the absence of optimal prevention and
recovery. The recovered population peaked in about two years in the presense of optimal preven-
tion and recovery with a higher number in comparison to the situation when optimal prevention
and recovery are absent as shown in 5. The control strategy for prevention and recovery are
depicted in Figure 6 and Figure 7.
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Figure 3: Simulations of the MI model (2.7)- (2.9) showing the effect of optimal prevention and
recovery rates on diabetic population without myocardial infarction
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Figure 4: Simulations of the MI model (2.7)- (2.9) showing the effect of optimal prevention and
recovery rates on myocardial infarction population
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Figure 5: Simulations of the MI model (2.7)- (2.9) showing the effect of optimal prevention and
recovery rates on recovery population
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Figure 6: Optimal control for prevention
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Figure 7: Optimal control for recovery

5 Conclusion

In conclusion, our optimal control results show how cost-effective combination of prevention and
recovery may reduce the number of diabetic individuals with myocardial infarction. We have
identified the optimal control strategies for several scenarios which yield better results in the
absence of optimal prevention and recovery. Thus, control programs that follow these strategies
can effectively reduce the number of diabetic individuals with myocardial infarction.
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