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Abstract.The entropy of intuitionistic fuzzy sets is used to indicate the degree of fuzziness

of an interval-valued intuitionistic fuzzy set(IvIFS). In this paper, we deal with the entropies

of IvIFSs. Firstly, we propose a set of entropies on IvIFSs with a parameter λ ∈ [0,+∞),

which generalizes the entropy measure defined by Gao, for IvIFSs, and then we prove that

the new entropy is an increasing function with respect to the parameter λ. Finally, some

numerical examples are given to illustrate the applications of the proposed entropy measures

to pattern recognition.
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1 Introduction

The intuitionistic fuzzy set(IFS) has been studied and applied in a variety of fields([2]-[5]). The character

of IFS is that the values of its membership function and non-membership function are real numbers.

However, in many applications, due to the increasing complexity of the social-economic environment

and a lack of knowledge or data about the problem domains, the decision information may be provided

with intervals, instead of real numbers. Thus, interval-valued intuitionistic fuzzy set(IvIFS), as a useful

generation of IFS, was introduced by Atanassov[6], which is characterized by a membership function and

a non-membership function whose values are intervals rather than real numbers. Thus, IvIFS is more

flexible and practical than IFS in coping with fuzziness and uncertainty.
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Entropy measures is an important topic in the fuzzy set theory, and has been investigated by many

researchers. Entropy as a measure of fuzziness was first mentioned by Zadeh[7]. Later, Deluca and

Termini[8] presented some axioms to describe the fuzziness degree of fuzzy set, with which a fuzzy entropy

based on Shannon’s function was proposed. Szimidt and Kacprzyk [9] proposed a nonprobabilistic-type

entropy measure with a geometric interpretation of IFSs, and many other entropy formulas can be found

in [10,11,15,16].

As an important extension of IFS, IvIFS has many applications in real life. However, there is little

investigation on the information measures of IvIFS, although some entropy measures have been presented

in [15,16,21,22] recently. In this paper, motivated by the entropy formula given by Gao[21], we propose a

set of entropies for IvIFSs, which extends Gao’s entropy formula by introducing a parameter. We point

out that the two entropies given by Ye[14] are equal and show some drawbacks of Ye’s entropy.

The rest of the paper is structured as follows. In the next section, we introduce some basic concepts

related to IvIFSs. Then we develop a set of entropies of IvIFSs, and some comparisons between the

entropies are given. Some numerical examples are presented in Section 3 to illustrate the effective of the

new entropy measures. Some conclusions are presented in the finial section.

2 A set of entropies on IvIFSs

In this paper, let [I] denote the set of all the closed subintervals of [0, 1].

Definition 2.1.[15] Let [a1, b1], [a2, b2] ∈ [I], we define

[a1, b1] ≤ [a2, b2], iff a1 ≤ a2 and b1 ≤ b2; [a1, b1] = [a2, b2], iff a1 = a2 and b1 = b2.

Definition 2.2.[6] An interval-valued intuitionistic fuzzy set(IvIFS) A in the finite universe X is

expressed by the form

A = {⟨x, µA(x), vA(x)⟩|x ∈ X},

where µA(x) = [µ−
A(x), µ

+
A(x)] ∈ [I] is called membership interval of element x to IvIFS A, while vA(x) =

[v−A(x), v
+
A(x)] ∈ [I] is the non-membership interval of that element to the set A, and the condition

0 ≤ µ+
A(x) + v+A(x) ≤ 1 must hold for any x ∈ X.

For convenience of notations, we denote by IvIFS(X) the set of all the IvIFS in X. We call the

interval [1 − µ+
A(x) − v+A(x), 1 − µ−

A(x) − v−A(x)], abbreviated by [π−
A(x), π

+
A(x)] and denoted by πA(x),

the interval-valued intuitionistic index of x in A, which is a hesitancy degree of x to A.

Definition 2.3.[15] Let A,B ∈IvIFS(X), where X = {x1, x2, . . . , xn}, then some operations can be

defined as follows:

AC = {⟨xi, [v
−
A(xi), v

+
A(xi)], [µ

−
A(xi), µ

+
A(xi)]⟩|xi ∈ X};

212



Liu Jing, Sun Min

A ⊆ B iff [µ−
A(xi), µ

+
A(xi)] ≤ [µ−

B(xi), µ
+
B(xi)] and [v−A(xi), v

+
A(xi)] ≥ [v−B(xi)v

+
B(xi)] xi ∈ X.

Now we give the entropy concept of IvIFS which is similar to the work of Zhang et al.[15].

Definition 2.4. A real function E : IvIFS(X) → [0, 1] is named an entropy on IvIFSs, if E satisfies

all the following properties:

(E1) E(A) = 0 iff A is a crisp set; (E2) E(A) = 1 iff µA(xi) = vA(xi), ∀xi ∈ X;

(E3) E(A) = E(AC); (E4) E(A) ≤ E(B) if A is less fuzzy than B, which is defined as

µA(xi) ≤ µB(xi), vA(xi) ≥ vB(xi), for µB(xi) ≤ vB(xi);

µA(xi) ≥ µB(xi), vA(xi) ≤ vB(xi), for µB(xi) ≥ vB(xi).

In [14], Ye introduced two fuzzy entropies formula for IvIFS by

EY1(A) =
1

n

n∑
i=1

{[sin
1 + µ−

A(xi) + pWµ(xi)− v−A(xi)− qWv(xi)

4
π

+sin
1− µ−

A(xi)− pWµ(xi) + v−A(xi) + qWv(xi)

4
π − 1]× 1√

2− 1
} (1)

and

EY2(A) =
1

n

n∑
i=1

{[cos
1 + µ−

A(xi) + pWµ(xi)− v−A(xi)− qWv(xi)

4
π

+cos
1− µ−

A(xi)− pWµ(xi) + v−A(xi) + qWv(xi)

4
π − 1]× 1√

2− 1
}, (2)

where Wµ(xi) = µ+
A(xi)− µ−

A(xi),Wv(xi) = v+A(xi)− v−A(xi), and p, q ∈ [0, 1] are two fixed numbers.

The following result can be found in [21], and we give a proof in detail for completeness.

Theorem 2.1. The entropies EY1(A) and EY2(A) are equal. That is, for each IvIFS A, EY1(A) =

EY2(A), and they are equivalent to the following formula:

EY(A) =
1

n

n∑
i=1

{[
√
2 cos

µ−
A(xi) + pWµ(xi)− v−A(xi)− qWv(xi)

4
π − 1]× 1√

2− 1
}. (3)

Proof. Set ∆1 =
1+µ−

A
(xi)+pWµ(xi)−v−

A
(xi)−qWv(xi)

4 π,∆2 =
1−µ−

A
(xi)−pWµ(xi)+v−

A
(xi)+qWv(xi)

4 π. Then,

from the property of the trigonometric function, we get

EY1(A) =
1

n

n∑
i=1

{[sin∆1 + cos(
π

2
−∆2)− 1]× 1√

2− 1
} =

1

n

n∑
i=1

{[sin∆1 + cos∆1 − 1]× 1√
2− 1

}.

Similarly, we have

EY2(A) =
1

n

n∑
i=1

{[cos∆1 + sin(
π

2
−∆2)− 1]× 1√

2− 1
} =

1

n

n∑
i=1

{[cos∆1 + sin∆1 − 1]× 1√
2− 1

}.
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Thus, EY1(A) = EY2(A). Furthermore, we can simplify EY1(A) as follows:

EY1(A) =
1

n

n∑
i=1

{[
√
2(

√
2

2
sin∆1 +

√
2

2
cos∆1)− 1]× 1√

2− 1
}

=
1

n

n∑
i=1

{[
√
2 sin(∆1 +

π

4
)− 1]× 1√

2− 1
} =

1

n

n∑
i=1

{[
√
2 cos(∆1 −

π

4
)− 1]× 1√

2− 1
}.

The completes the proof.

Example 2.1. Assume that X = {x} and two IvIFS A1 = {⟨x, [0.1, 0.2], [0.3, 0.4]⟩}, and A2 =

{⟨x, [0.2, 0.3], [0.4, 0.5]⟩}. We adopt EY(A) to calculate the entropies of A1, A2.

Intuitively, we can see that A1 is more fuzzy than A2. Set p = q = 0.5(medium value) in (3), we have

EY(A) =
1

n

n∑
i=1

{[
√
2 cos

µ−
A(xi) + µ+

A(xi)− v−A(xi)− v+A(xi)

8
π − 1]× 1√

2− 1
}. (4)

From the entropy formula (3), we can get EY (A1) = EY (A2) = 0.9580, which is inconsistent with our

intuition. The reason is that the entropy EY(A) only contains the difference between the membership

degree and the nonmembership degree, and it does not contain the hesitancy degree.

Certainly, Gao[21] also noted these drawbacks of EY(A). In order to overcome them, Gao[21] proposed

the following entropy for IvIFS by incorporating the hesitancy degree into the entropy formula:

EG(A) =
1

n

n∑
i=1

cos
|µ−

A(xi)− v−A(xi)|+ |µ+
A(xi)− v+A(xi)|

2(2 + π−
A(xi) + π+

A(xi))
π. (5)

The entropy measure EG(A) reflects not only the difference between the membership degree and the

nonmembership degree, but also the hesitancy degree. Thus it can measure the fuzziness and intuitionism

of IvIFSs more comprehensively. However, the following example shows that the above entropy cannot

distinguish the fuzzyness of some IvIFSs in some cases.

Example 2.2. Assume that X = {x} and two IvIFS A3 = {⟨x, [0.1, 0.2], [0.2, 0.5]⟩}, and A4 =

{⟨x, [0.1, 0.2], [0.1, 0.6]⟩}. We adopt EG(A) to calculate the entropies of A3, A4.

From the entropy formula EG(A), we have:

EG(A3) =
1

n

n∑
i=1

cos
0.1 + 0.3

2(2 + 1)
π = cos

π

15
, EG(A4) =

1

n

n∑
i=1

cos
0 + 0.4

2(2 + 1)
π = cos

π

15
.

Therefore EG(A3) = EG(A4), then EG(A) can not distinguish the fuzzyness of A3 and A4.

To enhance the distinguishing ability of the EG(A), we propose the following entropy formula:

E(A, λ) =
1

n

n∑
i=1

cos
|µ−

A(xi)− v−A(xi)|+ |µ+
A(xi)− v+A(xi)|

2(2 + π−
A(xi) + π+

A(xi) + λmin{µ−
A(xi) + µ+

A(xi), v
−
A(xi) + v+A(xi)})

π, (6)

where λ ∈ [0,+∞) is a parameter. Obviously, if λ = 0, then E(A, λ) is reduced to the entropy EG(A).
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Remark 2.1 In fact, the different entropies may affect some specific application problems, such as

pattern recognition and MADM[24]. For a MADM problem with alternatives expressed by IvIFSs, the

optimists may choose the greater λ compared with the pessimists. On the contrary, the pessimists may

choose the smaller λ. Therefore, the chosen λ of Equation (6) depends on the specific application.

Theorem 2.2. The mapping E(A, λ), defined by (6), is an entropy measure for IvIFS, i.e., it satisfies

all the properties in Definition 2.4.

Proof. We only need to prove that all the properties in Definition 2.4 hold. Firstly, we set

Ẽi(A, λ) = cos(Ei(A, λ)π), (7)

where

Ei(A, λ) =
|µ−

A(xi)− v−A(xi)|+ |µ+
A(xi)− v+A(xi)|

2(2 + π−
A(xi) + π+

A(xi) + λmin{µ−
A(xi) + µ+

A(xi), v
−
A(xi) + v+A(xi)})

,

then

E(A, λ) =
1

n

n∑
i=1

Ẽi(A, λ). (8)

Obviously, Ei(A, λ) ≥ 0. In the following, we prove that Ei(A, λ) ≤ 1/2. Since

Ei(A, λ) ≤
|µ−

A(xi)− v−A(xi)|+ |µ+
A(xi)− v+A(xi)|

2(2 + π−
A(xi) + π+

A(xi))

.
= Fi(A, λ).

Therefore, we only need to prove that Fi(A, λ) ≤ 1/2. If µ−
A(xi) ≥ v−A(xi), µ

+
A(xi) ≥ v+A(xi), then

Fi(A, λ) =
µ−
A(xi)− v−A(xi) + µ+

A(xi)− v+A(xi)

2(4− µ−
A(xi)− µ+

A(xi)− v−A(xi)− v+A(xi))
,

It is easy to get that Fi(A, λ) is increasing with respect to µ−
A(xi) and µ+

A(xi). Next we prove that

Fi(A, λ) is decreasing with respect to v−A(xi) and v+A(xi). Taking the partial derivation of Fi(A, λ) with

respect to v−A(xi) and v+A(xi) respectively, yields

∂Fi(A, λ)

∂µ−
A(xi)

=
−4 + 2(µ−

A(xi) + µ+
A(xi))

2(4− µ−
A(xi)− µ+

A(xi)− v−A(xi)− v+A(xi))2
≤ 0.

∂Fi(A, λ)

∂µ+
A(xi)

=
−4 + 2(µ−

A(xi) + µ+
A(xi))

2(4− µ−
A(xi)− µ+

A(xi)− v−A(xi)− v+A(xi))2
≤ 0.

Then, in its definition region, the function Fi(A, λ) reaches maximum when µA(xi) = [1, 1], vA(xi) = [0, 0].

That is: Ei(A, λ) ≤ Fi(A, λ) ≤ 1−0+1−0
2(4−1−1−0−0) = 1

2 for all xi ∈ X. Similarly, we can get the same

result when µ−
A(xi) ≥ v−A(xi), µ

+
A(xi) ≤ v+A(xi), or µ−

A(xi) ≤ v−A(xi), µ
+
A(xi) ≥ v+A(xi), or µ−

A(xi) ≤
v−A(xi), µ

+
A(xi) ≤ v+A(xi).

(E1) If A is a crisp set, then for any xi ∈ X, we know

µA(xi) = [1, 1], vA(xi) = [0, 0] or µA(xi) = [0, 0], vA(xi) = [1, 1],
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then πA(xi) = [0, 0] for each xi ∈ X. From (6), we obtain that E(A, λ) = 0.

On the other hand, now suppose that E(A, λ) = 0. Since every term in the summation of (8) is

non-negative, we deduce that every term should be zero, i.e., Ẽi(A, λ) = 0 for each xi ∈ X. Then from

(7) and 0 ≤ Ei(A, λ) ≤ 1/2, we get

Ei(A, λ) =
|µ−

A(xi)− v−A(xi)|+ |µ+
A(xi)− v+A(xi)|

2(2 + π−
A(xi) + π+

A(xi) + λmin{µ−
A(xi) + µ+

A(xi), v
−
A(xi) + v+A(xi)})

=
1

2
. (9)

That is

|µ−
A(xi)− v−A(xi)|+ |µ+

A(xi)− v+A(xi)|

= 4− (µ−
A(xi) + v−A(xi) + µ+

A(xi) + v+A(xi)) + λmin{µ−
A(xi) + µ+

A(xi), v
−
A(xi) + v+A(xi)}

which combines the equation |a− b|+ (a+ b) = 2max{a, b} for any a, b ∈ R leads to

2max{µ−
A(xi), v

−
A(xi)}+ 2max{µ+

A(xi), v
+
A(xi)} = 4 + λmin{µ−

A(xi) + µ+
A(xi), v

−
A(xi) + v+A(xi)}.

Then from 0 ≤ µ−
A(xi) ≤ µ+

A(xi) ≤ 1, 0 ≤ v−A(xi) ≤ v+A(xi) ≤ 1 and λ ≥ 0, we can obtain

max{µ−
A(xi), v

−
A(xi)} = 1,max{µ+

A(xi), v
+
A(xi)} = 1 (10)

and

λmin{µ−
A(xi) + µ+

A(xi), v
−
A(xi) + v+A(xi)} = 0. (11)

The first equation in (10) means that

µ−
A(xi) = 1, or v−A(xi) = 1.

If µ−
A(xi) = 1, then from 0 ≤ µ−

A(xi) ≤ µ+
A(xi) ≤ 1, 0 ≤ v−A(xi) ≤ v+A(xi) ≤ 1 and µ+

A(xi) + v+A(xi) ≤ 1,

we have µ−
A(xi) = µ+

A(xi) = 1, v−A(xi) = v+A(xi) = 0. Similarly, if v−A(xi) = 1, then from 0 ≤ µ−
A(xi) ≤

µ+
A(xi) ≤ 1, 0 ≤ v−A(xi) ≤ v+A(xi) ≤ 1 and µ+

A(xi) + v+A(xi) ≤ 1, we have µ−
A(xi) = µ+

A(xi) = 0, v−A(xi) =

v+A(xi) = 1. Thus,

µA(xi) = [1, 1], vA(xi) = [0, 0] or µA(xi) = [0, 0], vA(xi) = [1, 1]

any xi ∈ X. This indicates that A is a crisp set.

(E2) Let µA(xi) = vA(xi) for xi ∈ X, i.e., µ−
A(xi) = v−A(xi) and µ+

A(xi) = v+A(xi). From Equation(6),

we obtain E(A, λ) = 1.

Now suppose that E(A, λ) = 1. From (8) and 0 ≤ Ẽi(A, λ) ≤ 1, we obtain that Ẽi(A, λ) = 1 for all

xi ∈ X. Then from (7) and 0 ≤ Ei(A, λ) ≤ 1/2, we have

Ei(A, λ) =
|µ−

A(xi)− v−A(xi)|+ |µ+
A(xi)− v+A(xi)|

2(2 + π−
A(xi) + π+

A(xi) + λmin{µ−
A(xi) + µ+

A(xi), v
−
A(xi) + v+A(xi)})

= 0
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for all xi ∈ X. Therefore, µ−
A(xi) = v−A(xi) and µ+

A(xi) = v+A(xi) for each xi ∈ X, which implies that

µA(xi) = vA(xi) for xi ∈ X.

(E3) It is clear that AC = {⟨xi, [v
−
A(xi), v

+
A(xi)], [µ

−
A(xi), µ

+
A(xi)]⟩|xi ∈ X}, i.e., µAC (xi) = vA(xi) =

[v−A(xi), v
+
A(xi)], and vAC (xi) = µA(xi) = [µ−

A(xi), µ
+
A(xi)]. By applying (6), we have E(AC , λ) = E(A, λ).

(E4) Suppose that µB(xi) ≤ vB(xi), i.e., µ
−
B(xi) ≤ v−B(xi), µ

+
B(xi) ≤ v+B(xi) and µA(xi) ≤ µB(xi), vA(xi) ≥

vB(xi), i.e.,

µ−
A(xi) ≤ µ−

B(xi), µ
+
A(xi) ≤ µ+

B(xi), v
−
A(xi) ≥ v−B(xi), v

+
A(xi) ≥ v+B(xi) (12)

for each xi ∈ X. Then it follows that µ−
A(xi) ≤ v−A(xi) and µ+

A(xi) ≤ v+A(xi). Firstly, we prove that

Ei(A, λ) ≥ Ei(B, λ).

Assume that the above inequality does not right. Then we have

v−A(xi)− µ−
A(xi) + v+A(xi)− µ+

A(xi)

2(2 + π−
A(xi) + π+

A(xi) + λµ−
A(xi) + λµ+

A(xi))
<

v−B(xi)− µ−
B(xi) + v+B(xi)− µ+

B(xi)

2(2 + π−
B(xi) + π+

B(xi) + λµ−
B(xi) + λµ+

B(xi))
,

That is

(v−A(xi)− µ−
A(xi) + v+A(xi)− µ+

A(xi))(2 + π−
B(xi) + π+

B(xi) + λµ−
B(xi) + λµ+

B(xi))

< (v−B(xi)− µ−
B(xi) + v+B(xi)− µ+

B(xi))(2 + π−
A(xi) + π+

A(xi) + λµ−
A(xi) + λµ+

A(xi)).

From the above inequality, we can deduce that

(µ−
A(xi) + µ+

A(xi))(2v
−
B(xi) + 2v+B(xi)− 4) + (v−A(xi) + v+A(xi))×

(4− 2µ−
B(xi)− 2µ+

B(xi)) + 4(µ−
B(xi) + µ+

B(xi))− 4(v−B(xi) + v+B(xi))

+λ[(v−A(xi) + v+A(xi))(µ
−
B(xi) + µ+

B(xi))− (v−B(xi) + v+B(xi))(µ
−
A(xi) + µ+

A(xi))] < 0.

(13)

From inequality (12), we have µ−
A(xi)+µ+

A(xi) ≤ µ−
B(xi)+µ+

B(xi) and v−A(xi)+v+A(xi) ≥ v−B(xi)+v+B(xi).

Thus

(µ−
A(xi) + µ+

A(xi))(2v
−
B(xi) + 2v+B(xi)− 4) ≥ (µ−

B(xi) + µ+
B(xi))(2v

−
B(xi) + 2v+B(xi)− 4)

and

(v−A(xi) + v+A(xi))(4− 2µ−
B(xi)− 2µ+

B(xi)) ≥ (v−B(xi) + v+B(xi))(4− 2µ−
B(xi)− 2µ+

B(xi)).

From inequality (12) again, we have v−A(xi)+ v+A(xi) ≥ v−B(xi)+ v+B(xi) and µ−
B(xi)+µ+

B(xi) ≥ µ−
A(xi)+

µ+
A(xi). Thus

(v−A(xi) + v+A(xi))(µ
−
B(xi) + µ+

B(xi))− (v−B(xi) + v+B(xi))(µ
−
A(xi) + µ+

A(xi)) ≥ 0.
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Substitute the above three inequalities into the left side of (10), we obtain that

(µ−
A(xi) + µ+

A(xi))(2v
−
B(xi) + 2v+B(xi)− 4) + (v−A(xi) + v+A(xi))×

(4− 2µ−
B(xi)− 2µ+

B(xi)) + 4(µ−
B(xi) + µ+

B(xi))− 4(v−B(xi) + v+B(xi))

+λ[(v−A(xi) + v+A(xi))(µ
−
B(xi) + µ+

B(xi))− (v−B(xi) + v+B(xi))(µ
−
A(xi) + µ+

A(xi))]

≥ (µ−
B(xi) + µ+

B(xi))(2v
−
B(xi) + 2v+B(xi)− 4) + (v−B(xi) + v+B(xi))(4− 2µ−

B(xi)− 2µ+
B(xi))

+4(µ−
B(xi) + µ+

B(xi))− 4(v−B(xi) + v+B(xi))

= 0,

which contradicts with the inequality (13). This contradiction implies that Ei(A, λ) ≥ Ei(B, λ), for all

xi ∈ X. Since the function cos(·) is decreasing on the interval [0, π/2], from (7), we have Ẽi(A, λ) ≤
Ẽi(B, λ), for all xi ∈ X. Then from (8), we have E(A, λ) ≤ E(B, λ).

Similarly, when µB(xi) ≤ vB(xi), and µA(xi) ≤ µB(xi), vA(xi) ≥ vB(xi) for each xi ∈ X, we can also

prove that E(A, λ) ≤ E(B, λ). This completes the proof.

Theorem 2.3. The proposed entropy E(A, λ) is a increasing function of λ(λ ∈ [0,+∞)).

Proof. Obviously.

3 Illustrative examples

In this section, we consider the following examples to illustrate the applications of the proposed measures

of IvIFSs to pattern recognition problems. For two given IvIFSs

A = {⟨x, [µ−
A(x), µ

+
A(x)], [v

−
A(x), v

+
A(x)]⟩|x ∈ X},

B = {⟨x, [µ−
B(x), µ

+
B(x)], [v

−
B(x), v

+
B(x)]⟩|x ∈ X},

based on the entropy (6) and the transformation method in [16], we can get the following similarity

measures:

S(A,B) =
1

n

n∑
i=1

cos
AB1 +AB2

4 + λ(2−AB1−AB2)
π, (14)

where

AB1 = |µ−
A − µ−

B | ∨ |v−A − v−B |, AB2 = |µ+
A − µ+

B | ∨ |v+A − v+B |.

Example Let us consider the following pattern recognition problem as discussed in [15]. Assume

Ri(i = 1, 2, . . . , 5) are given five known patterns, which correspond to five decision alternatives di(i =

1, 2, . . . , 5), respectively. The patterns are denoted by the following IvIFSs in X = {x1, x2, x3, x4}.

R1 = {⟨x1, [0.4, 0.5], [0.3, 0.4]⟩, ⟨x2, [0.4, 0.6], [0.2, 0.4]⟩, ⟨x3, [0.3, 0.4], [0.4, 0.5]⟩, ⟨x4, [0.5, 0.6], [0.1, 0.3]⟩,
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R2 = {⟨x1, [0.5, 0.6], [0.2, 0.3]⟩, ⟨x2, [0.6, 0.7], [0.2, 0.3]⟩, ⟨x3, [0.5, 0.6], [0.3, 0.4]⟩, ⟨x4, [0.4, 0.7], [0.1, 0.2]⟩,

R3 = {⟨x1, [0.3, 0.5], [0.3, 0.4]⟩, ⟨x2, [0.1, 0.3], [0.5, 0.6]⟩, ⟨x3, [0.2, 0.5], [0.4, 0.5]⟩, ⟨x4, [0.2, 0.3], [0.4, 0.6]⟩,

R4 = {⟨x1, [0.2, 0.5], [0.3, 0.4]⟩, ⟨x2, [0.4, 0.7], [0.1, 0.2]⟩, ⟨x3, [0.4, 0.5], [0.3, 0.5]⟩, ⟨x4, [0.5, 0.8], [0.1, 0.2]⟩,

R5 = {⟨x1, [0.3, 0.4], [0.1, 0.3]⟩, ⟨x2, [0.7, 0.8], [0.1, 0.2]⟩, ⟨x3, [0.5, 0.6], [0.2, 0.4]⟩, ⟨x4, [0.6, 0.7], [0.1, 0.2]⟩.

Given an unknown sample

R = {⟨x1, [0.5, 0.6], [0.1, 0.3]⟩, ⟨x2, [0.7, 0.8], [0.1, 0.2]⟩, ⟨x3, [0.5, 0.6], [0.2, 0.4]⟩, ⟨x4, [0.6, 0.8], [0.1, 0.2]⟩.

Our purpose is to distinguish which class the unknown pattern R belongs to.

Calculate the similarity degree S(Ri, R)(i = 1, 2, . . . , 5) between Ri and R by (14), we have

S(R1, R) = 0.9862, S(R2, R) = 0.9976, S(R3, R) = 0.9254, S(R4, R) = 0.9908, S(R5, R) = 0.9985.

Then select the largest one, that is the similarity degree S(R5, R) = 0.9985 between R5 and R. Hence R

belongs to pattern R5, which is the same as that obtained in [15].

4 Conclusion

Many information measures have been developed, however, there is scope that better measures can be

developed, which will find applications in variety of fields. In this paper, we propose a set of entropy

measures on IvIFSs based on the entropy measure defined in [21]. We also demonstrate the efficiency of

proposed entropy and similarity measures through pattern recognition.

In future research, we shall continue working in the extension and application of the developed mea-

sures to other domains. As pointed in Remark 2.1, the different entropies may affect some specific

application problems. Thus, how to determine an adaptive value of λ deserves further studying.
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