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Abstract

This paper deals with a batch arrival Poisson input, two heterogeneous services with

randomly relaps and the second phase of service having many options. The first phase

of service is essential for all customers, but with probability γ1 a tagged customer chose

second phase, with probability η1 relapses to tail of original queue or with probability

ζ1 = 1 − γ1 − η1 leave the system. Also, after completion of the second phase, with

probability γ2 the customer leaves the system, or with probability1−γ2 relapses to tail of

original queue. In addition, we assume restricted admissibility of arriving batches in which

not all batches are allowed to join the system at all times. After completion of the first

phase or second phase of service, the server either goes for a vacation with probability

θ(0 ≤ θ ≤ 1), or may continue to serve the next unit with probability 1 − θ, if any.

Otherwise, it remains in the system until a customer arrives. In this paper we derive the

steady- state equations, PGF’s of the system, and measures of sysytem.

Keywords:M/G/1 Queue, Two phase of heterogeneous service, relapse, admissibility

restricted, Bernoulli vacation, Mean queue size, Mean response time.

1. Introduction

Qeues with relapse and vacation and optional services have been widely used to model

problems in telephones, computers and communication systems. In general, queueing

theory is an important subject in computers and operations research. Buffers /queues

are used to store information that can not be transmitted instantaneously. Classical

queueing systems assume that customers are in continuous contact with the server, that

is, they can see whether or not the server is busy and thus commence service immediately

whenever the service station becomes idle. However, queueing systems with relapse differ

in that customers do not know the server state and consequently must verify if the server

is idle from time to time. It is natural for telephone callers to break contact when the

line is occupied and re-apply for connection later as a vacation. Madan [10], Madan and

Choudhury [14] studied the M/G/1 queueing system with two phases of heterogeneous
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services such that the first phase of service follows by the second phase of service, under

a Bernoulli vacation schedule.

An MX/G/1 queue system with an additional service channel were analyzed by Choud-

hury [8]. Furthermore, a similar work can be found in Artalejo[2] and Ke[9].

Madan and Choudhury [13] proposed an MX/G/1 queueing system, assuming batch

arrivals with restricted admissibility of arriving batches and Bernoulli schedule server

vacation. Earlier, Madan and Abu-Dayyeh [11,12] dealt with this type of model and

studied some aspects of batch arrivals Bernoulli vacation models with restricted admissi-

bility, where all arriving batches are not allowed into the system at all time. Furtheremore

in Chaudhury[5] and Artalejo[2] the M/G/1 queueing systems with optional service are

analyzed.

Recently in Badamchizadeh and Shahkar[3], Badamchizadeh[4], Salehirad and Badam-

chizadeh[16] author of this paper has extended this models.

In many applications such as hospital services, production systems, bank services, com-

puter and communication networks, there is many phases of services such that after com-

pletion of services, customers may leave the system or may immediately go for the next

phase of service, or the services must be repeated.

For simplicity we assume two phases of services such that the second phase of service

consisting of many optional cases, where customers may choose one of them with certain

probability. However, this model are extended to k phases of services. Unlike the usual

batch arrival queueing systems, the policy of restricted admissibility of batches in which

not all batches are allowed to join the system at all times, has been assumed in this

model. In other words, an arriving batch will be allowed to join the system during the

server’s non-vacation and vacation periods with constant probabilities. Also in this system

for overhauling or maintenance purpooses of the system, or serving other customers, the

server being fatigue or for other reasons not mentioned here, the server may go to vacation.

In this paper our aim is toanalyze a single server queue with a batch arrival Poisson

input, two phases of heterogeneous service in which the second phase has optional cases,

restricted admissibility of batches, randomly relapse in services, and Bernoulli vacation

for server. In section 2 we deal with the mathematical model and definitions. Steady-

State conditions and generating functions are discussed in section 3. Mean queue size

and mean response time are computed in section 4, where in section 6 some special cases

are investigated. Finaly wiyh some numerical method the validity of model has been

examined.

2. Mathematical model and definitions

We consider a queueing system such that:

i) Customers arrive at the system one by one in a compound Poisson process with a

batch of random size X and mean rate λ > 0. Size of succesive arriving batches are
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X1,X2,..., where i.i.d random variables, distributed with probability mass function(p.m.f)

dn = Prob[Xi = n];n ⩾ 1, probability genrerating function(PGF) d(z) = E[zX1 ]. The

first and second moments d(1) = E[X] and d(2) = E[X2]; respectively, are assumed to be

finite.

ii)The server provides two phases of heterogenous service in succession. The service

discipline is assumed to be on the basis of first come, first serve(FCFS). The first phase

of service is essential for all customers, but as soon as the essential service is completed,

a tagged customer moves for second phase with probability γ1, relapses to tail of original

queue with probability η1 or leaves the system with probability ζ1 = 1− γ1 − η1.

Similarly after completion of the second phase with probability γ2 the customer leaves

the system or with probability ζ2 = 1− γ2 relapses to the tail of original queue.

The second phase may have k cases(alternatives) where the customer chooses every

case with probability pi respectively such that Σpi = 1.

The service times for two phases are independent random variables, denoted by B1, B2.

Their Laplace-Stieltjes transform (LST)are B∗
1(s), B

∗
2(s) where we assume they have finite

moments E(Bl
i) for l ≧ 1 and i=1,2. Also for the second phase of the service the random

variables Sj for j = 1, 2, ..., k denotes the service time of cases, respectively. Their corre-

sponding LST are shown as S∗
j (s). Also we assume that the E(Sl

j) is finite for l ≥ 1. In

other words:

B2 =
∑k

j=1 pjSj

and

(1) B∗
2(s) =

k∑
j=1

pjS
∗
j (s)

iii)There is a policy restricted admissibility of batches in which not all batches are allowed

to join the system at all times. Let α(0 ≦ α ≦ 1) and β(0 ≦ β ≦ 1) be the probability

that an arriving batch will be allowed to join the system during the period of the server’s

non-vacation period(system’s turn off period, setup time and service time) and vacation

period respectively.

iv)As soon as the first phase of a customer is completed or the second phase is completed,

the server may go for a vacation of random length V with probability θ(0 ≤ θ ≤ 1) or

it may continue to serve the next customer, if any, with probability (1− θ), otherwise it

remains in the system and waits for a new arrival. We denote V (x), V ∗(s) and E(V l) for

distribution function (DF),LST and l′th finite moment of V, respectively, where l ≥ 1.

v)The random variables B1, B2, V and also Sj are all independent variables.

Definition 2.1. The modified service time or the time required by a customer to

complete the service cycle is given by:
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(2) B =

B0 + V with probability θ

B0 with probability (1− θ)

then the LST B∗(s) of B is given by

(3) B∗(s) = θB∗
0(s)V

∗(s) + (1− θ)B∗
0(s)

Also

(4) E(B) = −dB∗(s)

ds
|s=0= E(B0) + θE(V )

In this system, random variable B0 with

(5) B0 =

B1 with probability γ1

B1 +B2 with probability (1− γ1)

(6) B∗
0(s) = γ1B

∗
1(s)B

∗
2(s) + (1− γ1)B

∗
1(s)

E(B0) = −dB∗
0(s)

ds
|s=0 = E(B1) + γ1E(B2)

= E(B1) + γ1[
k∑

j=1

pjE(Sj)]
(7)

(8) E(B2
0) =

(−1)2d2B∗
0(s)

ds2
|s=0= E(B2

1) + 2γ1E(B1)E(B2) + γ1E(B2
2)

represents the required time without relapse and random variable Bf with

(9) E(Bf ) = ζ1E(B1) + γ1γ2[E(B1) + E(B2)]

represents required time with relapse.

Further,fori = 1, 2 we assume that; Bi(0) = 0, Bi(∞) = 1 and Bi(x) are continuous

at x = 0, so that

(10) µ(x)idx =
dBi(x)

1−Bi(x)

is the first order differential equation(hazard rate functions) of Bi.

Also, V (0) = 0, V (∞) = 1 and V (x) is continuous at x = 0 , so that

(11) ν(x)dx =
dV (x)

1− V (x)

is hazard rate function of V.
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Definition 2.2. Let NQ(t) be the queue size at time ’t’ and the supplementary vari-

ables are defined as :

B0
1(t)[B

0
2(t)] ≡ the elapsed first [second] phase of service at time ’t’

V 0(t) ≡ the elapsed vacation time at time ’t’

Now let us introduce the following random variables :

(12) Y (t) =


0 if the server is idle at time ’t’,

1[2] if the server is busy with first[second]phase of service at time ’t’,

3 if the server is on vacation at time ’t’.

From this we have a bivariate Markov process {NQ(t), L(t)} where L(t) = 0 if Y (t) = 0;

L(t) = B0
i (t) if Y (t) = i for i = 1, 2 and L(t) = V 0(t) if Y (t) = 3. Now for i = 1, 2 the

following probabilities are defined as:

Qn(x, t) = Prob[NQ(t) = n, L(t) = V 0(t);x < V 0(t) ⩽ x+ dx] x > 0, n ⩾ 0

Pi,n(x, t) = Prob[NQ(t) = n, L(t) = B0
i (t); x < B0

i (t) ⩽ x+ dx] x > 0, n ⩾ 1

and

R0(t) = Prob[NQ(t) = 0, L(t) = 0]

Now the analysis of the limiting behaviour of this queueing process at a random epoch

can be performed with the help of Kolmogorov forward equations, provided the following

limits exist and are independent of initial state :

R0 = limt→∞ R0(t)

Pi,n(x)dx = limt→∞ Pi,n(x, t)dx i = 1, 2 x > 0, n ⩾ 0

Qn(x)dx = limt−→∞Qn(x, t)dx x > 0, n > 0

Definition 2.3. For i = 1, 2 the PGF of these probabilities are defined as follow:

(13) Pi(x, z) =
∞∑
n=1

znPi,n(x) |z| ⩽ 1, x > 0

(14) Pi(0, z) =
∞∑
n=1

znPi,n(0) |z| ⩽ 1

Also

(15) Q(x, z) =
∞∑
n=0

znQn(x) |z| ⩽ 1, x > 0

(16) Q(0, z) =
∞∑
n=0

znQn(0)
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3. Steady-state probability generating function

From Kolmogorov forward equations , for i = 1, 2 the steady-state conditions can be

written as follow

(17)
d

dx
Pi,n(x)+[λ+µi(x)]Pi,n(x) = λ(1−α)Pi,n(x)+λα

n∑
k=1

akPi,n−k(x) n ≥ 1, x > 0

(18)
d

dx
Qn(x) + [λ+ ν(x)]Qn(x) = λ(1− β)Qn(x) + λβ

n∑
k=1

akQn−k(x) n ≥ 1, x > 0

(19)
d

dx
Q0(x) + [λ+ ν(x)]Q0(x) = λ(1− β)Q0(x)

also

(20) λαβR0 = β(1−θ)(1−γ1−η1)

∫ +∞

0

µ1(x)P1,1(x)dx+β(1−θ)γ2

∫ +∞

0

µ2(x)P2,1(x)dx+α

∫ +∞

0

ν(x)Q0(x)dx

For n ≥ 1 these sets of equations are to be solved under the following boundary conditions

at x = 0

βP1,n(0) = λαβanR0 + β(1− θ)(1− γ1 − η1)

∫ +∞

0

µ1(x)P1,n+1(x)dx+ βη1

∫ +∞

0

µ1(x)P1,n(x)dx

+βγ2(1− θ)

∫ +∞

0

µ2(x)P2,n+1(x)dx+ β(1− γ2)

∫ +∞

0

µ2(x)P2,n(x)dx+ α

∫ +∞

0

ν(x)Qn(x)dx

(21)

and

(22) P2,n(0) = γ1

∫ +∞

0

µ1(x)P1,n(x)dx, n ⩾ 1

also for n ≥ 0

(23)

αQn(0) = β(1− γ1 − η1)θ

∫ +∞

0

µ1(x)P1,n+1(x)dx+ βθγ2

∫ +∞

0

µ2(x)P2,n+1(x)dx, n ⩾ 0

Finally the normalizing condition is

(24) R0 +
2∑

i=1

∞∑
n=1

∫ +∞

o

Pi,n(x)dx+
∞∑
n=0

∫ +∞

0

Qn(x)dx = 1

For i = 1, 2 from (3.17) we have

(25) Pi(x, z) = Pi(0, z)[1−Bi(x)]e
−λα(1−d(z))x x > 0

and from (3.18),(3.19)

(26) Q(x, z) = Q(0, z)[1− V (x)]e−λβ(1−d(z))x x > 0

Now for i = 1, 2 let

(27) B∗
i (λα(1− d(z)) =

∫ +∞

0

e−λα(1−d(z))xdBi(x)
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(28) V ∗(λβ(1− d(z)) =

∫ +∞

0

e−λβ(1−d(z))xdV (x)

be the z-transform of Bi and V respectively, then by multiplying (3.21) in zn and sum-

mation from n = 1 to +∞, adding (3.20) to result and using (3.25) and (3.26) we have:

βzP1(0, z) = λαβR0z(d(z)− 1) + β(1− θ)(1− γ1 − η1)P1(0, z)B
∗
1(λα(1− d(z)))

+ zβη1P1(0, z)B
∗
1(λα(1− d(z))) + βγ2(1− θ)P2(0, z)B

∗
2(λα(1− d(z)))

+ β(1− γ2)P2(0, z)B
∗
2(λα(1− d(z))) + zαQ(0, z)V ∗(λβ(1− d(z)))

(29)

Also by multiplying (3.22) in zn and summation on n = 1 to +∞ we have:

(30) P2(0, z) = γ1P1(0, z)B
∗
1(λα(1− d(z)))

similarly from (3.23)

(31) zαQ(0, z) = β(1−γ1−η1)θP1(0, z)B
∗
1(λα(1−d(z)))+βθγ2P2(0, z)B

∗
2(λα(1−d(z)))

In the rest of this section for simplifying the formulas we omit (λα(1 − d(z))) from B∗
i

and

(λβ(1− d(z))) from V ∗.

Remark 3.1. We set v∗(z) = [(1−θ)+θV ∗(λβ(1−d(z)))]. In the systems with vacation,

this function has the main role. Also if b∗(z) = (ζ1 + γ1γ2B
∗
2)B

∗
1 , then by substituting

P2(0, z) and Q(0, z) for (3.30), (3.31) in (3.29) we have

(32) P1(0, z) =
λαzR0(d(z)− 1)

z[1− (η1 + (1− γ2)γ1B∗
2)B

∗
1 ]− b∗(z)v∗(z)

Since

P1(z) =
∫ +∞
0

P1(x, z)dx

hence from (3.25) for i = 1, using (3.32) and integration by part we have

(33) P1(z) =
R0z(1−B∗

1)

b∗(z)v∗(z)− z[1− (η1 + (1− γ2)γ1B∗
2)B

∗
1 ]

Similarly from (3.25) for i = 2, (3.30) and (3.32) we have

P2(z) =

∫ +∞

0

P2(x, z)dx =

∫ +∞

0

P2(0, z)[1−B2(x)]e
−λα(1−X(z))xdx

=

∫ +∞

0

γ1P1(0, z)B
∗
1 [1−B2(x)]e

−λα(1−X(z))xdx

=
R0zγ1B

∗
1(1−B∗

2)

b∗(z)v∗(z)− z[1− (η1 + (1− γ2)γ1B∗
2)B

∗
1 ]

(34)

Finally from (3.26), (3.31) and with the same method we have

Q(z) =

∫ +∞

0

Q(x, z)dx =
R0θb

∗(z)[1− V ∗]

b∗(z)v∗(z)− z[1− (η1 + (1− γ2)γ1B∗
2)B

∗
1 ]

(35)
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Remark 3.2. The unknown constant R0 can be determined by using normalizing con-

dition (3.24) which is

(36) R0 + P1(1) + P2(1) +Q(1) = 1

where for i = 1, 2

Pi(1)=Prob[The server is busy with i− th phase of service]

and

Q(1)=Prob[The server is on vacation]

from (3.33),(3.34) and (3.35) by using L’Hopital rule we have

P1(1) = R0

λE(X)
ζ1+γ1γ2

αE(B1)

1− λE(X)
ζ1+γ1γ2

[αE(B0)+βθE(V )(ζ1+γ1γ2)]

P2(1) = R0

λE(X)
ζ1+γ1γ2

αγ1E(B2)

1− λE(X)
ζ1+γ1γ2

[αE(B0)+βθE(V )(ζ1+γ1γ2)]

Q(1) = R0
λE(X)[θβE(V )]

1− λE(X)
ζ1+γ1γ2

[αE(B0)+βθE(V )(ζ1+γ1γ2)]

hence by substituting in (3.36) and simplifying we have R0 = 1− ρ where

(37) ρ =
λE(X)

ζ1 + γ1γ2
[αE(B0) + βθE(V )(ζ1 + γ1γ2)]

R0 is the steady-state probability that the server is idle but available in the system,

hence ρ < 1 can be the stability condition under which the steady state solution exists.

From (3.33),(3.34) and (3.35) the PGF of the queue size distribution at a random epoch

is

PQ(z) = R0 + P1(z) + P2(z) + zQ(z)

= (1− ρ)
(z − 1)b∗(z)v∗(z)

z[1− (η1 + (1− γ2)γ1B∗
2)B

∗
1 ]− b∗(z)v∗(z)

(38)

4. Mean queue size and other measures of system

Let LQ be the mean number of customers in the queue (i.e mean queue size), then we

have

(39) LQ =
dPQ(z)

dz
|z=1

The denominator and numerator of PQ(z) are zero at z = 1. If f(z) = (z − 1)b∗(z)v∗(z)

and g(z) = z[1− (η1+(1− γ2)γ1B
∗
2)B

∗
1 ]− v∗(z)b∗(z), then limz→1 f(z) = limz→1 g(z) = 0.

Hence using L’Hopital rule we have

(40) LQ = (1− ρ)
f ′′(1)g′(1)− f ′(1)g′′(1)

2[g′(1)]2
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By computing f ′(1),f ′′(1),g′(1) and g′′(1) we have
(41)

LQ = θβλE(X)E(V )+
2λαE(X)[E(B0)− ρE(Bf )] + λ2E(X)2[α2E(B2

0) + 2θαβE(Bf )E(V ) + (ζ1 + γ1γ2)θβ
2E(V 2)]

2(1− ρ)(ζ1 + γ1γ2)

Now for computing the mean waiting-time of a test customer in this model, by using

Little’s formula, this measure of system is equal

(42) WQ =
LQ

λX

where, following the admissibility assumption of our model, λX the actual arrival rate of

batches is given by

λX = λα(proportion of non-vacation time)+λβ(proportion of vacation time)

But from remark 3.2 we have

the proportion of vacation time = Q(1) = θλβE(X)
(ζ1+γ1γ2)

E(V )

Hence the proportion of non-vacation time including the first and second service times

and idle time, is equal 1− θλβE(X)
(ζ1+γ1γ2)

E(V ). Consequently

(43) λX = λα +
1

(ζ1 + γ1γ2)
(β − α)θλ2βE(X)E(V )

4.1. Particular case. I) If η → 0 then ζ1 = 1− γ1, and also γ2 → 1, we have the system

in Badamchizadeh[3] such that ζ1 + γ1γ2 = 1 and E(Bf ) = E(B0), also

ρ = λE(X)[αE(B0) + θβE(V ) and b∗(z) = (1− γ1)B
∗
1 + γ1γ2B

∗
1B

∗
2 and

(44) LQ = ρ+
λ2E(X)2[α2E(B2

0) + 2αβθE(B0)E(V ) + θβ2E(V 2)]

2(1− ρ)

II)If θ → 0; i.e there is no vacation in the system, then v∗(z) = 1 and from (3.38) we have

(45) PQ(z) = (1− ρ)
(z − 1)b∗(z)

z[1− (η1 + (1− γ2)γ1B∗
2)B

∗
1 ]− b∗(Z)

where

(46) ρ = λαE(X)E(B0)

and using (4.41) we reach

(47) LQ = ρ+
2λαE(X)[E(B0)− ρE(Bf )] + λ2α2E(X)2E(B2

0)

2(1− ρ)(ζ1 + γ1γ2)

5. Special cases and numerical results

Analyzing a queueing system via actual cases are very important and useful way to

confirm the models. In this section we chose known distributions for service times and

vacation time, so with this, and by some numerical approches the validity of the system

are examained. Also this approch explains that our model can function reasonably well

for certain practical problems.
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case 1 : Let the distribution of first service time be a-Erlang as follows:

dB1(x) =
(aµ1)

µ1xa−1e−aµ1x

(a− 1)!
dx x > 0, a ≥ 1

hence

B∗
1(λ− λd(z)) =

(aµ1)
a

[λ(d(z)− 1) + aµ1)]a

so E(B1) =
1

µ1

and E(B2
1) =

a+ 1

aµ2
1

.

To simplify, we assume p1 = p2 = .5 and for i = 1, 2 distribution of Si is bi-Erlang

dSi(x) =
(bisi)

sixbi−1e−bisix

(bi − 1)!
dx x > 0, bi ≥ 1

hence

S∗
i (λ− λd(z)) =

(bisi)
bi

[λ(d(z)− 1) + bisi]bi

and E(Si) =
1

si
and E(S2

i ) =
bi + 1

bisi
.

Also we assume the distribution of vacation time be c-Erlang

dV (x) =
(cν)νxc−1e−cνx

(c− 1)!
dx x > 0, c ≥ 1

hence

V ∗(λ− λd(z)) =
(cν)c

[λ(d(z)− 1) + cν]c

so E(V ) =
1

ν
and E(V 2) =

c+ 1

cν2
. If we chose geometric distribution for batch size, i.e

dn = d(1−d)n−1, 0 < d < 1, then E(X) =
1

d
and E(X2) =

2− d

d2
. Now for numerical result

we assume the following values for parametrs such that the steady state condition(ρ < 1)

obtained

Table 1. values of parameters

γ1 ζ1 γ2 ζ2 a µ1 b1 b2 s1 s2 c ν α β d

.2 7. .1 .9 2 2 1 1 2 3 1 1 .2 .5 .5

In this case using above values and (3.37), p1 = p2 = .5, if θ = 0 then steady state

condition is

ρ = .32λ < 1, so λ < 3.1. By using (4.41)

LQ =
.8λ+ .14λ2

1− .8λ

The graph of model is in figure 1.
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Figure 1. L vis-a-vis λ for θ = 0

In this case if θ = .1, then steady state condition is ρ = .52λ < 1, so λ < 1.91. By

using (4.41)

LQ = .1λ+
.322λ+ .1λ2

1− .53λ
Figure 2 shows the graph of model.
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Figure 2. L vis-a-vis λ for θ = .1

Now we analyze L with respect to θ. Using values of table 1, p1 = p2 = .5, and λ = 1

the steady-state condition is ρ = .32 + .995θ < 1, hence θ < .68. Also

LQ = θ +
.3 + θ

.68− .995θ

Figure 3 shows the graph of model. Also in table 2 some values of L against θ are

computed. After θ = .5 the system blows up.

Table 2. values of L with respect θ

θ .1 .2 .3 .4 .5 .6 .65

L .78 1.2 1.8 2.8 4.8 11.4 29.22
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Figure 3. L vis-a-vis θ for λ = 1

case 2:In this case we assume the distribution of service times and vacation time are

exponential as follow

dB1(x) = µ1e
−µ1xdx, E(B1) =

1
µ1

, E(B2
1) =

2
µ2
1

and for i = 1, 2

dSi(x) = µie
−µixdx, E(Si) =

1

i
, E(S2

i ) =
2
s2i

dV (x) = νe−νxdx, E(V ) = 1
ν
, E(V 2) = 2

ν2

With geometric distribution for batch size according to case 1 and following values for

parameters in table 3 the steady state condition is ρ =
.27

µ1

+ .023 < 1 or µ>.27. Also

LQ =

1.99
µ1

+ .001
µ2
1
+ .292

.977− .27
µ1

Table 3. values of parameters

γ1 ζ1 γ2 ζ2 λ s1 s2 ν α β d

.2 7. .1 .9 2 2 3 1 .2 .5 .5

and the graph of model is in figure 4. According to this curve and values of table 4, L

decresses with respet µ, and after µ = 1 the system is stable.

Table 4. values of L with respect µ1

µ1 .3 .5 1 2 3 4

L 90 9.7 3.2 1.5 1 .8
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Figure 4. L vis-a-vis µ

Now, in this case we assume θ is unknown. With the values in table 5 the steady state

condition is ρ = .322 + θ < 1 or θ < .67.

Table 5. values of parameters

γ1 ζ1 γ2 ζ2 λ µ1 s1 s2 ν α β d

.2 7. .1 .2 1 2 2 3 1 .2 .5 .5

Also

L = θ +
.32 + .25θ

.678− θ

The graph of models is in figure 5.
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Figure 5. L vis-a-vis θ

Table 6 shows some values of L against θ. After θ = .5, the system blows up.
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Table 6. values of L with respect θ

θ .1 .2 .3 .4 .5 .6 .65

L .69 .97 1.34 1.9 3 6.6 17.8

6. Concluding Remarks

In this paper we have studied a batch arrival two phase queueing system with ran-

domly relapse and option in services, admissibility restricted and server’s vacation which

generalized classical M/G/1 queue. An application of this model can be found in mobile

network where the messages are in batch form, the service may have many phases such

that services may be unaccepted and customer may repeat the services. Also, because

of admissibility restriction in service or system, all batches don’t enter in service. Our

investigations are concerned with not only queue size distribution but also waiting time

distribution. This model extends the systems for example in Artalejo[2], Badamchizadeh

and Shahkar[3], Badamchizadeh[4], Choudhury[7], Madan and Choudhury[13] and Madan

and Choudhury[14]. A practical generalization for this system is to consider many cases

of services, optional vacation.
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