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Feasible short-step interior point algorithm for linear
complementarity problem based on kernel function
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Abstract. In this paper we deal with the study of the polynomial complexity analysis and numer-
ical implementation for a short-step interior point algorithm for monotone linear complementarity
problems (LCP ) based on karnel function. The analysis is based on a new class of search di-
rections. We establish the global convergence of the algorithm. Furthermore, it is shown that the
algorithm has O(n2.5L), iteration complexity. For its numerical tests some strategies are used and
indicate that the algorithm is efficient.

Keyword(s). Quadratic programming, Convex nonlinear programming, Interior point methods
AMS subject classification. 90C30, 90C51

1. Introduction
Let us consider the linear complementarity problem (LCP ): find vectors x and y in real space ℜn

that satisfy the following conditions:

x ≥ 0, y =Mx+ q ≥ 0 and xty = 0, (1.1)

where q is a given vector in ℜn and M is a given n × n real matrix. LCP have important ap-
plications in mathematical programming and various areas of engineering. Interior-point methods
(IPMs) for solving Linear Optimization (LO) problems were initiated by Karmarkar [2]. They
not only have polynomial complexity, but are also highly efficient in practice. Feasible IPMs start
with a strictly feasible interior-point and maintain feasibility during the solution process. Feasible
IPMs require that the starting points satisfy exactly the equality constraints and are strictly pos-
itive, i.e., they lie in the interior of a region defined by constraints. Extending methods for LO to
LCP has been successful in many cases. See, e.g.,[3, 4]. Recently, Peng et al. [5, 6] designed
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primal–dual feasible IPMs by using self-regular functions for LO and also extended the approach
to LCP . In this paper we deal with the complexity analysis and the numerical implementation of
a short-step interior point algorithm. This algorithm is based on the strategy of the central path
and on a method for finding a new search directions, where we show that this short-step algorithm
deserves the best current polynomial complexity namely O(n2.5L). The paper is organized as
follows. In the next section, the statement of the problem is presented, we deal with the weighted
vector introduced to ensure that the initial point (x0, y0, µ0) verified δ(x0, y0, µ0) = 0, (proximity
measure define bellow). In Section 3, we deal with the new search directions and the description of
the algorithm. In Section 4, we state its polynomial complexity. Section 5 contains the numerical
experiments. In Section 6, a conclusion and remarks are given.

We use the classical notation. In particular, ℜn denotes the n-dimensional Euclidean space.
Given u, v ∈ ℜn, utv =

∑n
i=1 uivi is their inner product, and ∥u∥ =

√
utu is the Euclidean norm.

Given a vector d ∈ ℜn, D = diag(d) is the n× n diagonal matrix. I is the identity matrix and e is
the identity vector.

2. Statement of the problem
The feasible set, the strictly feasible set and the solution set of (1.1) are denoted, respectively by

F =
{
(x, y) ∈ ℜ2n : y =Mx+ q, x ≥ 0, y ≥ 0

}
,

Fint = {(x, y) ∈ F : x > 0, y > 0} ,

and
Ω =

{
(x, y) ∈ F : x ≥ 0, y ≥ 0, xty = 0

}
.

In this paper, we assume that the following assumptions hold.
Assumption 1. Fint ̸= ∅.
Assumption 2. M is a positive semidefinite matrix.
In addition (1.1), is equivalent to the following convex quadratic problem, see, e.g.,[7].

min
{
xty : x ≥ 0, y ≥ 0, y =Mx+ q

}
. (2.1)

Hence, finding the solution of (1.1) is equivalent to find the minimizer of (2.1) with its objective
value is zero.

In order to introduce an interior point method to solve (2.1), we associate with it the following
barrier minimization problem

min {fµr(x, y) : y =Mx+ q, x > 0, y > 0} , (2.2)
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where fµr(x, y) = xty−µ
∑n

i=1 ri log(xiyi), µ > 0 be the barrier parameter and r = (r1, ..., rn) ∈
ℜn

+ is a weighted vector introduced to ensure that the initial point (x0, y0) verified δ(x0y0, µ0) = 0
(proximity measure define bellow), if ri = 1, i = 1, ..., n, then the weighted central path coincides
with the classical one. Hence, this approach can be seen as a generalization of central path methods.

The problem (2.2) is a convex optimization problem and then its first order optimality condi-
tions are: {

Mx+ q = y,
xy = µr, x > 0, y > 0.

(2.3)

If the Assumptions 1 and 2 hold then for a fixed µ > 0, the problem (2.2) and the system
(2.3) have a unique solution [7] denoted as (x(µ), y(µ)), with x(µ) > 0 and y(µ) > 0. We call
(x(µ), y(µ)), with µ > 0, the µ-centers of (2.3). The set of the µ-centers defines the so-called the
central path of (1.1).

In the next section, we introduce a method for tracing the central path based a new class of
search directions.

3. A new search directions
Now, the basic idea behind this approach is to replace the non linear equation:

xy

µr
= e,

in (2.3) by an equivalent equation

ψ(
xy

µr
) = ψ(e),

where ψ, is a real valued function on [0,∞) and differentiable on [0,∞) such that ψ(t) and
ψ

′
(t) > 0, for all t > 0. Then the system (2.3) can be written as the following equivalent form:{

Mx+ q = y, x > 0, y > 0
ψ(xy

µr
) = ψ(e).

(3.1)

Suppose that we have (x, y) ∈ Fint. Applying Newton’s method for the system (2.3), we obtain
a new class of search directions:{

M△x = △y,
y
µr
ψ

′
(xy
µr
)△x+ x

µr
ψ

′
(xy
µr
)△y = ψ(e)− ψ(xy

µr
).

(3.2)

Now, the following notations are useful for studying the complexity of the proposed algorithm.
The vectors
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v =

√
xy

µr
, d =

√
xy−1,

these notations lead to

d−1x
√
µr

=
dy
√
µr

= v.

Denote by

dx =
d−1△x
√
µr

, dy =
d△y
√
µr
, (3.3)

and hence, we have
µrv(dx + dy) = y△x+ x△y, (3.4)

and

dxdy =
△x△y
µr

(3.5)

So using (3.3) and (3.4), the system (3.2) becomes{
Mdx = dy,
dx + dy = pv,

where M =MDM with D = diag(d)
and

pv =
ψ(e)− ψ(v2)

vψ′(v2)
.

We shall consider the following function:

ψ(t) =
1

2
(t2 − 1), with ψ

′
(t) = t for all t > 0.

Hence, the Newton directions in (3.2) is{
M△x = △y,
dx + dy =

1
2
(v−3 − v),

(3.6)

with

pv =
1

2
(v−3 − v),

and we define for all vector v the following proximity measure by
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δ(xy, µ) =
∥pv∥2
2

,

=
∥∥v−3 − v

∥∥
2
,

=

∥∥∥∥∥
(√

xy

µr

)−3

−
√
xy

µr

∥∥∥∥∥
2

.

Now, the generic short-step primal-dual algorithm to solve LCP has the following form

3.1. Algorithm

Begin algorithm
Input:
an accuracy parameter ε > 0,

an update parameter θ, 0 < θ < 1 (default θ = 1
2
√
n
),

a strictly feasible point (x0, y0) and µ0 = (x0)t Ry0

n
.

σ =
∥X0Y 0e∥√

n
, r =

X0Y 0e

σ
.R = diag(ri)

k = 0
While (nµk) > ε do

1
◦
) Compute (△x,△y),

2
◦
) Update (xk+1, yk+1) = (xk, yk) + (△x,△y)

3
◦
) Set µk+1 = (1− θ)µk = (1− θ)x

kRyk

n
and k = k + 1.

End While.
End algorithm.

4. Complexity analysis
Let

pv = dx + dy, qv = dx − dy,

and, we have

dx =
1

2
(pv + qv), dy =

1

2
(pv − qv),

hence,
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dxdy =
1

4
(p2v − q2v) and ∥qv∥ ≤ ∥pv∥ .

This last result follows directly from the equality

∥pv∥2 = ∥qv∥2 + 4dtxdy,

since,

dtxdy = dtxMdx ≥ 0, because M is positive semidefinite.

We have

δ(v, µ) ≥ ∥qv∥ .
In the following lemma, we state a condition which ensures the feasibility of the full Newton

step.
Let

x+ = x+△x,
y+ = y +△y,

be the new iterate after a full Newton step.

Lemma 1. Let (x, y) is a strictly feasible iteration. If e+ dxdy > 0 then

(x+, y+) = (x+△x, y +△y)

Proof. Let 0 < α ≤ 1 is step lenght.
We define:

x(α) = x+ α△x, y(α) = y + α△y,
we have

x(α)y(α) = (x+ α△x)(y + α△y)
= xy + α(x△y + s△x) + α2△x△y
= xy + α(µr − xy) + α2△x△y.

We assume that e+ dxdy > 0,
we deduce µr +△x△y > 0, which is equivalent to △x△y > − µr, by substitution we obtain

x(α)s(α) > xs+ α(µr − xs)− α2µr

= (1− α)xy + (α− α2)µr

= (1− α)xy + α(1− α)µr.
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Since
xy > 0 and µr > 0, it follows that x(α)y(α) > 0 for all α ∈]0, 1].

Now for convenience,we may write

(v+)2 =
x+y+

µr
= e+ dxdy.

Lemma 2. If δ(xy, µ) < 1,Then x+ > 0 and y+ > 0.

Proof. In the Lemma 1 , we have (x+, y+) are strictly feasible if (e+dxdy) > 0. So (e+dxdy) > 0
holds if (1 + (dxdy)i) > 0 for all i ∈ ℜn.

We have

(1 + (dxdy)i) ≥ (1− |(dxdy)i| , for all i ∈ ℜn

≥ (1− δ2).

Thus (e+ dxdy) > 0 if δ(xy, µ) < 1.

In the next lemma we proved the local quadratic convergence for our algorithm

Lemma 3. Let δ = δ(xy, µ) < 1 then

δ(x+y+, µ+) ≤ δ2√
2(1− δ2)

.

Proof. letting α = 1,
we have

4δ2+ =
∥∥(v+)−1 − v+

∥∥2

=
∥∥(v+)−1(e− (v+)2)

∥∥2
,

where (v+)2 = (e− dxdy) and (v+)−1 = 1√
(e+dxdy)

, then it follows that

4δ2+ =

∥∥∥∥∥ dxds√
(e+ dxdy)

∥∥∥∥∥
2

2

=

∥∥∥∥∥ dxds√
(e+ dxdy)

∥∥∥∥∥
2

2

≤
∥dxdy∥22

(1− ∥dxdy∥∞)
.
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We deduce that

4δ2+ ≤
2δ4+

(1− δ2+)
.

This proves the lemma.

Lemma 4. Let δ(xy, µ) < 1√
2

and µ+ = (1− θ)µ, 0 < θ < 1. Then

δ2(x+y+, µ+) ≤ (1− θ)δ
2

+ +
θ2(n+ 1)

4(1− θ)
+
θ

2
.

Furthermore, if δ ≤ 1√
2
, θ = 1

2
√
n

and n ≥ 2, then we have δ(x+y+, µ+) ≤ 1√
2
.

Proof. Let v+ =
√

x+y+

µ+r
and µ+ = (1− θ)µ, then

4δ2(x+y+, µ+) =

∥∥∥∥∥
√

µ+r

x+y+
−

√
x+y+

µ+r

∥∥∥∥∥
2

2

=

∥∥∥∥√1− θ(v+)−1 − 1√
1− θ

v+
∥∥∥∥2

2

=

∥∥∥∥√1− θ
(
(v+)−1 − v+

)
− θ√

1− θ
v+

∥∥∥∥2

2

= (1− θ)
∥∥(v+)−1 − v+

∥∥2

2
+

θ2

1− θ

∥∥v+∥∥2

2
− 2θ

(
(v+)−1 − v+

)t
v+

= (1− θ)
∥∥(v+)−1 − v+

∥∥2

2
+

θ2

1− θ

∥∥v+∥∥2

2
− 2θ(v+)−tv+ + v+

t

v+

= 4(1− θ)δ2+ +
θ2

1− θ

∥∥v+∥∥2

2
− 2θn+ 2θ

∥∥v+∥∥2

2

since,
(v+)−tv+ = n and (v+)tv+ = ∥v+∥22 , and we have δ2+ ≤ δ4+

2(1−δ2+)
.Then

4δ2(x+y+, µ+) ≤ 4(1− θ)
δ4

2(1− δ2+)
+

θ2

1− θ

∥∥v+∥∥2

2
− 2θn+ 2θ

∥∥v+∥∥2

2
,

since,
x+s+ = µr(e+ dxdy),

and if δ < 1√
2
, it follows ∥∥v+∥∥2

=
x+y+

µr
= e+ dxdy ≤ 1 + n.
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Consequently,

4δ2(x+y+, µ+) ≤ 4(1− θ)
δ4

2(1− δ2+)
+

θ2

1− θ

∥∥v+∥∥2

2
− 2θn+ 2θ(n+ 1),

and

δ2(x+y+, µ+) ≤ (1− θ)δ4+ +
θ2(n+ 1)

4(1− θ)
+
θ

2
.

The last statement the proof goes as follows. If δ < 1√
2

, then δ2+ = 1
4

and this yields the
following upper bound for δ(x+y+, µ+) as:

δ2(x+y+, µ+) ≤ (1− θ)

4
+
θ2(n+ 1)

4(1− θ)
+
θ

2
.

Now, taking θ = 1
2
√
n

then θ2 = 1
4n

if follows that

δ2(x+y+, µ+) ≤
(n+1)
4n

4(1− θ)
+

(1− θ)

4
+
θ

2
,

since (n+1)
4n

≤ 3
8

for all n ≥ 2 then we have

δ2(x+y+, µ+) ≤ 3

32(1− θ)
+
θ + 1

4
.

Now for n ≥ 2, we have 0 < θ ≤ 1
2
√
2

and since the function f(θ) = 3
32(1−θ)

+ θ+1
4

is
continuous and monotonic increasing on 0 < θ ≤ 1

2
√
2
,

consequently,

f(θ) ≤ f(
1

2
√
2
) <

1

2
, for all 0 < θ ≤ 1

2
√
2
.

Hence,

δ(x+y+, µ+) <
1

2
.

The following theorem gives an upper bound for the total number of iteration for our algorithm.

Theorem 5. Let ε > 0 be an accuracy parameter. The algorithm has a complexity bound of
O(

√
nL) iterations and the total complexity bound of the algorithm is:

O(n2.5L), where L = log µ0

ε
.
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Proof. We have

µk = (1− θ)kµ0,

thus,
(1− θ)kµ0 ≤ ε.

Now taking logarithms of (1− θ)kµ0 ≤ ε, we may write

log((1− θ)kµ0) ≤ log ε

equivalent
k log(1− θ) ≤ log ε− log µ0,

using the fact that log(1− θ) ≤ θ, for 0 ≤ θ ≤ 1, then the above inequality holds if

k ≥ 1

θ

[
log

µ0

ε

]
.

Let L = log µ0

ε
, then at most k = 2

√
n log µ0

ε
= O(

√
n log µ0

ε
) = O(

√
nL) iterations in the

algorithm, we can obtain ε-solution of (2.3). However, in every step, the complexity bound of
computing the linear system is O(n2). Therefore, the total complexity bound of the algorithm is
O(n2.5L).

5. Numerical implementation
In this section, we deal with the numerical implementation of this algorithm applied to some prob-
lems of monotone LCPs. Here we used (x0, y0) to denote the feasible starting point of the algo-
rithm, δ(x0y0, µ0) < 1

2
, the proximity condition, (x∗, y∗) the optimal solution of LCP and Iter

means the iterations number produced by the algorithm. z∗ denotes the value of the objective func-
tion at (x∗, y∗) and µ∗ denotes the value when the algorithm terminates. The implementation is
manipulated in DEV C++. Our tolerance is ε = 10−6. For the update parameter we have vary
0 < θ < 1. Finally we note that the linear system of Newton in (3.2) is solved thanks to the Gauss
elimination procedure.

Problem 1.

M =


0 0 2 1 0
0 0 1 2 1
−2 −1 0 0 0
−1 −2 0 0 0
0 −1 0 0 0

 , q =
(
−4 −5 8 7 3

)
,

The feasible starting point is
x0 =

(
2 2 2 2 2

)
, y0 =

(
−4 −5 8 7 3

)
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δ(x0y0, µ0) = 2.517539 > 1
2
, then the classical method is diverge.

The numerical results with this problem are summarized in the table below:

Results of the Algorithm
δ(x0y0, µ0) = 0.000000 < 1

2

θ = 0.15

iter 87
x∗

(
2.999995 2.000002 1.000001 2.000001 0.000005

)
y∗

(
0.000003 0.000007 0.000009 0.000002 0.999998

)
z∗ 0.000041
µ∗ 0.000009

θ = 0.20

iter 65
x∗

(
2.999994 2.000002 1.000001 2.000000 0.000005

)
y∗

(
0.000003 0.000008 0.000010 0.000002 0.999998

)
z∗ 0.000045
µ∗ 0.000010

θ = 0.60

iter 24
x∗

(
2.999994 2.000002 1.000001 2.000001 0.000004

)
y∗

(
0.000003 0.000006 0.000008 0.000002 0.999998

)
z∗ 0.000037
µ∗ 0.000008

θ = 0.95

iter 19
x∗

(
2.999993 2.000003 1.000002 2.000000 0.000004

)
y∗

(
0.000002 0.000006 0.000012 0.000002 0.999997

)
z∗ 0.000036
µ∗ 0.000008

Problem 2.

M =



0 0 0 0 0 3 0.8 0.32 1.128 0.0512
0 0 0 0 0 0 1 0.8 0.32 0.128
0 0 0 0 0 0 0 1 0.8 0.32
0 0 0 0 0 0 0 0 1 0.8
0 0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0
−0.8 −1 0 0 0 0 0 0 0 0
−0.32 −0.8 −1 0 0 0 0 0 0 0
−1.128 −0.32 −0.8 −1 0 0 0 0 0 0
−0.0512 −1.128 −0.32 −0.8 −1 0 0 0 0 0


,

q =
(
−0.0256 −0.064 −0.16 5.59 −1 1 1 1 1 1

)
,

The feasible starting point is
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x0 =
(
0.18 0.18 0.18 0.18 0.25 3 4 5 6 9

)
,

y0 =
(
21.0032 11.008 12.52 12.8 8 0.46 0.676 0.6184 0.41536 0.336144

)
.

δ(x0y0, µ0) = 2.278802 > 1
2
, then the classical method is diverge.

The numerical results with this problem are summarized in the table below:

Results of the Algorithm
δ(x0y0, µ0) = 0.000000 < 1

2

θ = 0.15

iter 84

x∗
(

0.000036 0.886520 0.000003 0.000001 0.000001
0.000005 0.000088 0.000039 0.000013 8.035358

)
y∗

(
0.385925 0.000008 2.411364 12.028297 7.035360
0.999892 0.113452 0.290770 0.716269 0.000001

)
z∗ 0.000085
µ∗ 0.000009

θ = 0.20

iter 64

x∗
(

0.000036 0.886520 0.000003 0.000001 0.000001
0.000005 0.000088 0.000039 0.000013 8.035358

)
y∗

(
0.385925 0.000008 2.411364 12.028297 7.035360
0.999892 0.113452 0.290770 0.716269 0.000001

)
z∗ 0.000095
µ∗ 0.000010

θ = 0.60

iter 24

x∗
(

0.000024 0.886521 0.000002 0.000001 0.000001
0.000003 0.000058 0.000026 0.000009 8.035394

)
y∗

(
0.385887 0.000005 2.411360 12.028322 7.035394
0.999927 0.113460 0.290773 0.716283 0.000001

)
z∗ 0.000065
µ∗ 0.000007

θ = 0.95

iter 19

x∗
(

0.000047 0.886521 0.000003 0.000001 0.000000
0.000001 0.000032 0.000025 0.000004 8.035417

)
y∗

(
0.385854 0.000002 2.411361 12.028336 7.035416
0.999859 0.113441 0.290765 0.716257 0.000000

)
z∗ 0.000048
µ∗ 0.000005

168



Feasible short-step interior point algorithm for linear complementarity problem based on kernel function

Problem 3. Let M ∈ ℜn×n and q ∈ ℜnare given by:

M =



1 2 2 . . . 2
0 1 2 . . . 2
0 0 . . . . .
. . . . . . .
. . . . . . .
. . . . . . 2
0 0 0 . . 0 1


, q =

(
−1 . . . −1

)
,

Case 1: n = 10.
The feasible starting point is

x0 =
(
0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 1.0009

)
,

y0 =
(
1.0171 1.0153 1.0135 1.0108 1.0099 1.0081 1.0063 1.0045 1.0027 0.0009

)
.

δ(x0y0, µ0) = 0.032154 < 1
2
, then the classical method is converge.

The numerical results with this problem are summarized in the table below:
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Results of the Algorithm (r = e)
δ(x0y0, µ0) = 0.032154 < 1

2

θ = 0.15

iter 31

x∗
(

0.000009 0.000009 0.000009 0.000009 0.000009
0.000009 0.000009 0.000009 0.000009 1.000009

)
y∗

(
1.000168 1.000151 1.000133 0.999215 1.000097
1.000080 1.000062 1.000044 1.000027 0.000009

)
z∗ 0.000089
µ∗ 0.000009

θ = 0.20

iter 23

x∗
(

0.000009 0.000009 0.000009 0.000009 0.000009
0.000009 0.000009 0.000009 0.000009 1.000010

)
y∗

(
1.000180 1.000161 1.000142 0.999223 1.000104
1.000085 1.000066 1.000047 1.000028 0.000009

)
z∗ 0.000095
µ∗ 0.000009

θ = 0.60

iter 9

x∗
(

0.000007 0.000007 0.000007 0.000007 0.000007
0.000007 0.000007 0.000007 0.000007 1.000007

)
y∗

(
1.000129 1.000115 1.000102 0.999188 1.000074
1.000061 1.000047 1.000034 1.000020 0.000007

)
z∗ 0.000068
µ∗ 0.000007

θ = 0.95

iter 7

x∗
(

0.000007 0.000007 0.000007 0.000007 0.000007
0.000007 0.000007 0.000007 0.000007 1.000007

)
y∗

(
1.000138 1.000124 1.000109 0.999194 1.000080
1.000065 1.000050 1.000036 1.000021 0.000007

)
z∗ 0.000073
µ∗ 0.000007

Case 2: n = 15.
The feasible starting point is

x0 =

(
0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009

0.0009 0.0009 0.0009 0.0009 1.0009

)
,

y0 =

(
1.0261 1.0243 1.0225 1.0198 1.0189 1.0171 1.0153 1.0135 1.0108 1.0099

1.0081 1.0063 1.0045 1.0027 0.0009

)
.

δ(x0y0, µ0) = 0.059169 < 1
2
, then the classical method is converge.

The numerical results with this problem are summarized in the table below:
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Results of the Algorithm (r = e)
δ(x0y0, µ0) = 0.032154 < 1

2

θ = 0.15

iter 15

x∗

 0.000097 0.000097 0.000097 0.000097 0.000097
0.000097 0.000097 0.000097 0.000097 0.000097
0.000097 0.000097 0.000097 0.000097 1.000097


y∗

 1.002816 1.002622 1.002428 1.001334 1.002040
1.001846 1.001652 1.001458 1.000363 1.001069
1.000875 1.000680 1.000486 1.000292 0.000097


z∗ 0.001458
µ∗ 0.000097

θ = 0.20

iter 12

x∗

 0.000084 0.000084 0.000084 0.000084 0.000084
0.000084 0.000084 0.000084 0.000084 0.000084
0.000084 0.000084 0.000084 0.000084 1.000084


y∗

 1.002448 1.002280 1.002111 1.001042 1.001773
1.001605 1.001436 1.001267 1.000198 1.000929
1.000760 1.000591 1.000423 1.000253 0.000085


z∗ 0.001268
µ∗ 0.000085

θ = 0.60

iter 5

x∗

 0.000061 0.000061 0.000061 0.000061 0.000061
0.000060 0.000060 0.000060 0.000060 0.000060
0.000060 0.000060 0.000060 0.000060 1.000060


y∗

 1.001750 1.001629 1.001508 1.000486 1.001265
1.001145 1.001024 1.000903 0.999882 1.000662
1.000541 1.000421 1.000300 1.000180 0.000060


z∗ 0.000906
µ∗ 0.000060

θ = 0.95

iter 4

x∗

 0.000060 0.000059 0.000059 0.000059 0.000059
0.000059 0.000058 0.000058 0.000058 0.000058
0.000058 0.000057 0.000057 0.000057 1.000057


y∗

 1.001688 1.001569 1.001450 1.000432 1.001214
1.001097 1.000980 1.000863 0.999847 1.000631
1.000515 1.000400 1.000286 1.000171 0.000057


z∗ 0.000874
µ∗ 0.000058
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6. Conclusion
In this paper, we have proposed a feasible short-step interior point algorithm for solving monotone
linear complementarity problem. The algorithm deserves the best wellknown theoretical iteration
bound O(n2.5L) when the starting point is (x0, y0) is strictly feasible and verified proximity mea-
sure condition. This choice of initial point can be done by the technique of Djamel Benterki [1].
For the numerical tests we vary the parameter θ, and we note that each problem addressed when
the parameter θ crosses we get the good numerical behavior. Future research might extended the
algorithm for other optimization problems.
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