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A new approach for solving the one-phase Stefan problem

with temperature-boundary specification

Sara Barati and Karim Ivaz

Abstract

The classical one-phase one-dimensional Stefan problem is a boundary
value problem involving a parabolic partial-differential equation, along with
two boundary conditions on a moving boundary. In Stefan problem the
moving boundary s and the distribution of temperature u in the domain are
unknown and must be determined. In this paper, an approximate analytical
method which is based on a scheme introduced by Cannon [1] is presented
to obtain the solution of the problem. At first, by subdividing the time
interval [0, T ] into subintervals of equal length θ, a family of approximations
(sθ, uθ) to the solution of the problem is constructed and then by taking
θ sufficiently small, these approximations are converged to the solution of
the Stefan problem. The method is illustrated using the Stefan problem
concerning the heat transfer in an ice-water medium. The computational
results have been compared with the exact values and are found to be in
good agreement with each other.
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1 Introduction

The one-phase Stefan problem is one of the simplest examples of a free boundary-
value problem for the heat equation. Many problems which describe the thermal
processes with phase change such as solidification of metals, freezing of water
and soil, deep freezing of foodstuffs and melting of ice have been modeled by the
introduction of Stefan problems. Phase change problems have still remained an
active area of research. In recent decades, Stefan problems have attracted much
attention of many researchers and investigators [1-7].
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Here, we consider the free boundary problem for the heat equation, which is
the determination of a pair (u, s) of functions, u = u(x, t) and s = s(t), which
satisfy

(a) Lu ≡ uxx − ut = 0, 0 < x < s(t), 0 < t ≤ T
(b) u(0, t) = g(t), 0 < t ≤ T,
(c) u(s(t), t) = 0, 0 < t ≤ T,
(d) u(x, 0) = f(x), 0 ≤ x ≤ s(0) = b, (1)

ṡ(t) = −ux(s(t), t), 0 < t ≤ T, (2)

where T is a positive constant which can be selected arbitrarily, b > 0, 0 ≤ f(x) ≤
N(b − x), 0 ≤ x ≤ b, N is a positive constant, and f and g are nonnegative
piecewise-continuous functions.

Because of the presence of a free or moving boundary, analytical solutions of
Stefan problems have remained very limited and usually not available. Goodman
[8], Reynolds and Dolton [9], Gupta and Banik [10] have investigated approximate
analytical methods that yield solutions of Stefan problems in simple closed forms.
Slota and Zielonka [11] used the variational iteration method for an approximate
solution of a one-phase Stefan problem. Jafari, Saeidy and Firozjaei [12] applied
the homotopy analysis method to solve a Stefan problem. Kushwaha [13] and Ra-
jeev [14] found an approximate analytical solution of a moving boundary problem
with variable latent heat by using Adomian decomposition method and homotopy
perturbation method, respectively.

In this paper, we present an approximate analytical approach which results in
finding the sequence of approximations, convergent to the exact solution. This
method is based on a scheme introduced by Cannon [1]. This paper is organized
as follows. In Section 2, we define what is meant by a solution of (1)-(2) and
state the existence and uniqueness theorem. Our purpose in Section 3 is to study
the initial-boundary-value problem for the heat equation in the domain DT =
{(x, t)|0 < x < s(t), 0 < t ≤ T}. In Section 4, by a retardation of the argument
in the free boundary equation (2), we construct a family of uniformly convergent
approximations to the solution of (1)-(2). In Section 5, the obtained results of
test problem solved by the proposed method is reported. Conclusions are finally
made in Section 6.

2 Preliminaries

Definition 2.1 (see [1]). The pair (u, s) is a solution of the Stefan problem
(1)-(2) if

• s is continuously differentiable for 0 < t ≤ T and continuous for 0 ≤ t ≤ T ,

• u is continuous in 0 ≤ x ≤ s(t), 0 ≤ t ≤ T , except at points of discontinuity
of g or f , and at points of continuity has the boundary and initial values
indicated in (1)-b, (1)-c and (1)-d,
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• u is bounded in 0 ≤ x ≤ s(t), 0 ≤ t ≤ T , and

• u and s satisfy (2).

Definition 2.2 (see [1]). If I is an interval, we denote by C0(I), C1(I), and
Cβ(I), 0 < β ≤ 1, the continuous, the continuously differentiable, and the Hölder
continuous (with exponent β) functions on I, respectively. For I = (0, C], C > 0,
we define C0

(ν)(I), 0 < ν ≤ 1, as the subspace of C(I) that consists of those
functions ψ such that

||ψ||(ν)C = sup
t∈I

t1−ν |ψ(t)| <∞.

Also C0
(ν)(I) is a Banach space under the norm ||ψ||(ν)C .

Theorem 2.3 (see [1]). Under the assumptions given in introduction, there
exists a unique solution (u, s) to the Stefan problem (1)-(2). Moreover, the free
boundary s which is C1 and nondecreasing, satisfies

0 ≤ ṡ(t) ≤ C

where C = max{Mb−1, N}, M = max(max0≤t≤T g(t),max0≤x≤b f(x)).

3 Initial-Boundary-Value Problem for the Heat

Equation in DT = {(x, t)|0 < x < s(t), 0 < t ≤ T}
Theorem 3.1 (see [1]). For the problem

uxx = ut, 0 < x < s(t), 0 < t ≤ T
u(x, 0) = f(x), 0 < x < b, s(0) = b,
u(0, t) = g(t), 0 < t ≤ T,
u(s(t), t) = h(t), 0 < t ≤ T, (3)

where s ∈ Cγ([0, T ]), γ > 1
2
, δ1 = inf0≤t≤T s(t) > 0, g ∈ C0

(ν)((0, T ]), 0 < ν ≤ 1,

h ∈ Cγ1([0, T ]), γ1 >
1
2
, f ∈ C([0, b]), h(0) = f(b) = 0, are known and

|f(ξ)| = |f(ξ)− f(b)| ≤ Cf |ξ − b|β, 0 < β ≤ 1, Cf > 0,

there exists a solution u that has the representation

u(x, t) = v(x, t) + zφ(x, t) + wφ(x, t; s) (4)

where

wφ(x, t; s) =
∫ t

0
K(x− s(τ), t− τ)φ(τ)dτ,

zφ(x, t) = −2
∫ t

0

∂K

∂x
(x, t− τ){g(τ)− wφ(0, τ ; s)}dτ,
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v(x, t) =
∫ b

0
G(x, ξ, t)f(ξ)dξ,

and

G(x, ξ, t) = K(x− ξ, t)−K(x+ ξ, t),

K(x, t) =
1√
4πt

exp(−x
2

4t
).

The representation (4) for u is equivalent to the existence of a continuous φ =
φ(t), which satisfies the integral equation

h(t) = v(s(t), t) + zφ(s(t), t) + wφ(s(t), t; s), (5)

which is a Volterra integral equation of the first kind for φ.

Lemma 3.2 (see [1]). If s ∈ Cγ([0, T ]), 1
2
< γ ≤ 1, g ∈ C0

(ν)((0, T ]), 0 < ν ≤ 1,

h ∈ Cγ1([0, T ]), γ1 >
1
2
, f ∈ C([0, b]), h(0) = f(b) = 0,

|f(ξ)| < Cf |ξ − b|β, 0 < β ≤ 1, Cf > 0

, and φ ∈ C0
(ν1)

((0, T ]), 0 < ν1 ≤ 1, then the Abel operator

(AF )(t) =
1

π

d

dt

∫ t

0

1√
t− η

F (η)dη

can be applied to the integral equation (5) and an equivalent Volterra integral
equation of the second kind

φ(t) = G(t) +
∫ t

0
H(t, τ)φ(τ)dτ (6)

is obtained where

G(t) =
2√
π

∫ t

0
g(τ){

∫ t

τ
(t− η)

−3
2 (η − τ)

−1
2 {(t− τ)

1
2
∂K

∂x
(s(t), t− τ)

−(η − τ)
1
2
∂K

∂x
(s(η), η − τ)}dη}dτ

− 1√
π
{
∫ t

0
(t− η)

−3
2 η

−1
2 {t

1
2v(s(t), t)− η

1
2v(s(η), η)}dη},

H(t, τ) =
−1

2π
{
∫ t

τ
(t− η)

−3
2 (η − τ)

−1
2 {exp(−(s(t)− s(τ))2

4(t− τ)
)

− exp(
−(s(η)− s(τ))2

4(η − τ)
)}dη}

− 1√
π
{
∫ t

τ
(t− η)

−3
2 (η − τ)

−1
2 {(t− τ)

1
2L(t, τ)

−(η − τ)
1
2L(η, τ)}dη},
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and

K(x, t) =
1√
4πt

exp(−x
2

4t
),

∂K

∂x
(x, t) =

−x
2t
√
4πt

exp(−x
2

4t
),

v(x, t) =
∫ b

0
{K(x− ξ, t)−K(x+ ξ, t)}f(ξ)dξ,

L(t, τ) = 2
∫ t

τ

∂K

∂x
(s(t), t− σ)K(s(σ), σ − τ)dσ.

When we consider the Banach space C0
(ν2)

((0, T ]), where ν2 = ν2(ν, γ, γ1, β), we
see that

Bφ(t) = G(t) +
∫ t

0
H(t, τ)φ(τ)dτ (7)

is a contraction of C0
(ν2)

((0, T ]) into itself for T sufficiently small. Hence there exists

a unique solution φ ∈ C0
(ν2)

((0, T ]) of (7) for T sufficiently small and the fixed point

iteration method (8) converges for any initial function φ0 ∈ C0
(ν2)

((0, T ]).

φn(t) = G(t) +
∫ t

0
H(t, τ)φn−1(τ)dτ, t ∈ (0, T ], n ≥ 1, (8)

Theorem 3.3 (see [1]). Under the hypothesis of Theorem 3.1, the solution u of
problem (3), possesses a two-dimensionally continuous ux at x = s(t), 0 < t ≤ T .

4 Method of Solution

We begin by first subdividing the time interval [0, T ] into N equal subintervals
of length θ = T

N
. Next, we let snθ(t) denote the approximate value of s on each

subinterval nθ ≤ t ≤ (n+1)θ and define unθ(x, t) to be the unique solution of (1)
in the region 0 ≤ x ≤ snθ(t), nθ ≤ t ≤ (n+ 1)θ.
For each, 0 < θ < b, let

f θ(x) =

{
f(x),

0,

0 ≤ x ≤ b− θ

b− θ < x ≤ b

In the first interval 0 ≤ t ≤ θ, we set s0θ(t) ≡ b and solve the following problem
by utilizing Section 3

u0θxx = u0θt , 0 < x < s0θ(t), 0 < t ≤ θ
u0θ(x, 0) = f θ(x), 0 < x < b,
u0θ(0, t) = g(t), 0 < t ≤ θ,
u0θ(s(t), t) = 0, 0 < t ≤ θ.

From Theorem 3.3, u0θx (s0θ(t), t) exists and is continuous for 0 ≤ t ≤ θ. On each
subinterval nθ ≤ t ≤ (n+ 1)θ, n ≥ 1, at first, we define

snθ(t) = b−
n−2∑
i=0

∫ −(n−i−1)θ

−(n−i)θ
uiθx (s

iθ(η + nθ), η + nθ)dη
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−
∫ t−(n+1)θ

−θ
u(n−1)θ
x (s(n−1)θ(η + nθ), η + nθ)dη (9)

and solve the following problem by utilizing Section 3

unθxx = unθt , 0 < x < snθ(t), 0 < t ≤ θ
unθ(x, 0) = f θ(x), 0 < x < b,
unθ(0, t) = g(t+ nθ), 0 < t ≤ θ,
unθ(snθ(t), t) = 0, 0 < t ≤ θ.

Then, by a translation of the solution to the interval nθ ≤ t ≤ (n + 1)θ, the
approximation (snθ, unθ) can be constructed in the region 0 ≤ x ≤ snθ(t), nθ ≤
t ≤ (n+ 1)θ. Clearly unθx (snθ(t), t) exists and is continuous for nθ ≤ t ≤ (n+ 1)θ,
n ≥ 1.
In this way, we can construct the approximations (snθ, unθ) to the solution of the
Stefan problem (1)-(2) in all regions 0 ≤ x ≤ snθ(t), nθ ≤ t ≤ (n+ 1)θ, n ≥ 1.

Remark 4.1 Differentiating of the left and right sides of (9) over the time
interval nθ ≤ t ≤ (n+ 1)θ, n ≥ 1, yields

ṡnθ(t) = −u(n−1)θ
x (s(n−1)θ(t− θ), t− θ),

which amounts to a retardation of the argument in the free boundary equation (2).

Remark 4.2 The approximations (snθ, unθ) are uniformly convergent to the
solution of the Stefan problem (1)-(2), if the length of each subinterval tends to
zero. This means that, by taking θ sufficiently small, these approximations are
uniformly convergent to the solution of the Stefan problem (1)-(2) (see [1]).

5 Example

The solution procedure by the proposed method, presented in the previous section,
will be illustrated with the following theoretical Example, for which the exact
solution is known. For simplicity, all the integrals in Section 3 or Section 4 are
calculated numerically using the trapezoidal or midpoint rules. The results are
carried out using MATLAB software and depicted through figure and table.

Example 5.1 Assume that: b = 1
2
, f(x) = exp(−x + 1

2
) − 1, g(t) = exp(t +

1
2
)− 1, T = 0.03. For such data, the exact solution of the Stefan problem (1)-(2)

are the following functions

u(x, t) = exp(t− x+
1

2
)− 1, s(t) = t+

1

2
. (10)

The exact and approximate solutions describing the free boundary s with N = 3
and n = 1, φ0(t) = 1 in iteration formula (8) have been shown in Figure 1. Also
in Table 1, the numerical values of the temperature u(x, t) at selected times and at
point x = 0.2, are found to be in good agreement with the exact solution in (10).
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Table 1: A comparison of numerical values of u(0.2, t) with the exact solution at
selected times

t Approximate Exact

0.005 0.3352 0.3566
0.01 0.3751 0.3634
0.015 0.3355 0.3703
0.02 0.3765 0.3771
0.025 0.3357 0.3840
0.03 0.3779 0.3910

0 0.002 0.004 0.006 0.008 0.01
0.4

0.45

0.5

0.55

t

s

0.01 0.012 0.014 0.016 0.018 0.02
0.4

0.45

0.5

0.55

t

s

0.02 0.022 0.024 0.026 0.028 0.03
0.4

0.45

0.5

0.55

t

s

Figure 1: Comparison between the exact position of the free boundary (dots) and
its approximation (solid line).
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6 Conclusion

In this paper the solution of the one-phase Stefan problem was presented. This
problem consists in a calculation of temperature distribution and of a function
which describes the position of the moving interface. The proposed method is
based on a scheme introduced by Cannon [1]. The calculations show that this
method is effective for solving the problems under consideration. The advantage
of the proposed method comparing it with classical methods, for example finite
difference method or finite element method, consists in obtaining the interface
position and temperature distribution in the form of continuous functions, instead
of a discrete form. As a result of the current approach we receive the sequence
of approximations, convergent to the exact solution. We may conclude that this
method will be very much useful for solving moving and other many physical
problems.
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