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1. Introduction

A matrix A = (aij) ∈ Rn×n is called a P -matrix if every principal minor of A is posi-

tive. This notion was first introduced by Fiedler and Ptak [5]. It plays important roles

in studying solution properties of equations and complementarity problems, and conver-

gence/complexity analysis of methods for solving these problems. There are numerous

ways to describe a P -matrix, we consider only three of them for our work. The three

equivalent definitions for a real square matrix A are as follows:

(i) All the principal minors of A are positive.

(ii) Every real eigenvalue of each principal submatrix of A is positive.

(iii) The matrix A does not reverse the sign of any vector; i.e., if x 6= 0 and y = Ax, then

for some subscript i, xiyi > 0.

The equivalence of (i) and (iii) was established by Fiedler and Ptak [5]. P -matrices also

arise quite frequently in systems theory. These include hermitian positive definite ma-

trices, M -matrices, totally positive matrices and real diagonally dominant matrices with

positive diagonal entries.

Now coming to the name “linear complementarity problem” which stems from the

linearity of the mapping W (z) = q + Az, where A ∈ Rn×n and the complementarity of

real n-vectors w and z. For a given q ∈ Rn and A ∈ Rn×n, the linear complementarity

problem (LCP) is that of finding (or concluding there is no) z ∈ Rn such that

w = q + Az ≥ 0,

z ≥ 0,

zTw = 0.

We denote the above problem by the symbol LCP (q, A). A vector z ∈ Rn satisfying

the above three conditions is called a solution of LCP (q, A) and the set of all solutions

is denoted by SOL(q;A). The solution set is defined by S(A) = {q : SOL(q, A) 6= φ}.

For more details on linear complementarity problems, we refer the reader to the book by

Cottle, Pang and Stone [4].
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Let us discuss some basic relations between the complementarity cone and P -matrices.

The class of complementarity cone corresponding to a real square matrix A is denoted

by A, the pair of column vectors (I.j,−A.j) is known as the jth complementary pair

of vectors in 1 ≤ j ≤ n. The convex cone generated by any complementary set of

column vectors is known as a complementarity cone. A theorem proved by Samelson,

Thrall and Wesler [13] says that the set of complementarity cone partitions Rn if and

only if A is a P -matrix. Later this characterization of P -matrices by Samelson, Thrall

and Wesler [13] was improved by Murty [10]. He proved that a real n× n matrix A is

a P -matrix if and only if the LCP (q, A) has a unique solution for every q belonging to

{I.1, · · · I.n,−I.1, · · · − I.n, A.1, · · ·A.n − A.1, · · · − A.n, e, and further extended by Tamir

[14]. Tamir [14] stated a n× n matrix A is a P -matrix if and only if the LCP (q, A) has

a unique solution for every q belonging to {I.1, · · · I.n, A.1, · · ·A.n−A.1, · · · −A.n, e, where

e = (1, 1, · · · , 1)T is the vector of ones of order n.

Very recently, Kannan and Sivakumar [9] generalized the notion of P -matrix for singular

cases and call it as P†-matrix. The definition of this is presented next.

Definition 1.1. (Definition 1.1 [9]) A square matrix A is said to be a P†-matrix if for

each non zero x ∈ R(AT ), there is an i ∈ {1, 2, · · · , n} such that xi(Axi) > 0.

Let us introduce some more definitions and notations which are going to be used to

prove our main results. Let the diagonal matrix whose entries are t1, t2, · · · tn is denoted

by diag(t1, t2, · · · tn). Let F denote the matrix whose entries are all one, and let o denote

the Hadamard (entry wise) product of matrices. For any A,B ∈ Rn×n, we define the

following sets:

h(A,B) = {C : C = tA+ (1− t)B, t ∈ [0, 1]}

r(A,B) = {C : C = TA+ (I − T )B, T = diag(t1, t2, · · · tn), ti ∈ [0, 1],

1 ≤ i ≤ n}

c(A,B) = {C : C = AT +B(I − T ), T = diag(t1, t2, · · · tn), ti ∈ [0, 1],

1 ≤ i ≤ n}
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i(A,B) = {C : C = ToA+ (F − T )oB, T = diag(t1, t2, · · · tn), ti ∈ [0, 1],

1 ≤ i ≤ n}

J = i(A,B), if A ≤ B.

r(A,B) denotes the set of matrices whose rows (columns) are independent convex com-

binations of the corresponding rows of A and B. While c(A,B) denotes the set of matrices

whose columns are independent convex combinations of the corresponding columns of A

and B. The interval hull (i(A,B)) for any two matrices A,B ∈ Rn×n is defined as

i(A,B) = {C ∈ Rn×n : min{aij, bij} ≤ cij ≤ max{aij, bij}}.

From all the above definitions above, now it is clear that h(A,B) ⊆ r(A,B) ⊆ i(A,B)

and h(A,B) ⊆ c(A,B) ⊆ i(A,B).

The interval hull i(A,B) is said to be index-range kernel regular if R(Ak) = R(Bk) and

N(Ak) = N(Bk). Let us define the set

K = {C ∈ i(A,B) : R(Ak) = R(Uk) and N(Ak) = N(Uk)}

for an index-range kernel interval hull i(A,B). When A and B are invertible, then K

contains only invertible matrices. Motivated by the results of Johnson and Tsatsomeros [7]

for P -matrices, and further generalization by Kannan and Sivakumar [9] for P†-matrices,

we establish analogous results by introducing another generalization of the notion of P -

matrix.

The motto of this article is to first propose an extension of P -matrix and to study some

its properties. The organization of this paper is as follows. After a brief review of some

basic definitions and notations in Section 2, we include the definition of a PD-matrix and

few of its properties in Section 3. We first state linear complementarity problems (LCP),

secondly a relation between PD-matrices and LCP, and then some results. Section 4

contains the characterization of the inclusion r(A,B) ⊆ K with PD-matrices, and an

analogous result for c(A,B) ⊆ K in Section 4. Finally, the case i(A,B) = K and

the generalization of Theorem 3.8, [7] are discussed. Section 5 presents the inclusion
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h(A,B) ⊆ K and its link with certain constrained eigenvalue condition. Then a new

result for the nonnegativity of Drazin inverse of an interval is proved in Section 6.

2. Preliminaries

Let Rn denote the n dimensional real Euclidean space and Rn
+ denote the nonnegative

orthant in Rn. For a real m × n matrix A, i.e., A ∈ Rm×n, the matrix G satisfying

the four equations known as Penrose equations: AGA = A, GAG = G, (AG)T = AG

and (GA)T = GA is called the Moore-Penrose inverse of A (BT denotes the transpose

of B). It always exists and unique, and is denoted by A†. A ∈ Rm×n is said to be

semimonotone if A† ≥ O (here the comparison is entry wise and O is the null matrix of

respective order). For a real n × n matrix A. The index of a real square matrix A is

the least nonnegative integer k such that rank(Ak+1) = rank(Ak). It is denoted by ind

A. Then ind(A) = k if and only if R(Ak)
⊕

N(Ak) = Rn. For A ∈ Rn×n the matrix G

satisfying the three equations : AkGA = Ak, GAG = G, AG = GA known as Drazin

inverse of A, where k is the index of A. It always exists and unique, and is denoted by AD.

When k = 1, then the Drazin inverse is known as group inverse and is denoted as A#.

A ∈ Rn×n is said to be Drazin monotone if AD ≥ O. When A is a square nonsingular,

then A† = A# = AD = A−1, and a semimonotone (or Drazin monotone) matrix becomes

a monotone matrix (i.e., A−1 exists and A−1 ≥ O). (See the book by Berman and

Plemmons, [2] for more details on monotone matrices and their generalizations.) For

A,B,C ∈ Rm×n, we say A is nonnegative if A ≥ O, and B ≥ C if B − C ≥ O. We

denote a nonnegative vector x as x ≥ 0. Let L and M be complementary subspaces of Rn.

Let PL,M be a projector on L along M . Then PL,MA = A if and only if R(A) ⊆ L and

APL,M = A if and only if N(A) ⊆M , where R(A) and N(A) denote the range space and

the null space of A. Some well-known index properties of AD ([1]) are: R(Ak) = R(AD);

N(Ak) = N(AD) and AAD = PR(Ak),N(Ak). In particular, if x ∈ R(Ak), then x = ADAx.

The spectral radius of A ∈ Rn×n, denoted by ρ(A) is defined by ρ(A) = max
1≤i≤n

|λi|, where

λ1, λ2, · · · , λn are the eigenvalues of A.

The next theorem is a part of Perron−Frobenius theorem.
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Theorem 2.1. (Theorem 2.20, [15]) Let A ≥ O. Then A has a nonnegative real eigen-

value equal to its spectral radius.

Another result which relates spectral radius of two nonnegative matrices is given below.

Theorem 2.2. (Theorem 2.21, [15]) Let A ≥ B ≥ O. Then ρ(A) ≥ ρ(B).

The theory of splitting plays a major role in finding solution of system of linear equa-

tions. Many authors have proposed several splittings. Chen-Chen [3] proposed the fol-

lowing splitting.

Definition 2.3. A splitting A = U − V of A ∈ Rn×n is called an index-proper splitting

([3]) if R(Ak) = R(Uk) and N(Ak) = N(Uk), k = ind(A).

3. PD-matrices

We begin this section with another generalization of a singular P -matrix which we call

as a PD-matrix, and the definition is presented below.

Definition 3.1. A square matrix A is said to be a PD-matrix if for each non zero x ∈

R(Ak), k = ind(A) there is an i ∈ {1, 2, · · · , n} such that xi(Axi) > 0.

In other words, for any x ∈ R(Ak) the inequality xi(Axi) ≤ 0 for i ∈ {1, 2, · · · , n}

imply x = 0. Trivially, every P -matrix is a PD-matrix.

Example 3.2. Let A =

 1 −1 −1

−1 1 −1

0 0 0

. Then ind(A) = 2. Also R(A2) = span of

α
 1

−1

0

 : α ∈ R

. Taking x = (1,−1, 0)T and calculating xi(Ax)i, we get xi(Ax)i >

0. So A is a PD-matrix.

PD-matrix reduces to P#-matrix when k = 1, and the definition is as follows.

Definition 3.3. (Definition 5.1, [9])

A square matrix A is said to be a P#-matrix if for each non zero x ∈ R(A) there is an

i ∈ {1, 2, · · · , n} such that xi(Axi) > 0.
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In other words, for any x ∈ R(A) the inequality xi(Axi) ≤ 0 for i ∈ {1, 2, · · · , n} imply

x = 0.

Example 3.4. Let A =

 3 1 0

3 3 0

0 0 0

. Here ind(A) = 1 and R(A) = span of


 3

3

0

 ,

 1

3

0


. Then xi(Axi) ≤ 0 for any x ∈ R(A). Hence A is a P#-matrix.

We discuss below some useful properties of PD-matrices. The first one is the Drazin

inverse analogue of Theorem 2.3, [9].

Theorem 3.5. A is a PD-matrix if and only if AD is a PD-matrix.

Proof. Suppose that A is a PD-matrix. So for each 0 6= y ∈ R((AD)k) = R(Ak), there

is an i ∈ {1, 2, · · ·n} such that yi(Ay)i > 0. Let y ∈ R((AD)k) = R(Ak) then y =

AADx, for some x ∈ Rn, so yi(A
Dy)i = (AADx)i(A

DADAx)i = (ADAx)i(A
DAADx)i =

(ADAx)i(A
Dx)i = (ADx)i(AA

Dx)i = ui(Au)i > 0. Set u = ADx ∈ R(AD) = R(Ak). So

AD is a PD-matrix.

Conversely: Let AD be a PD-matrix. In order to show that A is a PD-matrix, we have

to prove that yi(Ay)i > 0 for y ∈ R(Ak), i ∈ {1, 2, · · ·n}. Since AD is a PD-matrix,

xi(A
Dx)i > 0, 0 6= x ∈ R((AD)k) = R(Ak). Therefore yi(Ay)i = (ADx)i(AA

Dx)i =

(ADAADx)i(AA
Dx)i = (ADu)iui = ui(A

Du)i > 0, where u = AADx. Again AD is a

PD-matrix, yi(Ay)i > 0, y ∈ R(Ak). Hence A is a PD-matrix. �

When ind(A) = 1, we then have Theorem 5.1, [9] as a corollary. However, we give a

different proof for the existence of the group inverse.

Corollary 3.6. A is a P#-matrix if and only if A# is a P#-matrix.

Proof. The proof is same as the proof for PD-matrices for k = 1, but here only to show

A# exists. For this, suppose that A is a P#-matrix. Let x ∈ R(A). Then, xi(Ax)i = 0

for each i ∈ {1, 2, · · ·n}, so R(A) = 0 ⇒ r(A) = 0. Again R(A) = 0 ⇒ R(A2) = 0. So

r(A2) = 0. Hence ind(A) = 1. Therefore A# exists. �
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Next theorem says that a PD-matrix has a nonnegative eigenvalue decomposition under

a given condition.

Theorem 3.7. Let A be a PD-matrix. Suppose Ax = λx, 0 6= x ∈ R(Ak) and λ ∈ R.

Then λ > 0.

Proof. Assume that Ax = λx, 0 6= x ∈ R(Ak) and λ ∈ R and A is a PD-matrix. Then

λx2i = λxixi = xi(Ax)i > 0, for some i ∈ {1, 2, · · ·n}. Hence λ > 0. �

The above theorem admits the following corollary.

Corollary 3.8. Let A be a P#-matrix. Suppose Ax = λx, 0 6= x ∈ R(A) and λ ∈ R.

Then λ > 0.

A characterization of a PD-matrix is presented next.

Theorem 3.9. Let A ∈ Rn×n. Then A be a PD-matrix if and only if for each x ∈ R(Ak)

there is a positive diagonal matrix Dx ∈ Rn×n such that xT (DxAx) > 0.

Proof. Necessity: Let A be a PD-matrix. So for each 0 6= x ∈ R(Ak), there is an i0 ∈

{1, 2, · · ·n} such that xi0(Ax)i0 > 0. Then there exists ε > 0 such that xi0(Ax)i0 +

ε
∑n

j=1,i0 6=j xj(Ax)j > 0. Let Dx = diag(d1, d2, · · · dn) with di0 = 1 and dj = ε for all

j 6= i0. Hence xT (DxAx) > 0.

Sufficiency: Suppose for each x ∈ R(Ak) there is a positive diagonal matrix Dx ∈ Rn×n

such that xT (DxAx) > 0. So, DxAx = (d1
∑n

j=1 anjxj, · · · dn∑n
j=1 anjxj)

T . Since xT (DxAx) > 0 and di > 0, xi(Ax)i > 0 for each i. Hence A is a

PD-matrix. �

For ind(A) = 1, the above theorem yields a characterization of a P#-matrix. With this,

we proceed to present the definition of a sign-change matrix.

Definition 3.10. A diagonal matrix S is called a sign-change matrix if the diagonals of

S are 1 or −1.

A relationship between a P -matrix and a block PD-matrix is shown next.
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Theorem 3.11. Let A =

(
L O

O O

)
∈ Rm×m be a partition matrix such that L ∈ Rn×n

with m ≥ n.

(a) If L is a P -matrix, then A is a PD-matrix.

(b) A is a PD-matrix and L is invertible, then L is a P -matrix. In this case, AT and SAS

also are PD-matrices, where S is a sign-change matrix.

Proof. (a): Let 0 6= x = (x1, x2, · · ·xm)T ∈ R(Ak). Define u = (x1, x2, · · ·xm)T . Then

u ∈ R(Ak), L is a P -matrix. Hence there exists at least one i ∈ {1, 2, · · ·n} such that

ui(Lu)i > 0. xi(Ax)i = ui(Lu)i for each 1 ≤ i ≤ n, then it follows that A is a PD-matrix.

(b) Let 0 6= x = (x1, x2, · · ·xn)T . Define

v = (x1, x2, · · · xn, 0, 0, · · · 0)T ∈ R(Ak). Hence there exists at least one i ∈ {1, 2, · · ·n}

such that vi(Av)i > 0, since for n + 1 ≤ i ≤ m, xi = 0. As vi(Av)i = xi(Lx)i for each

1 ≤ i ≤ n, it then follows that L is a P -matrix. Also LT and SLS are P -matrices. �

Then the above theorem produces the following corollary.

Corollary 3.12. Let A =

(
L O

O O

)
∈ Rm×m be a partition matrix such that L ∈ Rn×n

with m ≥ n.

(a) If L is a P -matrix, then A is a P#-matrix.

(b) A is a P#-matrix and L is invertible, then L is a P -matrix. In this case, AT and SAS

also are P#-matrices, where S is a sign-change matrix.

Let us recall the definition of a Z-matrix and an M -matrix. A square matrix whose

off-diagonal elements are non-positive is called a Z-matrix. It follows that a Z-matrix

A can be written as A = sI − B, where B ≥ 0, s ≥ ρ(B). A Z-matrix A is called a

M -matrix if s ≥ ρ(B). A Z-matrix A is called a nonsingular M -matrix if A is monotone.

It is well known that if A is a Z-matrix then A is a P -matrix if and only if A is an

invertible M -matrix. The matrix in Example 3.2 is a Z-matrix and is also a PD-matrix.
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However, it is not always true that AD ≥ 0. In order to study this property we have to

apply the well-known result stated in [6] and is recalled below.

Theorem 3.13. (Theorem 3.9, [6])

Let A be a Z-matrix having all principal minors are nonnegative. Then A† ≥ 0 if and

only if there exists a permutation matrix S such that SAST =

(
L O

O O

)
where L is an

invertible M-matrix.

In Theorem 3.13, if L is an invertible M -matrix, then L is an P -matrix. Next theorem

says about a relation between a Z-matrix and a PD-matrix.

Theorem 3.14. Let A ∈ Rn×n be a Z-matrix having all principal minors are nonnegative

and AD ≥ 0. Then there exists a permutation matrix S such that SAST is a PD-matrix.

Proof. Let B = SAST =

(
L O

O O

)
where L ∈ Rn×n is an invertible M -matrix, i.e., P -

matrix. We will show that B is a PD-matrix. Let 0 6= x = (x1, x2, · · · xm)T ∈ R(Bk).

Taking v = (v1, v2, · · · vn)T . Since every P -matrix is a PD-matrix. So v ∈ R(Lk). Hence

there exists at least one i ∈ {1, 2, · · ·n} such that vi(Lv)i > 0 and xi(Bx)i = vi(Lv)i for

each 1 ≤ i ≤ n which follows that B is a PD-matrix. �

The corollary of the above theorem comes when we take x ∈ R(A).

Corollary 3.15. Let A ∈ Rn×n be a Z-matrix having all principal minors are nonnegative,

A# exists and A# ≥ 0. Then there exists a permutation matrix S such that SAST is a

P#-matrix.

Next theorem relates Drazin monotonicity and PD-matrices.

Theorem 3.16. Let A ∈ Rn×n be any matrix. Then the following statements are equiva-

lent.

(i) A is a PD-matrix.

(ii) AD is a PD-matrix and AD ≥ 0.
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Proof. (i) ⇒ (ii): Suppose that A is a PD-matrix. Then by Theorem 3.5 AD is a PD-

matrix. Next, to show AD ≥ 0. Let u ∈ R(Ak), u > 0 and y = ADu. Then y ∈ R(Ak)

and Ay = AADu = u > 0. Hence Ay > 0. Since A is a PD-matrix, so for 0 6= y ∈ R(Ak)

there is an i ∈ {1, 2, · · ·n} such that yi(Ay)i > 0. So yi > 0 where yi is the ith component

of y, as Ay > 0. Therefore AD ≥ 0.

(ii)⇒ (i): The proof is same as in Theorem 3.5. �

We then have the follwing corollary for P#-matrices.

Corollary 3.17. Let A ∈ Rn×n be any matrix. Then the following statements are equiv-

alent.

(i) A is a P#-matrix.

(ii) A# is a P#-matrix, A# exists and A# ≥ 0.

4. A Connection with Linear Complementarity Problems

It is well-known that a P -matrix A is characterized by the condition that the standard

linear complementarity problem LCP (q, A) has a unique solution for all q ∈ Rn in [4]. A

relation between them is shown next.

Theorem 4.1. LCP (q, A) has unique solution for each q ∈ Rn if and only if A is a P

matrix.

Motivated by the work of Kannan and Sivakumar [9], we are now going to prove the

existence of solution of LCP with the help of PD-matrices.

Theorem 4.2. LCP (q, A) has unique solution for each q ∈ Rn if and only if A is a

PD-matrix.

Proof. The proof of this theorem is similar to the proof for P -matrix (see page: 274-275,

[2]). �

The following result is well-known in the theory of linear complementarity problems.
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Theorem 4.3. (Theorem 3.4.4, [4])

Let A ∈ Rn×n. Then the following statements are equivalent.

(a) For all q ∈ S(A), if x1, x2 ∈ SOL(q, A), then Ax1 = Ax2.

(b) Every vector whose sign is reversed by A must belong to N(Ak), i.e., if xi(Ax)i ≤ 0

for all i, then x ∈ N(A).

Using this result we show a sufficient condition for a matrix to be a PD-matrix.

Theorem 4.4. Let A ∈ Rn×n. Suppose that For all q ∈ S(A), and for every x1, x2 ∈

SOL(q, A), it follows that Ax1 = Ax2. Then A is a PD-matrix.

Proof. Let x ∈ R(Ak) be such that xi(Ax)i ≤ 0 for all i. Then by the condition (b) of the

Theorem 4.3, it follows that x ∈ N(Ak). Hence x = 0. So A is a PD-matrix. �

We conclude this section with the remark that all the theorems mentioned in this section

are also true for P#-matrices.

5. Characterization of PD-matrices with i(A,B)

In this section, first we discuss the inclusion r(A,B) ⊆ K with PD-matrices. We also

state a result of Johnson and Tsatsomero, [7] for P -matrices, and then extend it for

index-range symmetric matrices.

Theorem 5.1. (Theorem 3.3, [7])

Let A,B ∈ Rn×n be such that A and B are invertible. Then r(A,B) ⊆ K if and only if

BA−1 is P -matrix.

The extension of the above result is proposed next.

Theorem 5.2. Let A,B ∈ Rn×n be such that R(Ak) = R(Bk) and N(Ak) = N(Bk) and

A, B are commutative. Then r(A,B) ⊆ K if and only if BAD(ABD) is a PD-matrix.

Proof. Necessity: Let r(A,B) ⊆ K and suppose BAD is not a PD-matrix. Then, there

exists 0 6= x ∈ R((BAD)k) = R(Bk(AD)k) ⊆ R(Bk) = R(Ak) such that xi(BA
Dx)i ≤ 0
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for all i. For 1 ≤ i ≤ n, consider the function fi : [0, 1] → R defined by fi(t) =

txi + (1 − t)(BAD)xi. Then by intermediate value theorem, there exists ti ∈ [0, 1] such

that txi+(1− t)(BAD)xi = 0. Let L = diag(t1, t2 · · · tn). Then, Lx+(I−L)(BAD)x = 0.

Since x ∈ R(Ak), then x = AADx for some x ∈ Rn. Hence, 0 = Lx + (I − L)(BAD)x =

LAADx + (I − L)(BAD)AADx = (LAAD + (I − L)(BADAAD))x = (LAAD + (I −

L)BAD)x = (LA + (I − L)B)ADx. This implies ADx = 0 implies x ∈ N(AD) = N(Ak)

(as LA+ (I − L)B ∈ r(A,B)), a contradiction. So BAD is a PD-matrix.

Sufficiency: Let ti ∈ [0, 1], i = {1, 2, · · ·n}, L = diag(t1, t2 · · · tn) and (LA + (I −

L)B)x = 0 for some x ∈ R(Ak). Since x ∈ R(AD) = R(Ak), we have x = ADy for some

y ∈ R(Ak). Therefore (LA + (I − L)B)x = 0 implies (LA + (I − L)B)ADy = 0 which

again yields LAADy + (I − L)BADy = 0. If y ∈ R(Ak), then LAADy + (I − L)BADy =

Ly + (I − L)BADy = 0. Also, (BAD)D(BAD)y = y, since R((BAD)k) ⊆ R(Ak). Thus,

y ∈ R((BAD)k). The fact L ≥ 0 and (I − L) ≥ 0, so yi and (BADy)i are opposite in

signs for each i, i.e., yi(BA
Dy)i ≤ 0. So BAD is not a PD-matrix, a contradiction. Hence

r(A,B) ⊆ K. �

Corollary 5.3. Let A,B ∈ Rn×n be such that R(A) = R(B) and N(A) = N(B). Then

r(A,B) ⊆ K if and only if A#(B#) exists and BA#(AB#) is a P#-matrix.

Theorem 5.4. Let A,B ∈ Rn×n be such that R(Ak) = R(Bk) and N(Ak) = N(Bk).

Then c(A,B) ⊆ K if and only if BDA(ADB) is a PD-matrix.

The proof is similar to proof of Theorem 5.2 and this theorem carries a corollary, given

next.

Corollary 5.5. Let A,B ∈ Rn×n be such that R(A) = R(B) and N(A) = N(B). Then

c(A,B) ⊆ K if and only if A#(B#) exists and B#A(A#B) is a P#-matrix.

Combining Theorem 5.2 and 5.4, we have the following theorem.
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Corollary 5.6. Let A,B ∈ Rn×n be such that R(Ak) = R(Bk) and N(Ak) = N(Bk).

Then r(A,B) ⊆ K and c(A,B) ⊆ K if and only if BAD, ABD, ADB and BDA are

PD-matrices.

Now, we produce the following result which is proved by the authors Rohn [12], and

Johnson and Tsatsomeros [7] for the matrices whose interval hull contains no singular

matrices.

Theorem 5.7. Let A,B ∈ Rn×n such that each matrix in i(A,B) is invertible. Then

BA−1, A−1B, B−1A and AB−1 are P -matrices.

Now, we present the generalization of above theorem to singular case.

Theorem 5.8. Let A,B ∈ Rn×n be such that R(Ak) = R(Bk) and N(Ak) = N(Bk).

Further, let i(A,B) = K. Then BAD, ABD, ADB and BDA are PD-matrices.

Proof. Suppose BAD is not a PD-matrix. Then, there exists 0 6= x ∈ R((BAD)k such

that xi(BA
Dx)i ≤ 0 for all i. Let Ci denotes the ith row of C ∈ Rn×n defined by

Ci = Bi + ti(Ai − Bi), where Ai, Bi are the ith rows of A, B respectively. Let ti = 1

if xi = 0 and if xi 6= 0, then ti be an arbitrary root of the continuous function φi(t) =

xi(B + t(A − B))iA
Dx in [0, 1]; such a root exists, since φ(0) = xi(BA

Dx)i ≤ 0 and

φ(1) = xi(AA
Dx)i = x2i ≥ 0. So Ci is a convex combination of Ai and Bi for each

i = {1, 2, · · ·n}, hence C ∈ i(A,B). Now, we will show C ∈ K. Let ADx ∈ N(C) ⊆

N(Ck). If xi = 0, then (CADx)i = CiA
Dx = Ai(A

Dx) = (AADx)i = xi = 0, and if

xi 6= 0, then (CADx)i = (CiA
Dx) = φ(ti)

xi
= 0. Hence, ADx ∈ N(C) ⊆ N(Ck). If

ADx ∈ N(A) ⊆ N(Ak), then xi = 0, a contradiction. So, N(Ck) 6= N(Ak), again a

contradiction. Hence BAD is a PD-matrix. �

Corollary 5.9. Let A, B ∈ Rn×n be such that R(A) = R(B) and N(A) = N(B). Further,

let i(A,B) = K. Then BA#, AB#, A#B and B#A are PD-matrices provided A# and

B# exists.
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6. A Characterization for the Inclusion h(A,B) ⊆ K

In this section, we present a theorem which creates a relation between the inclusion

h(A,B) ⊆ K and a constrained eigenvalue condition of the matrix ADB. Then the result

obtained by taking J = [A,B] and h(A,B) ⊆ K is discussed. Finally, a new result is

proved which is based on the inclusion h(A,B) ⊆ K, and nonnegativity of Drazin inverse

of certain element in J = [A,B].

Theorem 6.1. Let A,B ∈ Rn×n be such that R(Ak) = R(Bk) and N(Ak) = N(Bk).

Then the following conditions are equivalent:

(a) h(A,B) ⊆ K.

(b) ADBx = λx, 0 6= λ ∈ R. Then λ > 0.

Proof. (a) ⇒ (b): Suppose that (a) holds. Assume that ADBx = λx holds for some

λ < 0. Then Bx = PR(Ak),N(Ak)Bx = AADBx = λAx. If Bx = 0, then x = 0. So Bx 6= 0

and Ax 6= 0. Set u = −λ
1−λ and Ck = (uA + (1 − u)B) ∈ h(A,B). Then, u ∈ (0, 1) and

ADCkx = AD(uA + (1 − u)B)x = −1
1−λ(−λI + ADB)x = 0. So Ckx ∈ N(AD) = N(Ak)

and Ckx ∈ R(Ak). Therefore Ckx = 0. Thus N(Ck) * N(Ak) and then h(A,B) * K, a

contradiction. So λ > 0.

(b) ⇒ (a): Suppose that (b) holds and assume that h(A,B) * K. Then, (uA + (1 −

u)B) /∈ h(A,B) for some u ∈ (0, 1). As N(Ak) ⊆ N(uA + (1 − u)B). Suppose that

N(Ak) 6= N(uA + (1 − u)B). Then, (uA + (1 − u)B)x = 0 for some x /∈ N(Ak). Let

x = x1 + x2, where x1 ∈ N(Ak) and 0 6= x2 ∈ R(Ak). Then, (uA + (1 − u)B)x2 = 0.

Pre-multiplying by AD, we get (uADA+ (1− u)ADB)x2 = 0. By setting λ = −u
1−u < 0, it

follows that ADBx2 = λx2, a contradiction. �

For k = 1, the property index range-symmetric reduces to range-symmetric and we

have the follwing corollary.

Corollary 6.2. Let A,B ∈ Rn×n be such that R(A) = R(B) and N(A) = N(B). Then

The following conditions are equivalent:
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(a) h(A,B) ⊆ K.

(b) A#Bx = λx, 0 6= λ ∈ R. Then λ > 0.

An square interval matrix is defined as the set of matrices of the form J = [A,B] =

{C : A ≤ C ≤ B} for A ∈ Rn×n, B ∈ Rn×n and A ≤ B. We shall often use the center

matrix JC = 1
2
(B + A) and the radius matrix ∆ = 1

2
(B − A). Thus, A = JC − ∆,

B = JC + ∆ and ∆ ≥ 0 which yields J = [JC −∆, JC + ∆].

An interval matrix J = [A,B] where A,B ∈ Rn×n is called index range-kernel regular

if for all C ∈ J , R(Ck) = R(Ak) and N(Ck) = N(Ak). When k = 1, it coincides with

range-kernel regular, i.e., R(C) = R(A) and N(C) = N(A).

Theorem 6.3. Let J = [A,B]. If h(A,B) ⊆ K, then ρ(JDc ∆) < 1.

Proof. Since Jc ∈ K, then it follows that R(Ak) = R(Jc) and N(Ak) = N(Jc). Suppose

on contrary, β = ρ(JDc ∆) ≥ 1. Then, there exists 0 6= x ∈ Rn such that JDc ∆ = βx.

Then, x ∈ R(JDc ) = R(Jkc ) = R(Ak). Also, PR(Jk
c )
, N(Jkc )(Jc − A)x = JcJ

D
c ∆x = βJcx so

that (Jc − A − βJc)x = 0. Dividing it by −1
β

and taking η = 1 + −1
β
≥ 0, then we have

(ηJc+ (1−η)A)x = 0. Let P = (ηJc+ (1−η)A). Then, P ∈ K and x ∈ N(P k) = N(Ak).

As x ∈ R(Ak), thus x = 0, a contradiction. �

Corollary 6.4. Let J = [A,B]. If h(A,B) ⊆ K, then ρ(J#
c ∆) < 1.

We next present an analogous result to Theorem 3.5, [8] for square singular matrices

using the Drazin inverse.

Theorem 6.5. Let J be index range-kernel regular. Then the following are equivalent.

(i) CD ≥ 0 whenever C ∈ K,

(ii) BD ≥ 0 and AD ≥ 0,

(iii) BD ≥ 0 and ρ(BD(B − A)) < 1.

Proof. (i) ⇒(ii) Follows from definition of J.

(ii) ⇒(iii) A = B − (B − A) is an index-proper splitting of A. Then BD(B − A) ≥ 0.

So by Theorem 2.1, ρ(BD(B − A)) < 1.
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(iii) ⇒ (i) Let C = B(I − BD(B − C)). Now to show (I − BD(B − C)) is invertible.

Let (I − BD(B − C))x = 0 then, x = BD(B − C))x ∈ R(BD) = R(Bk). So x = BBDx

and hence x = BBDx − BDCx = x − BDCx. Therefore BDCx = 0. Thus, Cx ∈

N(BD) = N(CD) it implies that x = CCDx = 0 implies x = 0. Hence (I − BD(B − C))

is invertible. As C = B(I − BD(B − C)). Next to show, CD = (I − BD(B − C))−1BD.

For this, let X = B, Y = (I − BD(B − C)). Then, (XY )D = Y −1XD if and only if

Y Y kXk = XDXY Y kXk. We have R(Y Y kXk) = R(Y (XY )k) = R((I−BD(B−C))Ck) =

R(Ck−BD(B−C)Ck) ⊆ R(Ck) = R(Bk) ⊆ R(B) = R(X) (since PL,MA = A if and only

if R(A) ⊆ L). Therefore CD = (I −BD(B − C))−1BD =
∞∑
k=0

(BD(B − C))kBD ≥ 0 �

Using the above result, the next result follows.

Theorem 6.6. Let J = [A,B] be index range-kernel regular. Then the following are

equivalent.

(a) BD ≥ 0 and AD ≥ 0.

(b) h(A,B) ⊆ K and CD ≥ 0 for all C ∈ h(A,B).

Proof. (a)⇒ (b): Let C = λA+ (1−λ)B for some λ ∈ [0, 1]. Then, N(Ak) ⊆ N(Ck) and

R(Ak) ⊆ R(Ck). Also, we have 0 ≤ BD(B−C) ≤ BD(B−A) and hence ρ(BD(B−A)) <

1. Thus, ρ(BD(B−C)) < 1 and (I −BD(B−C)) is invertible. Now, (I −BD(B−C)) =

I − PR(Bk),N(Bk) + BDC = −PR(Bk),N(Bk) + BDC = E. Then, BE = BPR(Bk),N(Bk) +

BBDC = BBDC = C. So, B = CE−1 and hence R(Bk) = R(Ck). By rank-nullity

dimension theorem, it follows that N(Ak) = N(Ck). So, C ∈ K. Then, by Theorem 6.3,

we have CD ≥ 0.

(a)⇒ (b): Since h(A,B) ⊆ K and CD ≥ 0 for all C ∈ h(A,B), then C = λA+ (1− λ)B

for some λ ∈ [0, 1]. Again as CD ≥ 0 for all C ∈ h(A,B), it is obviously true that BD ≥ 0

and AD ≥ 0. �

Corollary 6.7. Let J = [A,B] be range-kernel regular. Then the following are equivalent.

(a) B# ≥ 0 and A# ≥ 0.

(b) h(A,B) ⊆ K and C# ≥ 0 for all C ∈ h(A,B).
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