# $P_{D}$-MATRICES AND LINEAR COMPLEMENTARITY PROBLEMS 

LITISMITA JENA AND SABYASACHI PANI

School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar - 751 013, India.

Email: litumath@gmail.com


#### Abstract

Motivated by the definition of $P_{\dagger}$-matrix (9), another generalization of a $P$-matrix for square singular matrices called $P_{D}$-matrix is proposed first. Then the uniqueness of solution of Linear Complementarity Problems for square singular matrices is proved using $P_{D}$-matrices. Finally some results which are true for $P$-matrices are extended to $P_{D}$-matrices.


Keywords: Drazin inverse, Group inverse, index-proper splittings, $P$-matrix, interval hull of matrices.

## AMS Subject Classification: 15A09

## 1. Introduction

A matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is called a $P$-matrix if every principal minor of $A$ is positive. This notion was first introduced by Fiedler and Ptak [5]. It plays important roles in studying solution properties of equations and complementarity problems, and convergence/complexity analysis of methods for solving these problems. There are numerous ways to describe a $P$-matrix, we consider only three of them for our work. The three equivalent definitions for a real square matrix $A$ are as follows:
(i) All the principal minors of $A$ are positive.
(ii) Every real eigenvalue of each principal submatrix of $A$ is positive.
(iii) The matrix $A$ does not reverse the sign of any vector; i.e., if $x \neq 0$ and $y=A x$, then for some subscript $i, x_{i} y_{i}>0$.
The equivalence of (i) and (iii) was established by Fiedler and Ptak 5]. $P$-matrices also arise quite frequently in systems theory. These include hermitian positive definite matrices, $M$-matrices, totally positive matrices and real diagonally dominant matrices with positive diagonal entries.

Now coming to the name "linear complementarity problem" which stems from the linearity of the mapping $W(z)=q+A z$, where $A \in \mathbb{R}^{n \times n}$ and the complementarity of real $n$-vectors $w$ and $z$. For a given $q \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$, the linear complementarity problem (LCP) is that of finding (or concluding there is no) $z \in \mathbb{R}^{n}$ such that

$$
\begin{gathered}
w=q+A z \geq 0, \\
z \geq 0 \\
z^{T} w=0
\end{gathered}
$$

We denote the above problem by the symbol $L C P(q, A)$. A vector $z \in \mathbb{R}^{n}$ satisfying the above three conditions is called a solution of $\operatorname{LCP}(q, A)$ and the set of all solutions is denoted by $S O L(q ; A)$. The solution set is defined by $S(A)=\{q: S O L(q, A) \neq \phi\}$. For more details on linear complementarity problems, we refer the reader to the book by Cottle, Pang and Stone [4].

Let us discuss some basic relations between the complementarity cone and $P$-matrices. The class of complementarity cone corresponding to a real square matrix $A$ is denoted by $\mathcal{A}$, the pair of column vectors $\left(I_{. j},-A_{. j}\right)$ is known as the $j$ th complementary pair of vectors in $1 \leq j \leq n$. The convex cone generated by any complementary set of column vectors is known as a complementarity cone. A theorem proved by Samelson, Thrall and Wesler [13] says that the set of complementarity cone partitions $\mathbb{R}^{n}$ if and only if $A$ is a $P$-matrix. Later this characterization of $P$-matrices by Samelson, Thrall and Wesler [13] was improved by Murty [10]. He proved that a real $n \times n$ matrix $A$ is a $P$-matrix if and only if the $\operatorname{LCP}(q, A)$ has a unique solution for every $q$ belonging to $\left\{I_{.1}, \cdots I_{. n},-I_{.1}, \cdots-I_{. n}, A_{.1}, \cdots A_{. n}-A_{.1}, \cdots-A_{. n}, e\right.$, and further extended by Tamir [14]. Tamir [14] stated a $n \times n$ matrix $A$ is a $P$-matrix if and only if the $\operatorname{LCP}(q, A)$ has a unique solution for every $q$ belonging to $\left\{I_{.1}, \cdots I_{. n}, A_{.1}, \cdots A_{. n}-A_{.1}, \cdots-A_{. n}\right.$, $e$, where $e=(1,1, \cdots, 1)^{T}$ is the vector of ones of order $n$.

Very recently, Kannan and Sivakumar [9] generalized the notion of $P$-matrix for singular cases and call it as $P_{\dagger}$-matrix. The definition of this is presented next.

Definition 1.1. (Definition 1.1 [9]) A square matrix $A$ is said to be a $P_{\dagger}$-matrix if for each non zero $x \in \mathbb{R}\left(A^{T}\right)$, there is an $i \in\{1,2, \cdots, n\}$ such that $x_{i}\left(A x_{i}\right)>0$.

Let us introduce some more definitions and notations which are going to be used to prove our main results. Let the diagonal matrix whose entries are $t_{1}, t_{2}, \cdots t_{n}$ is denoted by $\operatorname{diag}\left(t_{1}, t_{2}, \cdots t_{n}\right)$. Let $F$ denote the matrix whose entries are all one, and let $o$ denote the Hadamard (entry wise) product of matrices. For any $A, B \in \mathbb{R}^{n \times n}$, we define the following sets:

$$
\begin{aligned}
& \quad h(A, B)=\{C: C=t A+(1-t) B, t \in[0,1]\} \\
& \quad r(A, B)=\left\{C: C=T A+(I-T) B, T=\operatorname{diag}\left(t_{1}, t_{2}, \cdots t_{n}\right), t_{i} \in[0,1],\right. \\
& 1 \leq i \leq n\} \\
& \\
& \quad c(A, B)=\left\{C: C=A T+B(I-T), T=\operatorname{diag}\left(t_{1}, t_{2}, \cdots t_{n}\right), t_{i} \in[0,1],\right. \\
& 1 \leq i \leq n\}
\end{aligned}
$$

$\quad i(A, B)=\left\{C: C=T o A+(F-T) o B, T=\operatorname{diag}\left(t_{1}, t_{2}, \cdots t_{n}\right), t_{i} \in[0,1]\right.$,
$1 \leq i \leq n\}$
$\quad J=i(A, B)$, if $A \leq B$.
$\quad r(A, B)$ denotes the set of matrices whose rows (columns) are independent convex combinations of the corresponding rows of $A$ and $B$. While $c(A, B)$ denotes the set of matrices whose columns are independent convex combinations of the corresponding columns of $A$ and $B$. The interval hull $(i(A, B))$ for any two matrices $A, B \in \mathbb{R}^{n \times n}$ is defined as

$$
i(A, B)=\left\{C \in \mathbb{R}^{n \times n}: \min \left\{a_{i j}, b_{i j}\right\} \leq c_{i j} \leq \max \left\{a_{i j}, b_{i j}\right\}\right\}
$$

From all the above definitions above, now it is clear that $h(A, B) \subseteq r(A, B) \subseteq i(A, B)$ and $h(A, B) \subseteq c(A, B) \subseteq i(A, B)$.

The interval hull $i(A, B)$ is said to be index-range kernel regular if $R\left(A^{k}\right)=R\left(B^{k}\right)$ and $N\left(A^{k}\right)=N\left(B^{k}\right)$. Let us define the set

$$
K=\left\{C \in i(A, B): R\left(A^{k}\right)=R\left(U^{k}\right) \text { and } N\left(A^{k}\right)=N\left(U^{k}\right)\right\}
$$

for an index-range kernel interval hull $i(A, B)$. When $A$ and $B$ are invertible, then $K$ contains only invertible matrices. Motivated by the results of Johnson and Tsatsomeros [7] for $P$-matrices, and further generalization by Kannan and Sivakumar [9] for $P_{\dagger}$-matrices, we establish analogous results by introducing another generalization of the notion of $P$ matrix.

The motto of this article is to first propose an extension of $P$-matrix and to study some its properties. The organization of this paper is as follows. After a brief review of some basic definitions and notations in Section 2, we include the definition of a $P_{D}$-matrix and few of its properties in Section 3. We first state linear complementarity problems (LCP), secondly a relation between $P_{D}$-matrices and LCP, and then some results. Section 4 contains the characterization of the inclusion $r(A, B) \subseteq K$ with $P_{D}$-matrices, and an analogous result for $c(A, B) \subseteq K$ in Section 4. Finally, the case $i(A, B)=K$ and the generalization of Theorem 3.8, 7] are discussed. Section 5 presents the inclusion
$h(A, B) \subseteq K$ and its link with certain constrained eigenvalue condition. Then a new result for the nonnegativity of Drazin inverse of an interval is proved in Section 6.

## 2. Preliminaries

Let $\mathbb{R}^{n}$ denote the $n$ dimensional real Euclidean space and $\mathbb{R}_{+}^{n}$ denote the nonnegative orthant in $\mathbb{R}^{n}$. For a real $m \times n$ matrix $A$, i.e., $A \in \mathbb{R}^{m \times n}$, the matrix $G$ satisfying the four equations known as Penrose equations: $A G A=A, G A G=G,(A G)^{T}=A G$ and $(G A)^{T}=G A$ is called the Moore-Penrose inverse of $A\left(B^{T}\right.$ denotes the transpose of $B$ ). It always exists and unique, and is denoted by $A^{\dagger} . A \in \mathbb{R}^{m \times n}$ is said to be semimonotone if $A^{\dagger} \geq O$ (here the comparison is entry wise and $O$ is the null matrix of respective order). For a real $n \times n$ matrix $A$. The index of a real square matrix $A$ is the least nonnegative integer $k$ such that $\operatorname{rank}\left(A^{k+1}\right)=\operatorname{rank}\left(A^{k}\right)$. It is denoted by ind $A$. Then $\operatorname{ind}(A)=k$ if and only if $R\left(A^{k}\right) \bigoplus N\left(A^{k}\right)=\mathbb{R}^{n}$. For $A \in \mathbb{R}^{n \times n}$ the matrix $G$ satisfying the three equations : $A^{k} G A=A^{k}, G A G=G, A G=G A$ known as Drazin inverse of $A$, where $k$ is the index of $A$. It always exists and unique, and is denoted by $A^{D}$. When $k=1$, then the Drazin inverse is known as group inverse and is denoted as $A^{\#}$. $A \in \mathbb{R}^{n \times n}$ is said to be Drazin monotone if $A^{D} \geq O$. When $A$ is a square nonsingular, then $A^{\dagger}=A^{\#}=A^{D}=A^{-1}$, and a semimonotone (or Drazin monotone) matrix becomes a monotone matrix (i.e., $A^{-1}$ exists and $A^{-1} \geq O$ ). (See the book by Berman and Plemmons, [2] for more details on monotone matrices and their generalizations.) For $A, B, C \in \mathbb{R}^{m \times n}$, we say $A$ is nonnegative if $A \geq O$, and $B \geq C$ if $B-C \geq O$. We denote a nonnegative vector $x$ as $x \geq 0$. Let $L$ and $M$ be complementary subspaces of $\mathbb{R}^{n}$. Let $P_{L, M}$ be a projector on $L$ along $M$. Then $P_{L, M} A=A$ if and only if $R(A) \subseteq L$ and $A P_{L, M}=A$ if and only if $N(A) \subseteq M$, where $R(A)$ and $N(A)$ denote the range space and the null space of $A$. Some well-known index properties of $A^{D}$ (1]) are: $R\left(A^{k}\right)=R\left(A^{D}\right)$; $N\left(A^{k}\right)=N\left(A^{D}\right)$ and $A A^{D}=P_{R\left(A^{k}\right), N\left(A^{k}\right)}$. In particular, if $x \in R\left(A^{k}\right)$, then $x=A^{D} A x$. The spectral radius of $A \in \mathbb{R}^{n \times n}$, denoted by $\rho(A)$ is defined by $\rho(A)=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|$, where $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are the eigenvalues of $A$.

The next theorem is a part of Perron-Frobenius theorem.

Theorem 2.1. (Theorem 2.20, [15]) Let $A \geq O$. Then $A$ has a nonnegative real eigenvalue equal to its spectral radius.

Another result which relates spectral radius of two nonnegative matrices is given below.
Theorem 2.2. (Theorem 2.21, [15]) Let $A \geq B \geq O$. Then $\rho(A) \geq \rho(B)$.
The theory of splitting plays a major role in finding solution of system of linear equations. Many authors have proposed several splittings. Chen-Chen [3] proposed the following splitting.

Definition 2.3. A splitting $A=U-V$ of $A \in \mathbb{R}^{n \times n}$ is called an index-proper splitting ([3]) if $R\left(A^{k}\right)=R\left(U^{k}\right)$ and $N\left(A^{k}\right)=N\left(U^{k}\right), k=\operatorname{ind}(A)$.

## 3. $P_{D}$-MATRICES

We begin this section with another generalization of a singular $P$-matrix which we call as a $P_{D}$-matrix, and the definition is presented below.

Definition 3.1. A square matrix $A$ is said to be a $P_{D}$-matrix if for each non zero $x \in$ $\mathbb{R}\left(A^{k}\right), k=\operatorname{ind}(A)$ there is an $i \in\{1,2, \cdots, n\}$ such that $x_{i}\left(A x_{i}\right)>0$.

In other words, for any $x \in \mathbb{R}\left(A^{k}\right)$ the inequality $x_{i}\left(A x_{i}\right) \leq 0$ for $i \in\{1,2, \cdots, n\}$ imply $x=0$. Trivially, every $P$-matrix is a $P_{D}$-matrix.
Example 3.2. Let $A=\left(\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & -1 \\ 0 & 0 & 0\end{array}\right)$. Then $\operatorname{ind}(A)=2$. Also $R\left(A^{2}\right)=$ span of $\left\{\alpha\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right): \alpha \in \mathbb{R}\right\}$. Taking $x=(1,-1,0)^{T}$ and calculating $x_{i}(A x)_{i}$, we get $x_{i}(A x)_{i}>$ 0 . So $A$ is a $P_{D}$-matrix.
$P_{D}$-matrix reduces to $P_{\#}$-matrix when $k=1$, and the definition is as follows.
Definition 3.3. (Definition 5.1, [9])
A square matrix $A$ is said to be a $P_{\#}$-matrix if for each non zero $x \in R(A)$ there is an $i \in\{1,2, \cdots, n\}$ such that $x_{i}\left(A x_{i}\right)>0$.

In other words, for any $x \in R(A)$ the inequality $x_{i}\left(A x_{i}\right) \leq 0$ for $i \in\{1,2, \cdots, n\}$ imply $x=0$.
Example 3.4. Let $A=\left(\begin{array}{lll}3 & 1 & 0 \\ 3 & 3 & 0 \\ 0 & 0 & 0\end{array}\right)$. Here $\operatorname{ind}(A)=1$ and $R(A)=$ span of $\left\{\left(\begin{array}{l}3 \\ 3 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)\right\}$. Then $x_{i}\left(A x_{i}\right) \leq 0$ for any $x \in R(A)$. Hence $A$ is a $P_{\#}$-matrix.

We discuss below some useful properties of $P_{D}$-matrices. The first one is the Drazin inverse analogue of Theorem 2.3, 9 .

Theorem 3.5. $A$ is a $P_{D}$-matrix if and only if $A^{D}$ is a $P_{D}$-matrix.
Proof. Suppose that $A$ is a $P_{D}$-matrix. So for each $0 \neq y \in R\left(\left(A^{D}\right)^{k}\right)=R\left(A^{k}\right)$, there is an $i \in\{1,2, \cdots n\}$ such that $y_{i}(A y)_{i}>0$. Let $y \in R\left(\left(A^{D}\right)^{k}\right)=R\left(A^{k}\right)$ then $y=$ $A A^{D} x$, for some $x \in \mathbb{R}^{n}$, so $y_{i}\left(A^{D} y\right)_{i}=\left(A A^{D} x\right)_{i}\left(A^{D} A^{D} A x\right)_{i}=\left(A^{D} A x\right)_{i}\left(A^{D} A A^{D} x\right)_{i}=$ $\left(A^{D} A x\right)_{i}\left(A^{D} x\right)_{i}=\left(A^{D} x\right)_{i}\left(A A^{D} x\right)_{i}=u_{i}(A u)_{i}>0$. Set $u=A^{D} x \in R\left(A^{D}\right)=R\left(A^{k}\right)$. So $A^{D}$ is a $P_{D}$-matrix.

Conversely: Let $A^{D}$ be a $P_{D}$-matrix. In order to show that $A$ is a $P_{D}$-matrix, we have to prove that $y_{i}(A y)_{i}>0$ for $y \in R\left(A^{k}\right), i \in\{1,2, \cdots n\}$. Since $A^{D}$ is a $P_{D}$-matrix, $x_{i}\left(A^{D} x\right)_{i}>0,0 \neq x \in R\left(\left(A^{D}\right)^{k}\right)=R\left(A^{k}\right)$. Therefore $y_{i}(A y)_{i}=\left(A^{D} x\right)_{i}\left(A A^{D} x\right)_{i}=$ $\left(A^{D} A A^{D} x\right)_{i}\left(A A^{D} x\right)_{i}=\left(A^{D} u\right)_{i} u_{i}=u_{i}\left(A^{D} u\right)_{i}>0$, where $u=A A^{D} x$. Again $A^{D}$ is a $P_{D}$-matrix, $y_{i}(A y)_{i}>0, y \in R\left(A^{k}\right)$. Hence $A$ is a $P_{D}$-matrix.

When $\operatorname{ind}(A)=1$, we then have Theorem 5.1, 9] as a corollary. However, we give a different proof for the existence of the group inverse.

Corollary 3.6. $A$ is a $P_{\#}$-matrix if and only if $A^{\#}$ is a $P_{\#}$-matrix.
Proof. The proof is same as the proof for $P_{D}$-matrices for $k=1$, but here only to show $A^{\#}$ exists. For this, suppose that $A$ is a $P_{\#}$-matrix. Let $x \in R(A)$. Then, $x_{i}(A x)_{i}=0$ for each $i \in\{1,2, \cdots n\}$, so $R(A)=0 \Rightarrow r(A)=0$. Again $R(A)=0 \Rightarrow R\left(A^{2}\right)=0$. So $r\left(A^{2}\right)=0$. Hence $\operatorname{ind}(A)=1$. Therefore $A^{\#}$ exists.

Next theorem says that a $P_{D}$-matrix has a nonnegative eigenvalue decomposition under a given condition.

Theorem 3.7. Let $A$ be a $P_{D}$-matrix. Suppose $A x=\lambda x, 0 \neq x \in R\left(A^{k}\right)$ and $\lambda \in \mathbb{R}$. Then $\lambda>0$.

Proof. Assume that $A x=\lambda x, 0 \neq x \in R\left(A^{k}\right)$ and $\lambda \in \mathbb{R}$ and $A$ is a $P_{D}$-matrix. Then $\lambda x_{i}^{2}=\lambda x_{i} x_{i}=x_{i}(A x)_{i}>0$, for some $i \in\{1,2, \cdots n\}$. Hence $\lambda>0$.

The above theorem admits the following corollary.
Corollary 3.8. Let $A$ be a $P_{\#}$-matrix. Suppose $A x=\lambda x, 0 \neq x \in R(A)$ and $\lambda \in \mathbb{R}$. Then $\lambda>0$.

A characterization of a $P_{D}$-matrix is presented next.
Theorem 3.9. Let $A \in \mathbb{R}^{n \times n}$. Then $A$ be a $P_{D}$-matrix if and only if for each $x \in R\left(A^{k}\right)$ there is a positive diagonal matrix $D_{x} \in \mathbb{R}^{n \times n}$ such that $x^{T}\left(D_{x} A x\right)>0$.

Proof. Necessity: Let $A$ be a $P_{D}$-matrix. So for each $0 \neq x \in R\left(A^{k}\right)$, there is an $i_{0} \in$ $\{1,2, \cdots n\}$ such that $x_{i_{0}}(A x)_{i_{0}}>0$. Then there exists $\epsilon>0$ such that $x_{i_{0}}(A x)_{i_{0}}+$ $\epsilon \sum_{j=1, i_{0} \neq j}^{n} x_{j}(A x)_{j}>0$. Let $D_{x}=\operatorname{diag}\left(d_{1}, d_{2}, \cdots d_{n}\right)$ with $d_{i_{0}}=1$ and $d_{j}=\epsilon$ for all $j \neq i_{0}$. Hence $x^{T}\left(D_{x} A x\right)>0$.

Sufficiency: Suppose for each $x \in R\left(A^{k}\right)$ there is a positive diagonal matrix $D_{x} \in \mathbb{R}^{n \times n}$ such that $x^{T}\left(D_{x} A x\right)>0$. So, $D_{x} A x=\left(d_{1} \sum_{j=1}^{n} a_{n j} x_{j}, \cdots d_{n}\right.$ $\left.\sum_{j=1}^{n} a_{n j} x_{j}\right)^{T}$. Since $x^{T}\left(D_{x} A x\right)>0$ and $d_{i}>0, x_{i}(A x)_{i}>0$ for each $i$. Hence $A$ is a $P_{D}$-matrix.

For $\operatorname{ind}(A)=1$, the above theorem yields a characterization of a $P_{\#}$-matrix. With this, we proceed to present the definition of a sign-change matrix.

Definition 3.10. A diagonal matrix $S$ is called a sign-change matrix if the diagonals of $S$ are 1 or -1 .

A relationship between a $P$-matrix and a block $P_{D}$-matrix is shown next.

Theorem 3.11. Let $A=\left(\begin{array}{cc}L & O \\ O & O\end{array}\right) \in \mathbb{R}^{m \times m}$ be a partition matrix such that $L \in \mathbb{R}^{n \times n}$ with $m \geq n$.
(a) If $L$ is a $P$-matrix, then $A$ is a $P_{D}$-matrix.
(b) $A$ is a $P_{D}$-matrix and $L$ is invertible, then $L$ is a $P$-matrix. In this case, $A^{T}$ and $S A S$ also are $P_{D}$-matrices, where $S$ is a sign-change matrix.

Proof. (a): Let $0 \neq x=\left(x_{1}, x_{2}, \cdots x_{m}\right)^{T} \in R\left(A^{k}\right)$. Define $u=\left(x_{1}, x_{2}, \cdots x_{m}\right)^{T}$. Then $u \in R\left(A^{k}\right), L$ is a $P$-matrix. Hence there exists at least one $i \in\{1,2, \cdots n\}$ such that $u_{i}(L u)_{i}>0 . x_{i}(A x)_{i}=u_{i}(L u)_{i}$ for each $1 \leq i \leq n$, then it follows that $A$ is a $P_{D}$-matrix.
(b) Let $0 \neq x=\left(x_{1}, x_{2}, \cdots x_{n}\right)^{T}$. Define
$v=\left(x_{1}, x_{2}, \cdots x_{n}, 0,0, \cdots 0\right)^{T} \in R\left(A^{k}\right)$. Hence there exists at least one $i \in\{1,2, \cdots n\}$ such that $v_{i}(A v)_{i}>0$, since for $n+1 \leq i \leq m, x_{i}=0$. As $v_{i}(A v)_{i}=x_{i}(L x)_{i}$ for each $1 \leq i \leq n$, it then follows that $L$ is a $P$-matrix. Also $L^{T}$ and $S L S$ are $P$-matrices.

Then the above theorem produces the following corollary.
Corollary 3.12. Let $A=\left(\begin{array}{cc}L & O \\ O & O\end{array}\right) \in \mathbb{R}^{m \times m}$ be a partition matrix such that $L \in \mathbb{R}^{n \times n}$ with $m \geq n$.
(a) If $L$ is a $P$-matrix, then $A$ is a $P_{\#-m a t r i x . ~}^{\text {- }}$
(b) $A$ is a $P_{\#}$-matrix and $L$ is invertible, then $L$ is a $P$-matrix. In this case, $A^{T}$ and $S A S$ also are $P_{\#}$-matrices, where $S$ is a sign-change matrix.

Let us recall the definition of a $Z$-matrix and an $M$-matrix. A square matrix whose off-diagonal elements are non-positive is called a $Z$-matrix. It follows that a $Z$-matrix $A$ can be written as $A=s I-B$, where $B \geq 0, s \geq \rho(B)$. A $Z$-matrix $A$ is called a $M$-matrix if $s \geq \rho(B)$. A $Z$-matrix $A$ is called a nonsingular $M$-matrix if $A$ is monotone. It is well known that if $A$ is a $Z$-matrix then $A$ is a $P$-matrix if and only if $A$ is an invertible $M$-matrix. The matrix in Example 3.2 is a $Z$-matrix and is also a $P_{D}$-matrix.

However, it is not always true that $A^{D} \geq 0$. In order to study this property we have to apply the well-known result stated in [6] and is recalled below.

Theorem 3.13. (Theorem 3.9, [6)
Let $A$ be a Z-matrix having all principal minors are nonnegative. Then $A^{\dagger} \geq 0$ if and only if there exists a permutation matrix $S$ such that $S A S^{T}=\left(\begin{array}{cc}L & O \\ O & O\end{array}\right)$ where $L$ is an invertible $M$-matrix.

In Theorem 3.13, if $L$ is an invertible $M$-matrix, then $L$ is an $P$-matrix. Next theorem says about a relation between a $Z$-matrix and a $P_{D}$-matrix.

Theorem 3.14. Let $A \in \mathbb{R}^{n \times n}$ be a $Z$-matrix having all principal minors are nonnegative and $A^{D} \geq 0$. Then there exists a permutation matrix $S$ such that $S A S^{T}$ is a $P_{D}$-matrix. Proof. Let $B=S A S^{T}=\left(\begin{array}{cc}L & O \\ O & O\end{array}\right)$ where $L \in \mathbb{R}^{n \times n}$ is an invertible $M$-matrix, i.e., $P$ matrix. We will show that $B$ is a $P_{D}$-matrix. Let $0 \neq x=\left(x_{1}, x_{2}, \cdots x_{m}\right)^{T} \in R\left(B^{k}\right)$. Taking $v=\left(v_{1}, v_{2}, \cdots v_{n}\right)^{T}$. Since every $P$-matrix is a $P_{D}$-matrix. So $v \in R\left(L^{k}\right)$. Hence there exists at least one $i \in\{1,2, \cdots n\}$ such that $v_{i}(L v)_{i}>0$ and $x_{i}(B x)_{i}=v_{i}(L v)_{i}$ for each $1 \leq i \leq n$ which follows that $B$ is a $P_{D}$-matrix.

The corollary of the above theorem comes when we take $x \in R(A)$.
Corollary 3.15. Let $A \in \mathbb{R}^{n \times n}$ be a $Z$-matrix having all principal minors are nonnegative, $A^{\#}$ exists and $A^{\#} \geq 0$. Then there exists a permutation matrix $S$ such that $S A S^{T}$ is a $P_{\#-m a t r i x}$.

Next theorem relates Drazin monotonicity and $P_{D}$-matrices.
Theorem 3.16. Let $A \in \mathbb{R}^{n \times n}$ be any matrix. Then the following statements are equivalent.
(i) $A$ is a $P_{D}$-matrix.
(ii) $A^{D}$ is a $P_{D}$-matrix and $A^{D} \geq 0$.

Proof. $(i) \Rightarrow(i i)$ : Suppose that $A$ is a $P_{D^{-}}$matrix. Then by Theorem 3.5 $A^{D}$ is a $P_{D^{-}}$ matrix. Next, to show $A^{D} \geq 0$. Let $u \in R\left(A^{k}\right), u>0$ and $y=A^{D} u$. Then $y \in R\left(A^{k}\right)$ and $A y=A A^{D} u=u>0$. Hence $A y>0$. Since $A$ is a $P_{D}$-matrix, so for $0 \neq y \in R\left(A^{k}\right)$ there is an $i \in\{1,2, \cdots n\}$ such that $y_{i}(A y)_{i}>0$. So $y_{i}>0$ where $y_{i}$ is the $i$ th component of $y$, as $A y>0$. Therefore $A^{D} \geq 0$.
$(i i) \Rightarrow(i)$ : The proof is same as in Theorem 3.5.
We then have the follwing corollary for $P_{\#}$-matrices.

Corollary 3.17. Let $A \in \mathbb{R}^{n \times n}$ be any matrix. Then the following statements are equivalent.
(i) $A$ is a $P_{\#-m a t r i x . ~}^{\text {. }}$
(ii) $A^{\#}$ is a $P_{\#}$-matrix, $A^{\#}$ exists and $A^{\#} \geq 0$.

## 4. A Connection with Linear Complementarity Problems

It is well-known that a $P$-matrix $A$ is characterized by the condition that the standard linear complementarity problem $L C P(q, A)$ has a unique solution for all $q \in \mathbb{R}^{n}$ in [4]. A relation between them is shown next.

Theorem 4.1. $\operatorname{LCP}(q, A)$ has unique solution for each $q \in \mathbb{R}^{n}$ if and only if $A$ is a $P$ matrix.

Motivated by the work of Kannan and Sivakumar [9], we are now going to prove the existence of solution of LCP with the help of $P_{D}$-matrices.

Theorem 4.2. $\operatorname{LCP}(q, A)$ has unique solution for each $q \in \mathbb{R}^{n}$ if and only if $A$ is a $P_{D}$-matrix.

Proof. The proof of this theorem is similar to the proof for $P$-matrix (see page: 274-275, [2]).

The following result is well-known in the theory of linear complementarity problems.

Theorem 4.3. (Theorem 3.4.4, [4])
Let $A \in \mathbb{R}^{n \times n}$. Then the following statements are equivalent.
(a) For all $q \in S(A)$, if $x^{1}, x^{2} \in S O L(q, A)$, then $A x^{1}=A x^{2}$.
(b) Every vector whose sign is reversed by $A$ must belong to $N\left(A^{k}\right)$, i.e., if $x_{i}(A x)_{i} \leq 0$ for all $i$, then $x \in N(A)$.

Using this result we show a sufficient condition for a matrix to be a $P_{D}$-matrix.

Theorem 4.4. Let $A \in \mathbb{R}^{n \times n}$. Suppose that For all $q \in S(A)$, and for every $x^{1}, x^{2} \in$ $\operatorname{SOL}(q, A)$, it follows that $A x^{1}=A x^{2}$. Then $A$ is a $P_{D}$-matrix.

Proof. Let $x \in R\left(A^{k}\right)$ be such that $x_{i}(A x)_{i} \leq 0$ for all $i$. Then by the condition (b) of the Theorem 4.3, it follows that $x \in N\left(A^{k}\right)$. Hence $x=0$. So $A$ is a $P_{D}$-matrix.

We conclude this section with the remark that all the theorems mentioned in this section are also true for $P_{\#}$-matrices.

## 5. Characterization of $P_{D}$-matrices with $i(A, B)$

In this section, first we discuss the inclusion $r(A, B) \subseteq K$ with $P_{D}$-matrices. We also state a result of Johnson and Tsatsomero, 7] for $P$-matrices, and then extend it for index-range symmetric matrices.

Theorem 5.1. (Theorem 3.3, [7])
Let $A, B \in \mathbb{R}^{n \times n}$ be such that $A$ and $B$ are invertible. Then $r(A, B) \subseteq K$ if and only if $B A^{-1}$ is $P$-matrix.

The extension of the above result is proposed next.
Theorem 5.2. Let $A, B \in \mathbb{R}^{n \times n}$ be such that $R\left(A^{k}\right)=R\left(B^{k}\right)$ and $N\left(A^{k}\right)=N\left(B^{k}\right)$ and $A, B$ are commutative. Then $r(A, B) \subseteq K$ if and only if $B A^{D}\left(A B^{D}\right)$ is a $P_{D}$-matrix.

Proof. Necessity: Let $r(A, B) \subseteq K$ and suppose $B A^{D}$ is not a $P_{D}$-matrix. Then, there exists $0 \neq x \in R\left(\left(B A^{D}\right)^{k}\right)=R\left(B^{k}\left(A^{D}\right)^{k}\right) \subseteq R\left(B^{k}\right)=R\left(A^{k}\right)$ such that $x_{i}\left(B A^{D} x\right)_{i} \leq 0$
for all $i$. For $1 \leq i \leq n$, consider the function $f_{i}:[0,1] \rightarrow \mathbb{R}$ defined by $f_{i}(t)=$ $t x_{i}+(1-t)\left(B A^{D}\right) x_{i}$. Then by intermediate value theorem, there exists $t_{i} \in[0,1]$ such that $t x_{i}+(1-t)\left(B A^{D}\right) x_{i}=0$. Let $L=\operatorname{diag}\left(t_{1}, t_{2} \cdots t_{n}\right)$. Then, $L x+(I-L)\left(B A^{D}\right) x=0$. Since $x \in R\left(A^{k}\right)$, then $x=A A^{D} x$ for some $x \in \mathbb{R}^{n}$. Hence, $0=L x+(I-L)\left(B A^{D}\right) x=$ $L A A^{D} x+(I-L)\left(B A^{D}\right) A A^{D} x=\left(L A A^{D}+(I-L)\left(B A^{D} A A^{D}\right)\right) x=\left(L A A^{D}+(I-\right.$ L) $\left.B A^{D}\right) x=(L A+(I-L) B) A^{D} x$. This implies $A^{D} x=0$ implies $x \in N\left(A^{D}\right)=N\left(A^{k}\right)$ (as $L A+(I-L) B \in r(A, B))$, a contradiction. So $B A^{D}$ is a $P_{D}$-matrix.

Sufficiency: Let $t_{i} \in[0,1], i=\{1,2, \cdots n\}, L=\operatorname{diag}\left(t_{1}, t_{2} \cdots t_{n}\right)$ and $(L A+(I-$ L) $B) x=0$ for some $x \in R\left(A^{k}\right)$. Since $x \in R\left(A^{D}\right)=R\left(A^{k}\right)$, we have $x=A^{D} y$ for some $y \in R\left(A^{k}\right)$. Therefore $(L A+(I-L) B) x=0$ implies $(L A+(I-L) B) A^{D} y=0$ which again yields $L A A^{D} y+(I-L) B A^{D} y=0$. If $y \in R\left(A^{k}\right)$, then $L A A^{D} y+(I-L) B A^{D} y=$ $L y+(I-L) B A^{D} y=0$. Also, $\left(B A^{D}\right)^{D}\left(B A^{D}\right) y=y$, since $R\left(\left(B A^{D}\right)^{k}\right) \subseteq R\left(A^{k}\right)$. Thus, $y \in R\left(\left(B A^{D}\right)^{k}\right)$. The fact $L \geq 0$ and $(I-L) \geq 0$, so $y_{i}$ and $\left(B A^{D} y\right)_{i}$ are opposite in signs for each $i$, i.e., $y_{i}\left(B A^{D} y\right)_{i} \leq 0$. So $B A^{D}$ is not a $P_{D}$-matrix, a contradiction. Hence $r(A, B) \subseteq K$.

Corollary 5.3. Let $A, B \in \mathbb{R}^{n \times n}$ be such that $R(A)=R(B)$ and $N(A)=N(B)$. Then $r(A, B) \subseteq K$ if and only if $A^{\#}\left(B^{\#}\right)$ exists and $B A^{\#}\left(A B^{\#}\right)$ is a $P_{\#}$-matrix.

Theorem 5.4. Let $A, B \in \mathbb{R}^{n \times n}$ be such that $R\left(A^{k}\right)=R\left(B^{k}\right)$ and $N\left(A^{k}\right)=N\left(B^{k}\right)$. Then $c(A, B) \subseteq K$ if and only if $B^{D} A\left(A^{D} B\right)$ is a $P_{D}$-matrix.

The proof is similar to proof of Theorem 5.2 and this theorem carries a corollary, given next.

Corollary 5.5. Let $A, B \in \mathbb{R}^{n \times n}$ be such that $R(A)=R(B)$ and $N(A)=N(B)$. Then $c(A, B) \subseteq K$ if and only if $A^{\#}\left(B^{\#}\right)$ exists and $B^{\#} A\left(A^{\#} B\right)$ is a $P_{\#}$-matrix.

Combining Theorem 5.2 and 5.4, we have the following theorem.

Corollary 5.6. Let $A, B \in \mathbb{R}^{n \times n}$ be such that $R\left(A^{k}\right)=R\left(B^{k}\right)$ and $N\left(A^{k}\right)=N\left(B^{k}\right)$. Then $r(A, B) \subseteq K$ and $c(A, B) \subseteq K$ if and only if $B A^{D}, A B^{D}, A^{D} B$ and $B^{D} A$ are $P_{D}$-matrices.

Now, we produce the following result which is proved by the authors Rohn [12], and Johnson and Tsatsomeros [7] for the matrices whose interval hull contains no singular matrices.

Theorem 5.7. Let $A, B \in \mathbb{R}^{n \times n}$ such that each matrix in $i(A, B)$ is invertible. Then $B A^{-1}, A^{-1} B, B^{-1} A$ and $A B^{-1}$ are $P$-matrices.

Now, we present the generalization of above theorem to singular case.

Theorem 5.8. Let $A, B \in \mathbb{R}^{n \times n}$ be such that $R\left(A^{k}\right)=R\left(B^{k}\right)$ and $N\left(A^{k}\right)=N\left(B^{k}\right)$. Further, let $i(A, B)=K$. Then $B A^{D}, A B^{D}, A^{D} B$ and $B^{D} A$ are $P_{D}$-matrices.

Proof. Suppose $B A^{D}$ is not a $P_{D^{-}}$-matrix. Then, there exists $0 \neq x \in R\left(\left(B A^{D}\right)^{k}\right.$ such that $x_{i}\left(B A^{D} x\right)_{i} \leq 0$ for all $i$. Let $C_{i}$ denotes the ith row of $C \in \mathbb{R}^{n \times n}$ defined by $C_{i}=B_{i}+t_{i}\left(A_{i}-B_{i}\right)$, where $A_{i}, B_{i}$ are the $i$ th rows of $A, B$ respectively. Let $t_{i}=1$ if $x_{i}=0$ and if $x_{i} \neq 0$, then $t_{i}$ be an arbitrary root of the continuous function $\phi_{i}(t)=$ $x_{i}(B+t(A-B))_{i} A^{D} x$ in $[0,1]$; such a root exists, since $\phi(0)=x_{i}\left(B A^{D} x\right)_{i} \leq 0$ and $\phi(1)=x_{i}\left(A A^{D} x\right)_{i}=x_{i}^{2} \geq 0$. So $C_{i}$ is a convex combination of $A_{i}$ and $B_{i}$ for each $i=\{1,2, \cdots n\}$, hence $C \in i(A, B)$. Now, we will show $C \in K$. Let $A^{D} x \in N(C) \subseteq$ $N\left(C^{k}\right)$. If $x_{i}=0$, then $\left(C A^{D} x\right)_{i}=C_{i} A^{D} x=A_{i}\left(A^{D} x\right)=\left(A A^{D} x\right)_{i}=x_{i}=0$, and if $x_{i} \neq 0$, then $\left(C A^{D} x\right)_{i}=\left(C_{i} A^{D} x\right)=\frac{\phi\left(t_{i}\right)}{x_{i}}=0$. Hence, $A^{D} x \in N(C) \subseteq N\left(C^{k}\right)$. If $A^{D} x \in N(A) \subseteq N\left(A^{k}\right)$, then $x_{i}=0$, a contradiction. So, $N\left(C^{k}\right) \neq N\left(A^{k}\right)$, again a contradiction. Hence $B A^{D}$ is a $P_{D}$-matrix.

Corollary 5.9. Let $A, B \in \mathbb{R}^{n \times n}$ be such that $R(A)=R(B)$ and $N(A)=N(B)$. Further, let $i(A, B)=K$. Then $B A^{\#}, A B^{\#}, A^{\#} B$ and $B^{\#} A$ are $P_{D}$-matrices provided $A^{\#}$ and $B^{\#}$ exists.

## 6. A Characterization for the Inclusion $h(A, B) \subseteq K$

In this section, we present a theorem which creates a relation between the inclusion $h(A, B) \subseteq K$ and a constrained eigenvalue condition of the matrix $A^{D} B$. Then the result obtained by taking $J=[A, B]$ and $h(A, B) \subseteq K$ is discussed. Finally, a new result is proved which is based on the inclusion $h(A, B) \subseteq K$, and nonnegativity of Drazin inverse of certain element in $J=[A, B]$.

Theorem 6.1. Let $A, B \in \mathbb{R}^{n \times n}$ be such that $R\left(A^{k}\right)=R\left(B^{k}\right)$ and $N\left(A^{k}\right)=N\left(B^{k}\right)$. Then the following conditions are equivalent:
(a) $h(A, B) \subseteq K$.
(b) $A^{D} B x=\lambda x, 0 \neq \lambda \in \mathbb{R}$. Then $\lambda>0$.

Proof. ( $a) \Rightarrow(b)$ : Suppose that (a) holds. Assume that $A^{D} B x=\lambda x$ holds for some $\lambda<0$. Then $B x=P_{R\left(A^{k}\right), N\left(A^{k}\right)} B x=A A^{D} B x=\lambda A x$. If $B x=0$, then $x=0$. So $B x \neq 0$ and $A x \neq 0$. Set $u=\frac{-\lambda}{1-\lambda}$ and $C^{k}=(u A+(1-u) B) \in h(A, B)$. Then, $u \in(0,1)$ and $A^{D} C^{k} x=A^{D}(u A+(1-u) B) x=\frac{-1}{1-\lambda}\left(-\lambda I+A^{D} B\right) x=0$. So $C^{k} x \in N\left(A^{D}\right)=N\left(A^{k}\right)$ and $C^{k} x \in R\left(A^{k}\right)$. Therefore $C^{k} x=0$. Thus $N\left(C^{k}\right) \nsubseteq N\left(A^{k}\right)$ and then $h(A, B) \nsubseteq K$, a contradiction. So $\lambda>0$.
$(b) \Rightarrow(a)$ : Suppose that (b) holds and assume that $h(A, B) \nsubseteq K$. Then, $(u A+(1-$ u) $B) \notin h(A, B)$ for some $u \in(0,1)$. As $N\left(A^{k}\right) \subseteq N(u A+(1-u) B)$. Suppose that $N\left(A^{k}\right) \neq N(u A+(1-u) B)$. Then, $(u A+(1-u) B) x=0$ for some $x \notin N\left(A^{k}\right)$. Let $x=x^{1}+x^{2}$, where $x^{1} \in N\left(A^{k}\right)$ and $0 \neq x^{2} \in R\left(A^{k}\right)$. Then, $(u A+(1-u) B) x^{2}=0$. Pre-multiplying by $A^{D}$, we get $\left(u A^{D} A+(1-u) A^{D} B\right) x^{2}=0$. By setting $\lambda=\frac{-u}{1-u}<0$, it follows that $A^{D} B x^{2}=\lambda x^{2}$, a contradiction.

For $k=1$, the property index range-symmetric reduces to range-symmetric and we have the follwing corollary.

Corollary 6.2. Let $A, B \in \mathbb{R}^{n \times n}$ be such that $R(A)=R(B)$ and $N(A)=N(B)$. Then The following conditions are equivalent:
(a) $h(A, B) \subseteq K$.
(b) $A^{\#} B x=\lambda x, 0 \neq \lambda \in \mathbb{R}$. Then $\lambda>0$.

An square interval matrix is defined as the set of matrices of the form $J=[A, B]=$ $\{C: A \leq C \leq B\}$ for $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times n}$ and $A \leq B$. We shall often use the center matrix $J_{C}=\frac{1}{2}(B+A)$ and the radius matrix $\Delta=\frac{1}{2}(B-A)$. Thus, $A=J_{C}-\Delta$, $B=J_{C}+\Delta$ and $\Delta \geq 0$ which yields $J=\left[J_{C}-\Delta, J_{C}+\Delta\right]$.

An interval matrix $J=[A, B]$ where $A, B \in \mathbb{R}^{n \times n}$ is called index range-kernel regular if for all $C \in J, R\left(C^{k}\right)=R\left(A^{k}\right)$ and $N\left(C^{k}\right)=N\left(A^{k}\right)$. When $k=1$, it coincides with range-kernel regular, i.e., $R(C)=R(A)$ and $N(C)=N(A)$.

Theorem 6.3. Let $J=[A, B]$. If $h(A, B) \subseteq K$, then $\rho\left(J_{c}^{D} \Delta\right)<1$.
Proof. Since $J_{c} \in K$, then it follows that $R\left(A^{k}\right)=R\left(J_{c}\right)$ and $N\left(A^{k}\right)=N\left(J_{c}\right)$. Suppose on contrary, $\beta=\rho\left(J_{c}^{D} \Delta\right) \geq 1$. Then, there exists $0 \neq x \in \mathbb{R}^{n}$ such that $J_{c}^{D} \Delta=\beta x$. Then, $x \in R\left(J_{c}^{D}\right)=R\left(J_{c}^{k}\right)=R\left(A^{k}\right)$. Also, $P_{R\left(J_{c}^{k}\right)}, N\left(J_{c}^{k}\right)\left(J_{c}-A\right) x=J_{c} J_{c}^{D} \Delta x=\beta J_{c} x$ so that $\left(J_{c}-A-\beta J_{c}\right) x=0$. Dividing it by $\frac{-1}{\beta}$ and taking $\eta=1+\frac{-1}{\beta} \geq 0$, then we have $\left(\eta J_{c}+(1-\eta) A\right) x=0$. Let $P=\left(\eta J_{c}+(1-\eta) A\right)$. Then, $P \in K$ and $x \in N\left(P^{k}\right)=N\left(A^{k}\right)$. As $x \in R\left(A^{k}\right)$, thus $x=0$, a contradiction.

Corollary 6.4. Let $J=[A, B]$. If $h(A, B) \subseteq K$, then $\rho\left(J_{c}^{\#} \Delta\right)<1$.
We next present an analogous result to Theorem 3.5, 8 ] for square singular matrices using the Drazin inverse.

Theorem 6.5. Let $J$ be index range-kernel regular. Then the following are equivalent.
(i) $C^{D} \geq 0$ whenever $C \in K$,
(ii) $B^{D} \geq 0$ and $A^{D} \geq 0$,
(iii) $B^{D} \geq 0$ and $\rho\left(B^{D}(B-A)\right)<1$.

Proof. (i) $\Rightarrow$ (ii) Follows from definition of J.
(ii) $\Rightarrow$ (iii) $A=B-(B-A)$ is an index-proper splitting of $A$. Then $B^{D}(B-A) \geq 0$.

So by Theorem 2.1, $\rho\left(B^{D}(B-A)\right)<1$.
(iii) $\Rightarrow(i)$ Let $C=B\left(I-B^{D}(B-C)\right)$. Now to show $\left(I-B^{D}(B-C)\right)$ is invertible. Let $\left(I-B^{D}(B-C)\right) x=0$ then, $\left.x=B^{D}(B-C)\right) x \in R\left(B^{D}\right)=R\left(B^{k}\right)$. So $x=B B^{D} x$ and hence $x=B B^{D} x-B^{D} C x=x-B^{D} C x$. Therefore $B^{D} C x=0$. Thus, $C x \in$ $N\left(B^{D}\right)=N\left(C^{D}\right)$ it implies that $x=C C^{D} x=0$ implies $x=0$. Hence $\left(I-B^{D}(B-C)\right)$ is invertible. As $C=B\left(I-B^{D}(B-C)\right)$. Next to show, $C^{D}=\left(I-B^{D}(B-C)\right)^{-1} B^{D}$. For this, let $X=B, Y=\left(I-B^{D}(B-C)\right)$. Then, $(X Y)^{D}=Y^{-1} X^{D}$ if and only if $Y Y^{k} X^{k}=X^{D} X Y Y^{k} X^{k}$. We have $R\left(Y Y^{k} X^{k}\right)=R\left(Y(X Y)^{k}\right)=R\left(\left(I-B^{D}(B-C)\right) C^{k}\right)=$ $R\left(C^{k}-B^{D}(B-C) C^{k}\right) \subseteq R\left(C^{k}\right)=R\left(B^{k}\right) \subseteq R(B)=R(X)$ (since $P_{L, M} A=A$ if and only if $R(A) \subseteq L)$. Therefore $C^{D}=\left(I-B^{D}(B-C)\right)^{-1} B^{D}=\sum_{k=0}^{\infty}\left(B^{D}(B-C)\right)^{k} B^{D} \geq 0$

Using the above result, the next result follows.
Theorem 6.6. Let $J=[A, B]$ be index range-kernel regular. Then the following are equivalent.
(a) $B^{D} \geq 0$ and $A^{D} \geq 0$.
(b) $h(A, B) \subseteq K$ and $C^{D} \geq 0$ for all $C \in h(A, B)$.

Proof. $(a) \Rightarrow(b)$ : Let $C=\lambda A+(1-\lambda) B$ for some $\lambda \in[0,1]$. Then, $N\left(A^{k}\right) \subseteq N\left(C^{k}\right)$ and $R\left(A^{k}\right) \subseteq R\left(C^{k}\right)$. Also, we have $0 \leq B^{D}(B-C) \leq B^{D}(B-A)$ and hence $\rho\left(B^{D}(B-A)\right)<$ 1. Thus, $\rho\left(B^{D}(B-C)\right)<1$ and $\left(I-B^{D}(B-C)\right)$ is invertible. Now, $\left(I-B^{D}(B-C)\right)=$ $I-P_{R\left(B^{k}\right), N\left(B^{k}\right)}+B^{D} C=-P_{R\left(B^{k}\right), N\left(B^{k}\right)}+B^{D} C=E$. Then, $B E=B P_{R\left(B^{k}\right), N\left(B^{k}\right)}+$ $B B^{D} C=B B^{D} C=C$. So, $B=C E^{-1}$ and hence $R\left(B^{k}\right)=R\left(C^{k}\right)$. By rank-nullity dimension theorem, it follows that $N\left(A^{k}\right)=N\left(C^{k}\right)$. So, $C \in K$. Then, by Theorem 6.3, we have $C^{D} \geq 0$.
$(a) \Rightarrow(b)$ : Since $h(A, B) \subseteq K$ and $C^{D} \geq 0$ for all $C \in h(A, B)$, then $C=\lambda A+(1-\lambda) B$ for some $\lambda \in[0,1]$. Again as $C^{D} \geq 0$ for all $C \in h(A, B)$, it is obviously true that $B^{D} \geq 0$ and $A^{D} \geq 0$.

Corollary 6.7. Let $J=[A, B]$ be range-kernel regular. Then the following are equivalent.
(a) $B^{\#} \geq 0$ and $A^{\#} \geq 0$.
(b) $h(A, B) \subseteq K$ and $C^{\#} \geq 0$ for all $C \in h(A, B)$.

## References

[1] Ben-Israel, A.; Greville, T. N. E., Generalized Inverses. Theory and applications, Springer-Verlag, New York, 2003.
[2] Berman, A.; Plemmons, R. J., Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979.
[3] Chen. G; Chen, X., A new splitting for singular linear system and Drazin inverse, J. East China Norm. Univ. Natur. sci. Ed., 3 (1996) 12-18.
[4] Cottle, R. W., Pang, J. S. and Stone, R. E., The linear complementarity problem, Academic, New York, 1992.
[5] Fiedler, M. and Ptak, V., On matrices with non-positive off-diagonal elements and positive principal minors, Czech. J. Math., 12 (1962), 382-400.
[6] Kuo, I-wen, The Moore-Penrose inverses of singular M-matrices Lin. Alg. Appl., 17 (1977), 1-14.
[7] Johnson, C. R. and Tsatsomeros, M. J., Convex sets of nonsingular and P-matrices, Lin. Mult. Alg., 38 (1995), 233-239.
[8] Kannan, R. and Sivakumar, K. C., Moore-Penrose inverse positivity of interval matrices, Lin. Alg. Appl., 436 (2012), 571-578.
[9] Kannan, R. and Sivakumar, K. C., $P_{\dagger}$-matrices: A generalization of P-matrices, Lin. Mult. Alg., 2013, doi:10.1080/03081087.2012.754438
[10] Murty, K. G., On a characterization of P-matrices, SIAM Journal of Applied Mathematics, 20(3) (1971), 378-384.
[11] Rohn, J., A theorem on P-matrices, Lin. Mult. Alg., 30 (1991), 209-211.
[12] Rohn, J., Systems of linear interval equations, Lin. Alg. Appl., 126 (1989), 39-78.
[13] Samelson, H., Thrall, R. M., Welsler, D., A partison theorem for Euclidean n-space, Proc. Amer. Math. Soc. 9 (1958), 805-807.
[14] Tamir, A., Short Communication On a Characterization of $P$-Matrices, Mathematical Programming, 4 (1973), 110-112.
[15] Varga, R. S., Matrix Iterative Analysis, Springer-Verlag, Berlin, 2000.
[16] Wei, Y., Index splitting for the Drazin inverse and the singular linear system, Appl. Math. Comput. 95 (1998), 115-124.

