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POSITION VECTORS OF HELICES IN THE UNIVERSAL
COVERING GROUP gE(2) WITH RIEMANNIAN METRIC

TALAT KÖRPINAR AND ESSIN TURHAN

Abstract. In this paper, we study position vectors helices in the universal
covering group of E(2) with Riemannian metric. We characterize helices in
terms of its curvature and torsion in the universal covering group of E(2).

1. Introduction

Helices arise in nanosprings, carbon nanotubes, �-helices, DNA double and col-
lagen triple helix, the double helix shape is commonly associated with DNA, since
the double helix is structure of DNA. They constructed a molecular model of DNA
in which there were two complementary, antiparallel (side-by-side in opposite di-
rections) strands of the bases guanine, adenine, thymine and cytosine, covalently
linked through phosphodiester bonds. Each strand forms a helix and two helices
are held together through hydrogen bonds, ionic forces, hydrophobic interactions
and van der Waals forces forming a double helix, lipid bilayers, bacterial �agella in
Salmonella and E. coli, aerial hyphae in actynomycetes, bacterial shape in spiro-
chetes, horns, tendrils, vines, screws, springs, helical staircases and sea shells, [3,15].
In this paper, we study position vectors helices in the universal covering group

of E(2) with Riemannian metric. We characterize helices in terms of its curvature
and torsion in the universal covering group of E(2).

2. The Universal Covering Group of E(2)

The Euclidean motion group E(2)is given explictly by the following matrix group:

E(2) =

8<:
0@ cos � � sin � x
sin � cos � y
0 0 1

1A : x; y 2 R; � 2 S1
9=; :

Let ]E(2) denote the universal covering group of E(2). Then, ]E(2) is R3 with
multiplication

(x; y; z) � (x0; y0; z0) = (x+ x0 cos z � y0 sin z; y + x0 sin z + y0 cos z; z + z0):
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A left-invariant frame

(2.1) e1 = � sin z
@

@x
+ cos z

@

@y
; e2 =

@

@z
; e3 = cos z

@

@x
+ sin z

@

@y
:

Then this frame satis�es the following commutation relations [4]:

[e1; e2] = e3; [e2; e3] = e1; [e3; e1] = 0:

The left-invariant Riemannian metric determined by the condition that fe1; e2; e3g
is orthonormal, is given by

g = (cos zdx+ sin zdy)
2
+ (� sin zdx+ cos zdy)2 + dz2:

The Levi Civita connection is given by

re1e1 = 0; re1e2 = 0; re1e3 = 0;
re2e1 = �e3; re2e2 = 0; re2e3 = e1;
re3e1 = 0; re3e2 = 0; re3e3 = 0;

The curvature of the space is determined by

R1212 = R1313 = R2323 = 0.

3. Helices in Universal Covering Group of E(2)

Let  : I �! ]E(2) be a non geodesic curve in the group of rigid motions gE(2)
parametrized by arc length. Let fT;N;Bg be the Frenet frame �elds tangent to
the group of rigid motions gE(2) along  de�ned as follows:
T is the unit vector �eld 0 tangent to ,N is the unit vector �eld in the direction

of rTT (normal to ) and B is chosen so that fT;N;Bg is a positively oriented
orthonormal basis. Then, we have the following Frenet formulas:

rTT = �N;
rTN = ��T+ �B;(3.1)

rTB = ��N;

where � is the curvature of , � is its torsion and

g (T;T) = g (N;N) = g (B;B) = 1;(3.2)

g (T;N) = g (T;B) = g (N;B) = 0:

With respect to the orthonormal basis fe1; e2; e3g we can write

T = T1e1 + T2e2 + T3e3;(3.3)

N = N1e1 +N2e2 +N3e3;

B = B1e1 +B2e2 +B3e3:
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Theorem 3.1. Let  : I �!]E(2) be a helix in the universal covering group of
E(2): Then, the parametric equations of  are

x (s) = � 1
�
sin2 � cos[(

�

sin�
)s+ C � #] + "1;

y (s) =
1

�
sin2 � sin[(

�

sin�
)s+ C � #] + "2;(3.4)

z (s) = cos�s+ #;

where "1; "2; #; C are constants of integration.

Proof. Assume that  is a helix in ]E(2): Then,
(3.5) T = sin� cos$ (s) e1 + cos�e2 + sin� sin$ (s) e3:

From covariant derivative of T; we have

rTT =(T 01 + T2T3) e1 + T 02e2 + (T 03 � T1T2) e3:
Applying the Frenet formulas of ; we get

$ (s) = (
�

sin�
+ cos�)s+ C;

where C constant of integration.
The last equation gives us

T = sin� cos[(
�

sin�
+ cos�)s+ C]e1 + cos�e2

+ sin� sin[(
�

sin�
+ cos�)s+ C]e3:

It follows that

T = (� sin z sin� cos[( �

sin�
+ cos�)s+ C]

+ cos z sin� sin[(
�

sin�
+ cos�)s+ C];

cos z sin� cos[(
�

sin�
+ cos�)s+ C]

+ sin z sin� sin[(
�

sin�
+ cos�)s+ C]; cos�):

Then
dx

ds
= � sin z sin� cos[( �

sin�
+ cos�)s+ C]

+ cos z sin� sin[(
�

sin�
+ cos�)s+ C];

dy

ds
= cos z sin� cos[(

�

sin�
+ cos�)s+ C]

+ sin z sin� sin[(
�

sin�
+ cos�)s+ C];

dz

ds
= cos�:

Integrating the last equation gives the result.

We draw a picture of this curve.
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Figure 1

Figure 1: A helix in ]E(2)

By this theorem we immediately have

Theorem 3.2. Let  : I �!]E(2) be a helix in the universal covering group of
E(2): Then, the position vector of  is

 (s) = [� sin[cos�s+ #][� 1
�
sin2 � cos[(

�

sin�
)s+ C � #] + "1]

+ cos[cos�s+ #][
1

�
sin2 � sin[(

�

sin�
)s+ C � #] + "2]]e1

+ [cos�s+ #]e2(3.6)

+ [cos[cos�s+ #][� 1
�
sin2 � cos[(

�

sin�
)s+ C � #] + "1]

+ sin[cos�s+ #][
1

�
sin2 � sin[(

�

sin�
)s+ C � #] + "2]]e3;

where "1; "2; #; C are constants of integration.

Proof. By a direct computation, we have
@

@x
= � sin ze1 + cos ze3;

@

@y
= cos ze1 + sin ze3;(3.7)

@

@z
= e2:

Combining (2.1) and (3.4), we have (3.6). So, the proof is completed.

We can use Mathematica to draw the picture of projections of .
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Figure 2

Figure 2: Projections of  to yz; xz; xy planes are illustrated colour purple,
red, cyan, respectively.
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