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Abstract  In this work we define a bio-economic equilibrium model for several fishermen who catch two fish species; 
these species compete with each other for space or food. The natural growth of each species is modeled using a logistic law. 
The objective of the work is to find the fishing effort that maximizes the profit of each fisherman constrained by the con-
servation of the biodiversity. The existence of the steady states and its stability are studied using eigenvalue analysis. The 
problem of determining the equilibrium point that maximizes the profit of each fisherman is then solved by using the gene-
ralized Nash equilibrium problem. Finally, some numerical simulations are given to illustrate the results. 

Keywords  Fisheries; Bio-economic model; Maximizing profits; Generalized Nash Equilibrium GNE; Linear Comple-
mentarity Problem LCP; Biodiversity of renewable resources. 

1. Introduction 
A bio-economic model of a fishery, as the name implies, combines two parts, the first one is a 
biological model and the second one is an economic model; it is intended to give an explanation 
stock, catch, and effort dynamics under different regimes, and provide guidance on the optimal 
management of the stock. This is accomplished by specifying the harvest function that is usu-
ally based on the value of the total revenue and the total cost, and constraints representing the 
sustainable management of the resources and the preservation of the biodiversity of the stocks. 
Therefore, the optimal level of effort is determined, on the one hand, by the biological dynamics 
of the stock and, on the other, by the cost structure of the fishery and the value of the harvest. It 
is interesting to note that this solution process is distinguished from financial analysis because it 
explicitly includes the opportunity costs of harvest, usually in the form of a flow time of the 
present value of net benefits representing a specific model of crops and stocks. 
Bio-economic theory was pioneered by Gordon [12], and Schaefer [19] static model of a sin-
gle species. In the present paper, we propose to define a bio-economic model of two fish spe-
cies. The evolution of these fish species is described by a density dependent model taking into 
account the competition between species which compete with each other for space or food 
(see the model of Verhulst [20]). In this model, we assume that we have 'n' fishermen who 
catch two fish species. 
More specifically, the bio-economic model includes three parts: a biological part that connects 
the catch to the biomass stock, an exploitation part that connects the catch to fishing effort at 
equilibrium, and an economic part that connects the fishing effort to profit. 
The objective of each fisherman is to maximize his income without any consultation of the 
other fishermen. However, all of them have to respect two constraints, the first one is the sus-
tainable management of the resources and the second one is the preservation of the biodiver-
sity. With all these considerations, our problem leads to a generalized Nash equilibrium prob-
lem, to solve this problem we transform it into a linear complementarity problem. 
The paper is organized as follows. In section 2 we define a mathematical model of two fish 
species that compete with each other for space or food. In section 3 we compute the Linear 
Complementarity Problem. In section 4 we give numerical simulations of the mathematical 
model and discussion of the results. Finally, we give conclusions in section 5. 
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2. Mathematical model 
The logistic equation describes population growth based on the following mathematical ex-
pression (see G. F. Gause [10]) 
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where 1B  and 2B  are the densities of populations 1 and 2 respectively; 1,2=)( jjr  are the intrin-
sic growth rates; 1,2=)( jjK  are the carrying capacities for the respective species; and 21)(  kjjkc  
are the coefficients of the competition between species k  and species j . 

2.1. The steady states of the system 
The steady states of the system of equations (1)  are obtained by solving the equations 
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A qualitative study of system (1)  shows that there are three equilibrium on the axes of coor-
dinates (0,0)1P , ,0)( 12 KP , )(0, 23 KP  and a fourth equilibrium ),( 214

 BBP  given by 
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This solution can give coexistence of the two fish species; in this case the biomasses of the 
two fish species are positive. 
On the four figures below, we observe, according to the values of bio-economic parameters, in 
the first one, the extinction of fish specie 2, in the second one, the extinction of fish specie 1, in 
the third one, the coexistence of both species and in the fourth one, the extinction of one species 
  

Evolution of two fish species in competition 
according to the values of bio-economic parameters 
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Now we will prove a result which gives the stability of the point ),( 214
 BBP  given by (3) . 

 
Theorem 1 The steady state ),( 214

 BBP  is locally asymptotically stable if the hypotheses 
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hold simultaneously.  
 
Proof. : The variational matrix of the system (1)  at ),( 214

 BBP  is 
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Using the fact that by (2)  we have 
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The determinant of the Jacobian matrix is given by: 
21

21

21211221 )(=)( BB
KK

KKccrrJdet  

Now, if 0>2121 Kcr   and 0>1212 Kcr   then 0>21211221 KKccrr   therefore ),( 214
 BBP  is locally 

asymptotically stable. 
 
2.2. Bio-economic model 
In this work we define a bio-economic equilibrium model for ' n ' fishermen who catch two 
fish species. In order to simplify the model and gain a better understanding of the rest of this 
work, we consider as a first step two fishermen who catch two fish species. In a second step 
we generalize this result by considering several fishermen who catch two fish species. 
Now, we introduce the fishing by reducing the rate of fish population growth by the amount. 
Under exploitation, Schaefer [19] introduced the catch rate 1,2=)( jjH  as jjjj BEqH =  where 

jE  is the fishing effort to exploit a fish species j  and jq  is the catchability coefficient of 
fish species j , defined as the fraction of the population fished by an effort unit (see Gulland 
[13]). Biomass changes through time can be expressed as 
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In cases where fish species are non interacting, the parameters of competition are zero and we 
find the models proposed by Gordon [11]. 
It is interesting to note that according to the literature, the effort depends on several variables, 
namely for example: number of hours spent fishing; search time; number of hours since the 
last fishing; number of days spent fishing; number of operations; number of sorties flown; 
ship, technology, fishing gear, crew, etc. However, in this paper, the fishing effort is treated as 
a unidimensional variable which includes a combination of all these factors. 
On the other hand, it is clear that the fishing effort jE  to exploit a fish species j  is the sum 
of the fishing effort jE1  of the first fisherman to exploit a fish species j  and the fishing ef-
fort jE2  of the second fisherman to exploit a fish species j ; mathematically: jjj EEE 21=   
for all 1,2=j . 
Now we give the expression of biomass as a function of fishing effort. 
The biomasses at biological equilibrium (i.e., the variation of the biomass of each species is 
zero), are the solutions of the system 
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 The solutions of this system are given by 
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To make the formulas more readable, we'll use the following notations 
)/(= 212112211121 KKccrrKqr   
)/(= 212112212212 KKccrrKqr   

)/(= 21211221212121 KKccrrKKqc   
)/(= 21211221211212 KKccrrKKqc   

))/((= 21211221212121211 KKccrrKKrcKrr   
))/((= 21211221211212212 KKccrrKKrcKrr   

With these notations the equilibrium biomass as a function of fishing effort can be defined as 
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or in matrix form AEB =  where 
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Now we give the expression of profit as a function of fishing effort. We use, as usual in the 
bio-economic models, the fact that the total revenue )(TR  depends linearly on the catch, that 
is Total revenue = PriceCatches. 
On the other hand, we shall assume, in keeping with many standard fisheries models (e.g., the 
model of Clark [2], Clark [3], Crutchfield [5], Gordon [11] and Gordon [12]), that the total 
effort cost of the fisherman i is given by >,=<)( i

i EcTC , where jc  is a constant cost per 
unit of harvesting effort of the species j . 
As mentioned previously, we note that the jijjij BEqH =  catches of species j  by the fisher-
man i , where ijE  is the effort of the fisherman i  to exploit the species j .  

It is clear that ijij HH 2

1=
=  is the total catches of species j  by all fishermen. 

On the other hand, we denote by T
ii

i EEE ),(= 21  the vector fishing effort must provide by the 
fisherman i  to catch the two fish species. 
The profit (net revenues) for each fisherman )(Ei  is equal to total revenue iTR)(  minus to-
tal cost iTC)( , in other words, the profit for each fisherman is represented by the following 
function iii TCTRE )()(=)(  , so that the profit of fisherman i  is given by 
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where 1p  (resp. 2p ) is the price of the fish species 1 (resp. 2 ). 
 
To maintain the biodiversity of species, it is natural to assume that all biomasses remain posi-
tive, therefore 

0.=  AEB                                      (10) 

In other word, for the fisherman i   
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Now we will trace the total revenue 
and total cost as a function of fish-
ing effort as in the diagram Gor-
don. A bio-economic model of a 
fishery with fishing costs linearly 
proportional to fishing effort. Note 
that MEY (maximum economic 
yield, i.e., the maximum difference 
between the gross value of catch 
and cost of fishing) achieves at a 
level of fishing effort lower than 
that needed to obtain MSY (maxi-
mum sustainable yield). Fig.5: Total revenue and Total Cost as a function of Fishing Effort 

3. Linear Complementarity Problem 
Each fisherman trying to maximize his profit and achieve a fishing effort that it is an optimal 
response to the fishing effort of the other fishermen. We have a generalized Nash equilibrium 
where each fisherman's strategy is optimal taking into consideration the strategies of all the 
other fishermen. A Nash Equilibrium exists when there is no unilateral profitable deviation 
from any of the fishermen involved. In other words, no fisherman would take a different ac-
tion as long as every other fisherman remains the same. This problem can be translated into 
the following two mathematical problems: 
The first fisherman must solve the problem )( 1P  
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The second fisherman must solve the problem )( 2P  
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We recall that ),( 21 EE  is called Generalized Nash Equilibrium Point if and only if 1E  is a 
solution of problem 1)(P  for 2E  given, and 2E  is a solution of problem 2)(P  for 1E  
given. 
Now we give two lemmas and two theorems that give this Generalized Nash Equilibrium 
Point. 
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Lemma 1 The Generalized Nash Equilibrium Point ),( 21 EE  is a solution of the Linear 
Complementarity Problem ),( bMLCP : 
Find vectors 6IR, wz  such that  0z , 0=  bMzw  and 0=wzT  
Where  

TEEz )0,,( 21 ; Tvuuw ),,( 21 ,
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Proof.: The essential conditions of Karush-Kuhn-Tucker applied to the problem )( 1P  require 
that if 1E  is a solution of the problem )( 1P  then there exist constants 21 IRu , 21 IR v , et 

21 IR   such that 
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In the same way, the conditions of Karush-Kuhn-Tucker applied to the problem )( 2P , require 
that if 2E  is a solution of the problem )( 2P  then there exist constants  22 IR u , 22 IRv  
et 22 IR   such that 
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 It is immediately seen from 1)(KKT  and 2)(KKT  that 
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It is clear from equation )( 1  and from equation )( 2  that 21 = vv . 
To maintain the biodiversity of species, it is natural to assume that all biomasses remain 
strictly positive, that is 0>jB  for all 1,2=j ; therefore 0>= 21 vv . 
As the scalar product of 1,2=)( i

i  and 1,2=)( i
iv  is zero, so 0=i  for all 1,2=i . In what fol-

lows of this paper, we denote by 21 == vvv . So that we have the following expressions 
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thus 
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 Let us denote by 
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then z  is a solution of the Linear Complementarity Problem ),( bMLCP . 
To show that ),( bMLCP  has a unique solution, we will use the following results: 
 
Theorem 2 (see [4] and [17]): ),( bMLCP  has a unique solution for every b  if and only if 
M  is a P-matrix.  
 
Recall that a matrix M  is called matrixP   if the determinant of every principal submatrix 
of M  is positive (see Fiedler [9], Murty [16]). 
The class of P-matrices generalizes many important classes of matrices, such as positive defi-
nite matrices, M-matrices, and inverse M-matrices, and arises in applications. 
Note that each matrix symmetric positive definite is matrixP  , but the reverse is not always 
true. 
Now we show that the matrix M  of our problem is matrixP  ; which is equivalent to the ex-
istence and uniqueness of a solution of ),( bMLCP , therefore, the existence and uniqueness of 
a generalized Nash equilibrium. 
 
Lemma 2 The matrix  
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So the matrix M  is matrixP  . 
It is not difficult to see that the previous lemma shows that the linear complementarity prob-
lem ),( bMLCP  admits one and only one solution. This solution is given by the following 
theorem 
 
Theorem 3 The fishing effort that maximizes the profit of each fisherman is given by 
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Proof. : It is natural to assume that the two fish species must be catched by two fishermen, 
this leads to write 0>, 21 EE , and therefore: 0=)( 1,2=i

iu . 
Take these results and previous results, the solution of ),( bMLCP   is ,0),( 21 EEz  where 
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It is clear that the fishing efforts 1E  and 2E  are positive since they are the solutions of 
),( bMLCP ; it remains to verify the positivity of biomass of two fish species, as expressions of 

biomass of both fish species are given by 
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and finally 
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4. Discussion of results and numerical simulations 
The comparison between the two cases shows that there is a difference between them. 
In the first one when we consider only one fisherman who catches the two fish species (which 
are competing for space or food), then the fishing effort that maximizes the benefit of this fi-
sherman is given by 

).)]/(2/)(()/)()[((= 2121111122222211121211221 KKqqqpcqpcKKccrrE    

In the second one when we consider two fishermen who catches the two fish species (which 
are competing for space or food), then the fishing effort that maximizes the profits of the two 
fishermen are given by relations (13).  
Now we deal with the general case by considering 'n ' fishermen who catch two fish species 
that compete for space or food, this leads to the following generalized Nash equilibrium 
problem 
The fisherman ni 1,..,=   must solve the following problem niP i1)(  
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To solve this problem we transform it into a linear complementarity problem of finding the 
two vectors TnEEz ,0),..,(= 1  and Tn vuuw ),,..,(= 1  satisfying 0,z  0= bMzw   and 

0>=,< wz , where 
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It is very complicated to solve such a linear complementarity problem )(LCP  for a large n  
even numerically. Many algorithms exist in the literature for solving this kind of problems 
(see for instance, Borigi [1], Cryer [6], Kojima [14], Lemke [15], Murty [18]), but for ( LCP ) 
with a large scale matrix these methods need very powerful machines to be implemented. 
That is why we developed algorithms ([7] and [8]) more efficient for solving this problem. 
We take as a case study ten fishermen who catch two fish species where the first and the 
second fish species have the following characteristics  
 
 

Table 1. Characteristics of the two fish species 
   Fish species1   Fish species 2 
Intrinsic growth rate  2.00 1.00 
Catchability coefficient  0.004 0.02 
Carrying capacities  5000 1000 
Coefficient of competition  0.0002 0.00001 
Cost per unit of effort.  20.00 10.00 

 
 
We find the same results (see following table) as in a model of Gordon-Schaefer 
mono-specific: an increase in price leads to an increase in fishing effort and reduced catch le-
vels. 
 

Table 2. The influence of the price on the fishing effort and reduced catch levels 
p1 p2 E1 E2 H1 H2 H1+H2 
2.00 4.00 22.16 3.86 2378.89 154.88 2533.77 
5.00 13.00 36.19 4.33 1911.11 105.33 2016.44 
7.00 19.00 38.84 4.39 1647.65 97.29 1744.94 

10.00 28.00 40.83 4.44 1413.78 91.52 1505.30 
14.00 40.00 42.15 4.47 1240.62 87.80 1328.43 
19.00 55.00 43.02 4.49 1119.20 85.41 1204.61 
24.00 70.00 43.53 4.50 1045.62 84.03 1129.64 

 
We add that since the number of fishermen is increasing, the catch level is getting lower as 
shown in figure 6.  
As mentioned above, it is interesting to note that if we consider only one fisherman who 
catches the two fish species, then the fishing effort that maximizes the profit of this fisherman 
is equal to 228.85 to catch the first species and 24.58 to catch the second; his profit in this 
case is equal to 31817.60 (see fig. 7). 
On the contrary, when we consider two fishermen who catch the two species, then for each 
fisherman to maximize his profit, he must provide a fishing effort which is equal to 152.57 for 
catch the first species and 16.39 to catch the second species, the profit of each fisherman in 
this case is equal to 28446.20 (see fig. 7). 
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Fig. 6: Influence of the fishermen number on the catch 
levels 

Fig. 7: Influence of the fishermen number on the fi-
shermen profits 

 
In the end when we consider ten fishermen who catch the two fish species, then for each fi-
sherman to maximize his profit, he must provide a fishing effort which is equal to 41.61 to 
catch the first species and 4.47 to catch the second species, the profit of each fisherman in this 
case is equal to 10920.49 (see fig. 7). 
We add that since the number of fishermen is increasing, the fishermen profits are getting 
lower. 

5. Conclusion and perspectives 
In this work we have defined a bio-economic equilibrium model for ' n ' fishermen who catch 
two fish species, these species compete with each other for space or food. The natural growth 
of each species is modeled using a logistic law. We have calculated the fishing effort that 
maximizes the profit of each fisherman at biological equilibrium by using the generalized 
Nash equilibrium problem. The existence of the steady states and its stability are studied using 
eigenvalue analysis. Finally, some numerical examples are given to illustrate the results. 
In this work, we have considered that the prices of fish species are constants, we consider in a 
future work to define functions of providing long term, where price is no longer a constant but 
depends on the level of effort and biomass stock of each species remaining. 
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