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Entropy of Riemann zeta zero sequence
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Abstract

One of the key unsolved problems in mathematics is the proof or refu-
tation of Riemann’s remarkable 1858 hypothesis about the location of
the roots of the Riemann zeta function. The statistical properties of the
zero distribution have been studied intensively to get insight into the phe-
nomenon. In this work we study the entropy of the sequence of zeros,
which tells us how constrained is the pattern of zeros. A high value of the
entropy would imply that the sequence has relatively low structure, and
hence predicting the zeros is a difficult problem. A low value would give us
encouragement that techniques in machine learning like neural networks
would be helpful in studying the phenomenon.

∗Mountain View, CA 94041, U. S. A. Email: oshanker@gmail.com
*AMO - Advanced Modeling and Optimization. 1841-4311

449



O. Shanker

zero Probability
count N

0 0.162
1 0.678
2 0.158
3 0.002

Table 1: Distribution of zero counts in a Gram interval

1 Introduction

The zero spacings of the Riemann Zeta function [1, 2, 3, 4] is a topic of deep
abiding interest to mathematicians and physicists. In this work we study the
entropy [5] of the sequence of zeros. Entropy is a measure of the role of proba-
bility in generating a sequence of values. It gives us an indication of how how
constrained is the pattern of zeros. A high value of the entropy implies that
predicting the zeros is a difficult problem, while a low value is an indication that
the sequence has some structure, and hence techniques in machine learning like
neural networks [6] would be helpful in studying the phenomenon.

In Section 2 we define the Gram interval and the sequence of zeros. Section 3
gives the calculation of the entropy for the sequence of zeros. The conclusions
are presented in Section 4.

2 Gram Interval and zero distribution

In this section we define the Gram interval and the sequence of zeros. The
concept of Gram interval is of particular importance, since it is the basis for
defining the entropy. The Riemann Zeta function is defined for Re(s) > 1 by

ζ(s) =

∞∑
n=1

n−s =
∏

p∈primes

(
1− p−s

)−1
. (1)

Eq. (1) converges for Re(s) > 1. ζ(s) has a continuation to the complex
plane and satisfies a functional equation

ξ(s) := π−s/2 Γ(s/2) ζ(s) = ξ(1− s); (2)

ξ(s) is entire except for simple poles at s = 0 and 1. We write the zeroes of ξ(s)
as 1/2 + iγ. The Riemann Hypothesis asserts that γ is real for the non-trivial
zeroes. We order the γs in increasing order, with

. . . . . . γ−1 < 0 < γ1 ≤ γ2 . . . . (3)

Then γj = −γ−j for j = 1, 2, . . . , and γ1, γ2, . . . are roughly 14.1347, 21.0220,
. . ..
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Asymptotically, for the Riemann zeta function the mean number of zeros
with height less than γ (the smoothed Riemann zeta staircase) is [4]

< NR(γ) >= (γ/2π)(ln(γ/2π)− 1)− 7

8
. (4)

Thus, the mean spacing of the zeros at height γ is 2π(ln(γ/2π))−1. For the range
of t values studied in this work this spacing is essentially constant at 0.109.

In our study an important role is played by the ”Gram Points” and Gram
intervals, which we now define. One defines

θ(t) = arg(π−it/2Γ(
1

4
+
it

2
)), (5)

where the argument is defined by continuous variation of t starting with the
value 0 at t = 0. θ has the aymptotic expansion for large t:

θ(t) =
t

2
ln(

t

2π
)− t

2
− π

8
+

1

48t
− 1

5760t3
. (6)

Tthe function Z(t) = exp(iθ(t))ζ(1/2 + it), known as the Riemann-Siegel Z-
function, is real valued for real t and |Z(t)| = |ζ(1/2 + it)|. Thus the zeros of
Z(t) are the imaginary part of the zeros of ζ(s) which lie on the critical line.
Many of the zeros are separated by the ”Gram points”. When t ≥ 7, the θ
function Eq.(5) is monotonic increasing. For n ≥ 1, the n − th Gram point gn
is defined as the unique solution > 7 to θ(gn) = nπ. The Gram points are as
dense as the zeros of ζ(s) but are much more regularly distributed. Grams law
is the empirical observation that Z(t) usually changes its sign in each Gram
interval Gn = [gn, gn+1). This law fails infinitely often, but it is true in a large
proportion of cases. Eq. 4 implies that on average each Gram interval contains
one zero. We can represent the zeros by a sequence n1n2...nk where ni is the
number of zeros in Gram interval i and k is the length of the sequence, i.e.,
the number of Gram intervals. Then from Eq. 4 the mean value of ni over the
sequence is 1,

∑
ni = k.

Odlyzko [7, 8] has made extensive numerical studies of the zeroes of the
Riemann zeta function and their local spacings, and their relation to the random
matrix models of physics. He confirmed numerically that the local spacings of
the zeroes of the Riemann Zeta function obey the laws for the (scaled) spacings
between the eigenvalues of a typical large unitary matrix. That is, they obey
the laws of the Gaussian Unitary Ensemble (GUE) [9, 10, 11, 12]. Odlyzko’s
computations thus verified the discoveries and conjectures of Montgomery [13,
14, 15]. This has been extended to larger heights by Gourdon et al [16].

The author of this work studied the distributions of the zero spacings using
Rescaled Range Analysis [17]. It has been shown that the long-range statistics
of the zeroes of the Riemann zeta function are better described in terms of
primes than by the GUE RMT. Berry [18, 19, 20, 21] has related this to a
study of the semiclassical behaviour of classically chaotic physical systems. The
primitive closed orbits of the physical system are analogous to the primes p.
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The analogy comes from formulae that connect zeros of the zeta function and
prime numbers [22, 23, 24] We collected statistics on a sample of 50000 zeros at
t = 1015. Table 1 shows the probability for a given Gram interval to contain a
specified number of zeros.

The next section gives the calculation of the entropy for the sequence of
zeros.

3 Entropy

Given a semi-infinite sequence of symbols like the sequence of zero counts in
successive Gram intervals, one would like to measure the amount of structure
present in the sequence. The concept of entropy provides such a measure. We
will first review the general concept as presented by Shannon, and then apply
it to the sequence of Riemann zeta zeros.

Following Shannon, consider a general source of information (like a source
generating English sentences in a message). In general the sequences are not
completely random. They have the statistical structure of the language. In En-
glish, the letter E occurs more frequently than Q, the sequence TH occurs more
frequently than XP, etc. We can think of the information source as generating
the message, emitting symbol after symbol. The source will choose successive
symbols according to certain probabilities. The probabilities could depend on
the preceding choices. Such a system is known as a stochastic process. The num-
ber of preceding symbols on which the probability of the next symbol depends
gives the length to which the structure extends.

In the simplest case (albeit artificial) a choice depends only on the preceding
symbol and not on the symbols before that. The statistical structure can then be
described by a set of transition probabilities pi(j), the probability that symbol i
is followed by the symbol j. The indices i and j range over all possible symbols.
A second equivalent way of describing the structure is to give the ”digram”
probabilities p(i, j), i.e., the relative frequency of the digram ij. More complex
processes would involve trigram frequencies, tetragram frequencies, etc.

In our study, the symbols represent the number of zeros in a Gram interval,
and the sequence is defined by specifying the number of zeros in successive Gram
intervals. For example, if a given Gram interval contained 1 zero, and the next
one contained no zeros, and the one after that contained 2 zeros, we represent
the sequences as 102.

These processes can also be described as a state machine, with transition
probabilities defined between the states. To make the state machine an in-
formation source we have to just specify the symbol that is emitted when a
transition between states occurs. The states will correspond to the ”residue of
influence” from preceding letters. For example, we can represent the Riemann
zeta zero sequence generating process as a state machine with three states, state
A representing a sequence in which the number of zeros is exactly equal to the
number of gram intervals (e.g., sequences like 1111 or 0121), state B represent-
ing a sequence in which the number of zeros is smaller than the number of gram
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excess zeros
sequence FN Normalized
length N FN < −2 −2 −1 0 1 2 > 2

1 0.861 0.621 0 0 16189 67806 15822 183 0
2 0.773 0.558 0 417 17781 63698 17593 509 1
3 0.742 0.535 0 674 18568 61534 18529 693 0
4 0.725 0.523 1 882 18921 60372 18955 866 0
5 0.714 0.515 2 1086 18984 59780 19128 1015 1
6 0.706 0.509 2 1206 19178 59180 19266 1160 3
7 0.697 0.503 4 1377 19177 58742 19447 1246 1
8 0.686 0.495 5 1493 19158 58516 19489 1327 5
9 0.670 0.483 4 1577 19221 58213 19572 1402 3
10 0.646 0.466 5 1683 19101 58170 19587 1443 2
11 0.613 0.442 3 1792 19088 57964 19611 1530 2
12 0.568 0.410 9 1894 19078 57687 19759 1557 5
13 0.514 0.371 6 1989 18942 57700 19771 1577 3
14 0.453 0.327 7 2055 18907 57640 19724 1651 3
15 0.394 0.284 8 2108 18858 57615 19702 1691 4
16 0.338 0.244 13 2134 18894 57440 19809 1694 1
17 0.285 0.206 8 2242 18718 57587 19637 1787 5
18 0.236 0.170 10 2249 18805 57452 19605 1859 3
19 0.194 0.140 14 2256 18882 57287 19655 1884 4
20 0.158 0.114 8 2308 18801 57319 19655 1884 6
21 0.127 0.091 12 2269 18863 57399 19444 1987 6
22 0.100 0.072 6 2298 18896 57263 19529 1981 6
23 0.079 0.057 4 2331 18909 57144 19603 1983 4
24 0.061 0.044 12 2367 18823 57257 19453 2057 8
25 0.046 0.033 11 2436 18703 57319 19415 2085 7
26 0.034 0.025 13 2374 18857 57236 19355 2133 7
27 0.025 0.018 7 2349 18949 57135 19407 2121 6
28 0.018 0.013 7 2381 18885 57231 19277 2186 6
29 0.013 0.010 8 2378 18944 57065 19439 2130 8
30 0.010 0.007 11 2290 19027 57155 19342 2141 5
31 0.007 0.005 10 2295 19083 57029 19411 2135 7

Table 2: Approximations to H by considering sequences of N symbols.
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intervals (e.g., sequences like 1011 or 0111), and state C representing a sequence
in which the number of zeros is greater than the number of gram intervals (e.g.,
sequences like 1211 or 1121). It is known that the sequences of the Riemann
zeta zeros are almost always in state A. Transitions from state A to state B,
for example, would be accompanied by the emission of a 0 symbol, e.g. 1111
would transition to 11110 when the succeeding gram interval contains no zeros.

If Pi denotes the probability of being in a state i, and pi(j) denotes the
probability of producing the next symbol j when in state i, then the entropy is
defined as

H =
∑
i

Pipi(j) log(pi(j)). (7)

We make of the following theorem from Shannon to estimate the entropy.

Theorem 1. Let p(Bi, Sj) be the probability of sequence Bi followed by symbol
Sj. Let pBi

(Sj) = p(Bi, Sj)/P (Bi) be the conditional probability of Sj after Bi.
Let

FN = −
∑
i,j

p(Bi, Sj) log(pBi
(Sj)). (8)

where the sum is over all blocks Bi of N−1 symbols and over all symbols. Then
FN is a monotonic decreasing function of N , and LimN→∞FN = H.

A series of approximations to H can be obtained by considering the statis-
tical structure of the sequences extending over 1, 2, ..., N symbols. If there are
no statistical influences extending over more than N symbols, then FN = H.
The ratio of the entropy of a source to the maximum it could have while still
restricted to the same symbols is called its relative entropy.

For the sequence n1n2...nk (where ni is the number of zeros in Gram interval
i and k is the length of the sequence, i.e., the number of Gram intervals), we
have

∑
ni = k. We denote the excess zeros in a sequence of length k as

∑
ni−k.

We collected statistics on a sample of 100000 zeros at t = 1026 [25]. Table 2
shows the FN for N from 1 to 31, as well as the distribution of the sequences
classified by the excess zeros. We see that the entropy is very low, and the
structure extends quite far out. Matiyasevich [26] has also found a remarkable
ability to predict new zeros using the preceding zeros. This lends credence to
the presence of high structure in the sequence of zeros.

4 Conclusions

We calculated the entropy of the sequence of Riemann zeta zeros. We find
that the entropy is very low. This provides a quantitative measure of the large
amount of structure present in the sequence of zeros. The presence of structure
is encouraging for attempts to predict the position of the zeros using machine
learning techniques.
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