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1. Introduction

Spectral methods are classical techniques to resolve theoretically and numerically differen-
tial equations, partial differential equations and integral equations. These methods appear
competitive with finite differences and finite element methods. Moreover, it is possible to ver-
ify a solution of these problems easily by these methods. Physically, they are based on quest
of a solution as well-known charges series. Test functions in the case of spectral methods are
infinitely differentiable functions. They appear as tensorial products of proper functions. The
choice of test functions arrange according to three spectral schemes: Galerkin, collocation and
tau.

Galerkin approach consists to replace test functions space by a finite dimensional linear
subspace VN (Ω). Thus approach solution is in the form

uN =
N∑
n=0

anϕn

where an are reals and VN = Span {ϕ0, ϕ1, ..., ϕN}.
A most disadvantage of this approach requires integral calculus, which is not always easy

to do and at the same time very expensive.
Hence idea was then to introduce collocation approach. This approach restates again on

variational formulation but computing integrals by adapted quadrature formulae. Collocation
approach has been used first by Slater in 1934 and by Kantorovic in 1934 in some specific
applications ([2]).

In 1937, Frazer, Jones and Skan evolved this approach as a global approach to resolve
ordinary differential equations ([2]). This approach is particularly attractive because it is
easy to be applied to nonlinear problems.

Tau approach has been discovered by Lanczos in 1938 ([5]). An approach solution is given
by

uN =

N+k∑
n=0

anϕn,

where k is the number of independent constraints of the form BuN = 0 and B is a linear
differential operator. An important difference between tau approach and Galerkin approach
is in the first, test functions do not verify boundary conditions.
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Let Ω be a bounded open set of Rd (d = 1, 2, 3) and of regular boundary Fr(Ω). Consider
the following problem

(P0)

 −∆u = f in Ω

u = 0 on Fr(Ω).

In this work, we study a Dirichlet problem for harmonic operator. Some theoretic spectral
approaches are given. Numerical solutions and illustrations are established to prove our
theoretic study.

To study a problem (P0), we shall require some definitions and preliminary results.

2. Generalities

Let V be a real Hilbert space equipped with a scalar product (., .) and associated norm

‖.‖V . Denote V
′

a dual of Hilbert space V .

Definition 1. Let a(., .) be a bilinear form from V × V into R. We say that a(., .) is
(1) continuous if there exists a constant c > 0 such that

|a(u, v)| ≤ c ‖u‖V ‖v‖V , ∀u, v ∈ V ;

(2) V -elliptic if there exists an α > 0 such that

|a(v, v)| ≥ α ‖v‖2V , ∀v ∈ V.

Lemma 1. (Lax-Milgram) Let us given
1) a Hilbert space V equipped with the norm ‖.‖V ;
2) a continuous bilinear form a(., .) on V × V and verifies a V -ellipticity condition:

∃α > 0, a(v, v) ≥ α ‖v‖2V , ∀v ∈ V ;

3) a continuous linear form l(.) on V .
Then a problem

(P1)

 Find u ∈ V such that

a(u, v) = l(v), ∀v ∈ V
has one and only one solution.

Definition 2. Define

• C∞0 (Ω) : space of infinitely differentiable functions with compact support in Ω, namely

C∞0 (Ω) := {ϕ : ϕ ∈ C∞(Ω), suppϕ ⊂ Ω} = D(Ω);

• D(Ω) : restrictions space to Ω of infinitely differentiable functions with compact sup-
port in Rd;
• D

′
(Ω) : distributions space in Ω as a dual space of C∞0 (Ω), namely, continuous linear

forms space on D(Ω).

Definition 3. We call Hm(Ω) Sobolev space of functions whose generalized derivatives up to
order m ∈ N belong to L2(Ω), namely

Hm(Ω) :=
{
v : v ∈ L2(Ω), ∂αv ∈ L2(Ω); |α| ≤ m

}
.

We equip this space with the following scalar product:

(u, v)Hm(Ω) =

∫
Ω

∑
|α|≤m

(∂αu)(∂αv)dx

and associated norm

‖u‖Hm(Ω) := (u, u)
1
2

Hm(Ω).

Denote Hm
0 (Ω) a closure in Hm(Ω) of D(Ω) in comparison with a norm ‖u‖Hm(Ω) and H−m(Ω)

the dual of Hm
0 (Ω).

A characterization of spaces Hm
0 (Ω) is made by trace theorems.
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Definition 4. Let v ∈ D(Ω) and let η be outward normal to Fr(Ω). We call trace up to
order j (j ∈ N) of u on the boundary Fr(Ω), a linear mapping γj defined by

γj : v −→ γjv

γjv = ∂ju
∂ηj |Fr(Ω)

where γ0v = v|Fr(Ω) and ∂ju
∂ηj

is a normal derivative up to order j on Fr(Ω) facing outward of

Fr(Ω).

Theorem 1. ([4])Let m be a positive integer. Then a mapping −→γ m : v −→ −→γ mv =
(γ0v, γ1v, ..., γm−1v) defined on D(Ω) into (D(Fr(Ω)))m is prolonged by density to a con-

tinuous surjective linear mapping from Hm(Ω) into
m−1∏
j=0

Hm−j− 1
2 (Fr(Ω)).

Thus Hm
0 (Ω) is characterized by

Hm
0 (Ω) =

{
v ∈ Hm(Ω) : γjv =

∂ju

∂ηj
= 0 on Fr(Ω), j = 0, 1, ...,m− 1

}
,

where γ0v = v|Fr(Ω).
As a consequence, we have the following result:

Corollary 1. For m ≥ k, one has

D(Ω) ⊂ Hm
0 (Ω) ⊂ Hk

0 (Ω) ⊂ L2(Ω) ⊂ H−k0 (Ω) ⊂ H−m0 (Ω) ⊂ D
′
(Ω)

with continuous and density injections.

Remark 1. The mapping |.|Hm(Ω) defined in Hm(Ω) by

|u|Hm(Ω) = (

∫
Ω

∑
|α|=m

|∂αu|2 dx)
1
2

is a seminorm in Hm(Ω).

Moreover we have the following theorem:

Theorem 2. A seminorm |.|Hm(Ω) is a norm in Hm
0 (Ω) equivalent to an usual norm induced

by those of Hm(Ω).

We can define, also Sobolev spaces using Fourier transform. Indeed, u ∈ Hm(Rd) is equiv-
alent to say Dαu ∈ L2(Rd), ∀ |α| ≤ m and consequently F(Dαu) ∈ L2(Rd), where F(.) is
Fourier transform. This is comes to say that

|ξ|α |F(u)| ∈ L2(Rd) or (1 + |ξ|2)
m
2 |F(u)| ∈ L2(Rd).

So, we will have

‖u‖2Hm(Rd) =
∑
|α|≤m

‖Dαu‖2L2(Rd) =
∑
|α|≤m

‖F(Dαu)‖2L2(Rd)

=
∑
|α|≤m

‖|ξ|α F(u)‖2L2(Rd) ≤
∫
Rd

(1 + |ξ|2)m |F(u)|2 dξ.

The second inequality is obvious.
This last defines an equivalent norm to induced norm by the space Hm(Rd). By interpola-

tion, we can introduce the space Hs(Rd) for all real s.

Definition 5. Let s ≥ 0 be real, denote Hs(Rd) the following Sobolev space:

Hs(Rd) :=
{
u ∈ L2(Rd) : (1 + |ξ|2)

s
2 |F(u)| ∈ L2(Rd)

}



434 L. BENAISSA AND N. DAILI

equipped with the norm

‖u‖Hs(Rd) = (

∫
Rd

(1 + |ξ|2)s |F(u)|2 dξ)
1
2 .

In this work, we will also need the following Sobolev spaces:

Hs(Ω) :=
{
u|Ω : u ∈ Hs(Rd), s ∈ R

}
and

Hs(Fr(Ω)) :=



{
u|Fr(Ω) : u ∈ Hs+ 1

2 (Rd)
}

if s > 0,

L2(Fr(Ω)) if s = 0,

(H−s(Fr(Ω)))
′

if s < 0.

Lemma 2. (Poincaré-Friedrichs inequality)([7]) There exists a constant c > 0 dependent of
Ω such that

‖v‖L2(Ω) ≤ c(Ω) ‖v‖Hm
0 (Ω) , ∀v ∈ H

m
0 (Ω).

Proposition 1. a) All sufficiently regular solution u of problem (P0) is a solution of problem
(P1);

b) a solution in H1
0 (Ω) of problem (P1) is a weak solution of problem (P0).

Denote I the open interval ]−1,+1[ in R and Ω the product ]−1,+1[d in Rd.

Definition 6. We call orthogonal system in L2(I), all family (ϕi)i∈J (J is finite or countable
set) of non zeros elements of L2(I) and two by two orthogonal. Namely

+1∫
−1

ϕi(x)ϕj(x)dx =

 c if i = j, with c > 0,

0 if i 6= j.

Definition 7. A system (ϕi)i∈J is said linearly independent if all finite subset of this system
is linearly independent.

Proposition 2. If elements ϕ1, ϕ2, ..., ϕN form an orthogonal system, they are inevitably
linearly independents.

Definition 8. We call Legendre family of polynomials, a family (Ln)n∈N of polynomials in I
two by two orthogonal in L2(I).

Theorem 3. ([9]) All function u of L2(Ω) can be approximate by polynomials serie which
converges uniformly to u.

Proposition 3. a) For all integer n ≥ 0, a polynomial Ln verifies the differential equation

d

dx
((1− x2)L

′
n) + n(n+ 1)Ln = 0;

b) for all integer n ≥ 0, a polynomial Ln is given by

Ln(x) =
(−1)n

2nn!

dn

dxn
((1− x2)n),

called Rodrigues formula.

Corollary 2. a) For all integers m ≥ 0 and n ≥ 0, one has

+1∫
−1

L
′
m(x)L

′
n(x)(1− x2)dx = n(n+ 1)

+1∫
−1

Lm(x)Ln(x)dx;
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b) for all integer n ≥ 0, a polynomial Ln verifies

+1∫
−1

L2
n(x)dx = 2

2n+1 , Ln(±1) = (±1)n,

L
′
n(±1) = (±1)n−1 1

2n(n+ 1);

c) Legendre polynomials Ln form a system of orthogonal polynomials in L2(I). They verify
relations:

L0(x) = 1, L1(x) = x,

(n+ 1)Ln+1(x)− (2n+ 1)xLn(x) + nLn−1(x) = 0

and
(x2 − 1)L

′
n(x) = nxLn−1(x)− nLn−1(x)

= (n+ 1)Ln+1(x)− (n+ 1)xLn(x),

(1− x2)L
′′
n(x)− 2xL

′
n(x) + n(n+ 1)Ln(x) = 0;

d) for all integer n ≥ 0, one has an integral equation:

x∫
−1

Ln(t)dt =
1

2n+ 1
(Ln+1(x)− Ln−1(x)).

3. Main Results

3.1. Approximation of the Problem (P0) by Spectral Method.
Consider the following problem:

(P0)

 −∆u = f in Ω

u = 0 on Fr(Ω).

We introduce a variational formulation of (P0) as follows:

(P1)

 Find u ∈ V = H1
0 (Ω) such that

a(u, v) = l(v), ∀v ∈ V,
where

a(u, v) =

∫
Ω

∇u∇vdx and l(v) =

∫
Ω

fvdx.

Galerkin method consists to replace test functions space by a finite dimensional linear
subspace V d

N (Ω), thus Galerkin approximatation of (P1) comes down to study the following
problem:

(PN )

 Find uN ∈ V d
N (Ω) such that

a(uN , v) = l(v), ∀v ∈ V d
N (Ω).

Put

V d
N (Ω) = Span

{
LK , K ∈ Nd, |K|∞ ≤ N

}
,

where

LK(x) =

d∏
j=1

Lkj (xj), x = (x1, ..., xd), |K|∞ = max
1≤j≤d

(|kj |).

Denote PN the orthogonal projection operator of L2(Ω) in V d
N (Ω). This means that

(u− PNu, φN )L2(Ω) = 0, ∀φN ∈ V d
N (Ω),
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where

(u, v)L2(Ω) =

∫
Ω

uvdx.

Theorem 4. ([3]) For all real s ≥ 0, there exists a positive constant c independent of N such
that for all function u ∈ Hs(Ω), one has

‖u− PNu‖L2(Ω) ≤ cN
−s ‖u‖Hs(Ω) .

Proof. • If s is even, i.e., s = 2p, p ≥ 1, we define an operator

Aj = Dj(1− x2
j )Dj , Dj =

∂

∂xj
.

Consider sets

K(N) =
{
K ∈ Nd : |K|∞ > N

}
; K(1)(N) = {K ∈ K(N) : k1 > N}

and

K(j)(N) =

{
K ∈ K(N) \ ∪

l<j
K(l)(N) : kj > N

}
, j = 2, ..., d.

If

u =
∑
K∈Nd

ûKLK

then,

ûK =
1

‖LK‖2L2(Ω)

∫
Ω

u(x)LK(x)dx =
1

‖LK‖2L2(Ω)

∫
Ω′

LK′ (x
′
)dx

′
+1∫
−1

u(x1, x
′
)Lk1(x1)dx1

where x
′

= (x2, ..., xd), K
′

= (k2, ..., kd) and Ω
′

= ]−1,+1[d−1. But

Lk1(x1) = − 1

k1(k1 + 1)

d

dx1
((1− x2

1)L
′
k1

(x1))

then

ûK = − 1
‖LK‖2L2(Ω)

1
k1(k1+1)

∫
Ω′
LK′ (x

′
)dx

′
+1∫
−1

u(x1, x
′
) d
dx1

((1− x2
1)L

′
k1

(x1)dx1

= − 1
‖LK‖2L2(Ω)

1
k1(k1+1)

∫
Ω′
LK′ (x

′
)dx

′
+1∫
−1

u(x1, x
′
)A1Lk1(x1))dx1

and from twice integration by parts we obtain

ûK = − 1
‖LK‖2L2(Ω)

1
k1(k1+1)

∫
Ω′
LK′ (x

′
)dx

′
+1∫
−1

A1u(x1, x
′
)Lk1(x1)dx1

= − 1
‖LK‖2L2(Ω)

1
k1(k1+1)

∫
Ω

A1u(x)LK(x)dx.

Iterating p-time this result, we obtain

ûK =
1

‖LK‖2L2(Ω)

(− 1

k1(k1 + 1)
)p
∫
Ω

Ap1u(x)LK(x)dx.

For 1 ≤ j ≤ d one has

ûK =
1

‖LK‖2L2(Ω)

(− 1

kj(kj + 1)
)p
∫
Ω

Apju(x)LK(x)dx
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and

|ûK |2 =
1

‖LK‖2L2(Ω)

(
1

kj(kj + 1)
)2p(

∫
Ω

Apju(x)LK(x)dx

‖LK‖2L2(Ω)

)2

implies

∑
K∈K(j)(N)

|ûK |2 ‖LK‖2L2(Ω) = (
1

kj(kj + 1)
)2p

∑
K∈K(j)(N)

(
∫
Ω

Apju(x)LK(x)dx)2

‖LK‖2L2(Ω)

.

Lower kj(kj + 1) by N2, we obtain

∑
K∈K(j)(N)

|ûK |2 ‖LK‖2L2(Ω) ≤ N−4p
∑

K∈K(j)(N)

∣∣∣∣∣∫ΩApju(x)LK(x)dx

∣∣∣∣∣
2

‖LK‖2L2(Ω)

≤ N−4p
∑

K∈K(j)(N)

∥∥∥Apju∥∥∥2

L2(Ω)
≤ cN−4p

∥∥∥Apju∥∥∥2

L2(Ω)
.

By ([1]) operator Apj is continuous from H2p(Ω) into L2(Ω), hence one has∑
K∈K(j)(N)

|ûK |2 ‖LK‖2L2(Ω) ≤ N
−4p ‖u‖2H2p(Ω) .

But

‖u− PNu‖2L2(Ω) =
d∑
j=1

∑
K∈K(j)(N)

|ûK |2 ‖LK‖2L2(Ω)

therefore

‖u− PNu‖2L2(Ω) ≤ cN
−2p ‖u‖H2p(Ω) = cN−s ‖u‖Hs(Ω) .

• If s is odd, i.e., s = 2p+ 1 :
in the same way for s odd, by interpolation we obtain the result.

�

Proposition 4. ([5]) Let

u(xi) =

∞∑
n=0

ûnLn(xi)

then

u
′
(xi) =

∞∑
n=1

ûnL
′
n(xi) =

∞∑
n=0

ẑnLn(xi),

where

ẑn = (2n+ 1)
∞∑

p=n+1, p+n odd

ûp.

Lemma 3. Let u ∈ H1(Ω) and D1u =
∑

K∈Nd
ẑKLK . Then

PND1u−D1PNu =


Z(N)L

(N)
0 + Z(N+1)L

(N)
1 if N is even

Z(N)L
(N)
1 + Z(N+1)L

(N)
0 if N is odd,

where

Z(N) =
∑

K′∈Nd−1, |K′ |∞≤N

∞∑
m=N+1, m+N odd

û(m,K′ )LK′

Z(N+1) =
∑

K′∈Nd−1, |K′ |∞≤N

∞∑
m=N+2, m+N+1 odd

û(m,K′ )LK′
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and

L
(N)
0 =

N∑
l1=0, l1 even

(2l1 + 1)Ll1 , L
(N)
1 =

N∑
l1=1, l1 odd

(2l1 + 1)Ll1 .

Proof. By Proposition 4 one has

ẑK = (2k1 + 1)
∞∑

m=k1+1, m+k1 odd

û(m,K
′
)

therefore, one has

D1u =
∑
K∈Nd

((2k1 + 1)

∞∑
m=k1+1, m+k1 odd

û(m,K′ ))LK

and

PND1u =
∑

K′∈Nd−1, |K′ |∞≤N
LK′ (

N∑
l1=0

(2l1 + 1)(

∞∑
k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1)

D1PNu =
∑

K′∈Nd−1, |K′ |∞≤N
LK′ (

N−1∑
l1=0

(2l1 + 1)(
N∑

k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1).

Then

PND1u−D1PNu =
∑

K′∈Nd−1, |K′ |∞≤N
LK′ (

N∑
l1=0

(2l1 + 1)(
∞∑

k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1)

−
∑

K′∈Nd−1, |K′ |∞≤N
LK′ (

N−1∑
l1=0

(2l1 + 1)(
N∑

k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1).

But

N∑
l1=0

=
N∑

l1=0, l1 even

+
N∑

l1=1, l1 odd

.

So

PND1u−D1PNu =
∑

K′∈Nd−1, |K′ |∞≤N
LK′ ((

N∑
l1=0, l1 even

(2l1 + 1)(
∞∑

k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1)+

∑
K′∈Nd−1, |K′ |∞≤N

LK′ ((
N∑

l1=1, l1 odd

(2l1 + 1)(
∞∑

k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1)−

∑
K′∈Nd−1, |K′ |∞≤N

LK′ ((
N−1∑

l1=0, l1 even

(2l1 + 1)(
N∑

k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1)−

∑
K′∈Nd−1, |K′ |∞≤N

LK′ ((
N−1∑

l1=1, l1 odd

(2l1 + 1)(
N∑

k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1).
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If N is even, one has

PND1u−D1PNu =
∑

K
′∈Nd−1, |K′ |∞≤N

LK′ ((
N∑

l1=0, l1 even

(2l1 + 1)(
N∑

k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1)+

∑
K′∈Nd−1, |K′ |∞≤N

LK′ ((
N∑

l1=0, l1 odd

(2l1 + 1)(
∞∑

k1=N+1, k1+N odd

û(k1,K
′ ))Ll1)+

∑
K′∈Nd−1, |K′ |∞≤N

LK′ ((
N∑

l1=0, l1 odd

(2l1 + 1)(
N+1∑

k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1)+

∑
K′∈Nd−1, |K′ |∞≤N

LK′ ((
N∑

l1=0, l1 odd

(2l1 + 1)(
∞∑

k1=N+2, k1+N+1 odd

û(k1,K
′ ))Ll1)−

∑
K′∈Nd−1, |K′ |∞≤N

LK′ ((
N−1∑

l1=0, l1 even

(2l1 + 1)(
N∑

k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1)−

∑
K′∈Nd−1, |K′ |∞≤N

LK′ ((
N−1∑

l1=1, l1 odd

(2l1 + 1)(
N∑

k1=l1+1, k1+l1 odd

û(k1,K
′ ))Ll1).

Therefore

PND1u−D1PNu =
∑

K′∈Nd−1, |K′ |∞≤N
LK′ ((

N∑
l1=0, l1 even

(2l1 + 1)(
∞∑

k1=N+1, k1+N odd

û(k1,K
′ ))Ll1)+

∑
K′∈Nd−1, |K′ |∞≤N

LK′ ((
N∑

l1=1, l1 odd

(2l1 + 1)(
∞∑

k1=N+2, k1+N+1 odd

û(k1,K
′ ))Ll1)

= Z(N)L
(N)
0 + Z(N+1)L

(N)
1 .

In the same way for N odd. �

Theorem 5. ([9]) For all reals 0 ≤ ν ≤ µ one has

‖u‖Hµ(Ω) ≤ cN
2(µ−ν) ‖u‖Hν(Ω) , ∀u ∈ V

d
N (Ω).

Lemma 4. For all reals s and t, 0 ≤ s ≤ t − 1, there exists a constant c > 0 such that for
any j = 1, ..., d, one has

‖(PNDj −DjPN )u‖Hs(Ω) ≤ cN
2s−t+ 3

2 ‖u‖Ht(Ω) , ∀u ∈ H
t(Ω).

Proof. For j = 1, we remark that Z(N), Z(N+1) dependent from x
′

= (x2, ..., xd) and Z(N), Z(N+1) ∈
V d−1
N (Ω); L

(N)
0 , L

(N)
1 dependent from x1, and orthogonals in L2(I).

• For N even, one has

‖(PND1 −D1PN )u‖2L2(Ω) = (Z(N)L
(N)
0 + Z(N+1)L

(N)
1 , Z(N)L

(N)
0 + Z(N+1)L

(N)
1 )

= (Z(N)L
(N)
0 , Z(N)L

(N)
0 ) + 2(Z(N)L

(N)
0 , Z(N+1)L

(N)
1 ) + (Z(N+1)L

(N)
1 , Z(N+1)L

(N)
1 )

=
∥∥Z(N)

∥∥2

L2(Ω)

∥∥∥L(N)
0

∥∥∥2

L2(Ω)
+
∥∥Z(N+1)

∥∥2

L2(Ω)

∥∥∥L(N)
1

∥∥∥2

L2(Ω)
.



440 L. BENAISSA AND N. DAILI

And

∥∥∥Z(N)
∥∥∥2

L2(Ω)
=

∥∥∥∥∥∥∥
∑

K′∈Nd−1, |K′ |∞≤N

∞∑
m=N+1, m+N odd

û(m,K′ ))LK′

∥∥∥∥∥∥∥
2

L2(Ω)

≤ ‖D1u− PN−1D1u‖2L2(Ω) .

By Theorem 4, one has∥∥∥Z(N)
∥∥∥2

L2(Ω)
≤ cN2(1−t) ‖D1u‖2Ht−1(Ω) ≤ cN

2(1−t) ‖u‖2Ht(Ω)

and

∥∥Z(N+1)
∥∥2

L2(Ω)
=

∥∥∥∥∥∥ ∑
K′∈Nd−1, |K′ |∞≤N

∞∑
m=N+2, m+N+1 odd

û(m,K′ )LK′

∥∥∥∥∥∥
2

L2(Ω)

≤ c ‖D1u− PND1u‖2L2(Ω) ≤ cN2(1−t) ‖D1u‖2Ht−1(Ω) ≤ cN2(1−t) ‖u‖2Ht(Ω) ,

and ∥∥∥L(N)
0

∥∥∥2

L2(Ω)
=

∥∥∥∥∥∥
N∑

l1=0, l1 odd

(2l1 + 1)Ll1

∥∥∥∥∥∥
2

L2(Ω)

.

Bounded (2l1 + 1) by (2N + 1), hence
∥∥∥L(N)

0

∥∥∥2

L2(Ω)
≤ cN. In the same way for∥∥∥L(N)

1

∥∥∥2

L2(Ω)
≤ cN , therefore

‖(PND1 −D1PN )u‖2L2(Ω) ≤ cNN
2(1−t) ‖u‖2Ht(Ω) = cN3−2t ‖u‖2Ht(Ω) .

Using Theorem 5, one has

‖(PND1 −D1PN )u‖Hs(Ω) ≤ cN2s ‖(PND1 −D1PN )u‖L2(Ω)

≤ cN2sN
3
2
−t ‖u‖Ht(Ω) = cN2s−t+ 3

2 ‖u‖Ht(Ω) .

• In the same way for N odd.

�

Theorem 6. ([3]) For all reals s, t, 0 ≤ s ≤ t, there exists a constant c > 0 such that

‖u− PNu‖Hs(Ω) ≤ cN
e(s,t) ‖u‖Ht(Ω) , ∀u ∈ H

t(Ω),

where

e(s, t) =

 2s− t− 1
2 if s ≥ 1,

3
2s− t if 0 ≤ s ≤ 1.

Notation: Denote P 1,0
N the orthogonal projection operator from H1

0 (Ω) on V d,0
N (Ω) with

V d,0
N (Ω) =

{
v ∈ V d

N (Ω); v = 0 on Fr(Ω)
}

.

This means that
(u− P 1,0

N u, φN )1,0,Ω = 0, ∀φN ∈ V d,0
N (Ω),

where

(u, v)1,0,Ω =

∫
Ω

∇u∇vdx.

Theorem 7. ([1]) For all integer m ≥ 1, there exists a constant c > 0 dependent of m such
that for all function u ∈ Hm(Ω) ∩H1

0 (Ω), one has∣∣∣u− P 1,0
N u

∣∣∣
H1(Ω)

≤ cN1−m ‖u‖Hm(Ω) .
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Theorem 8. ([1]) For all integer m ≥ 1, there exists a constant c > 0 dependent of m such
that for all function u ∈ Hm(Ω) ∩H1

0 (Ω), one has∥∥∥u− P 1,0
N u

∥∥∥
L2(Ω)

≤ cN−m ‖u‖Hm(Ω) .

Theorem 9. ([6]) For all reals ν > 1, one has∣∣∣u− P 1,0
N u

∣∣∣
Hµ(Ω)

≤ cNµ−ν ‖u‖Hν(Ω) , 0 < µ < 1.

Proof. By interpolation between Theorem 7 and Theorem 8. �

Theorem 10. For all integer m ≥ 1 and for all function u ∈ Hm(Ω) ∩H1
0 (Ω), one has

|u− uN |H1(Ω) +N ‖u− uN‖L2(Ω) ≤ cN
1−m ‖u‖Hm(Ω) .

3.2. Numerical Solutions.

3.2.1. Choice of Space V d,0
N (Ω).

Galerkin approximation method of (P0) gives

(PN )

 Find uN ∈ V d,0
N (Ω) such that

(∇uN , ∇vN ) = (f, vN ), ∀vN ∈ V d,0
N (Ω),

where

(u, v) =

∫
Ω

uvdx

is a scalar product in L2(Ω).
Galerkin approach consists to replace test functions space by high degree polynomials space.

A most disadvantage of this approach requires integral calculus, which is not always easy to
do and at the same time very expensive.

The effectiveness of numerical method which has been given in the abstract form will be
subordinate to:

(i) the way from which space V d,0
N (Ω) approaches the space V ;

(ii) steepness and simpleness calculus of coefficients aij and Fj ;
(iii) steepness to resolve a linear system Au = F .

To satisfy the 1st criterion (i), we will consider the space V d,0
N (Ω) of enough large dimension.

To satisfy the 2nd and 3rd criteria (ii) and (iii), it will required obtain one sufficiently deep
matrix A such that the linear system Au = F does not enough at cost (in time and required
space machine), and such that there are not coefficients aij to compute.

What is to be done? Select a basis of V d,0
N (Ω) such that a linear system to resolve being

easy and possible. To answer to this question, we need the following lemma:

Lemma 5. ([8]) Put

ck = 1√
4k+6

, φk(x) = ck(Lk(x)− Lk+2(x))

ajk = (φ
′
k(x), φ

′
j(x)), bjk = (φk(x), φj(x)).

Then

ajk =

 1 if k = j

0 if k 6= j,

bkj = bjk =


ckcj(

2
2j+1 + 2

2j+5), if k = j,

−ckcj if k = j + 2,

0 else,
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and
V 1,0
N (I) = Span {φ0(x), φ1(x), ..., φN−2(x)} .

Distinguish three cases:

• Case 1: d=1, in this case the problem (PN ) amounts to

(u
′
N , φ

′
k(x)) = (f, φk(x)), k = 0, 1, ..., N − 2.

Denote

fk = (f, φk(x)), F = (f0, f1, ..., fN−2)t, uN =
N−2∑
k=0

ukφk, u = (u0, u1, ..., uN−2)t,

hence, one has uk = fk.
• Case 2: d=2, in this case, one has

V 2,0
N (Ω) = Span {φi(x)φj(y), i, j = 0, 1, ..., N − 2} .

Denote

uN =

N−2∑
k,j=0

uk,jφk(x)φj(y), fkj = (f, φk(x)φj(y))

and

U = (ukj)k,j=0,...,N−2, F = (fkj)k,j=0,1,...,N−2, B = (bkj)k,j=0,1,...,N−2.

Put
v = φl(x)φm(y), l,m = 0, 1, ..., N − 2,

therefore the problem (PN ) amounts to

(1) UB +BU = F.

Now, let Λ be a diagonal matrix consists of eigenvalues of B. Let E be an orthonor-
mal matrix consists of eigenvectors of B such that EtBE = Λ.

Put U = EV , where V is a variable matrix, therefore equation (1) amounts to

EV B + EΛV = F.

Multiplying both two sides by Et and using a relation EtE = EEt = I, then

(2) BV t + V tΛ = (EtF )t = Gt

where G = EtF . Now let,

vp = (vp0 , vp1 , ..., vpN−2)t and gp = (gp0 , gp1 , ..., gpN−2)t, p = 0, 1, ..., N − 2,

hence equation (2) amounts to

(3) (B + λpI)vp = gp, p = 0, 1, ..., N − 2,

where λp are eigenvalues of a matrix B.
Therefore, to resolve (P0) in the case d = 2, we should to:
(i) compute eigenvalues and eigenvectors of a matrix B;
(ii) compute G = EtF ;
(iii) resolve system (3) to obtain V , and put U = EV .

• Case 3: d=3, in this case, one has

V 3,0
N (Ω) = Span {φi(x)φj(y)φk(z), i, j, k = 0, 1, ..., N − 2} .

Denote

uN =

N−2∑
n,m,l=0

un,m,lφn(x)φm(y)φl(z), fijk = (f, φi(x)φj(y)φk(z))

and

U = (ukj)k,j=0,...,N−2, F = (fkj)k,j=0,1,...,N−2, B = (bkj)k,j=0,1,...,N−2.
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Put
v = φi(x)φj(y)φk(z), i, j, k = 0, 1, ..., N − 2,

hence the problem (PN ) amounts to

(4) uimlbjmbkl + binunjlbkl + binunmkbjm = fijk, i, j, k = 0, 1, ..., N − 2

By definition of E and Λ, one has

binenq = λqeiq, eiqeip = δqp.

Put unml = enqvqml, hence (4) can be written in the form

eiqvqmlbjmbkl + λqeiqvqjlbkl + λqeiqvnmkbjm = fijk, i, j, k = 0, 1, ..., N − 2

Multiplying both two sides by eip, we obtain

(5) upmlbjmbkl + λp(vpjlbkl + vpmkbjm) = gpjk, p, j, k = 0, 1, ..., N − 2

Let V p = (vpml)0≤m,l≤N−2 and Gp = (gpml)0≤m,l≤N−2, hence a system (5) can be
written in the form

(6) BV pB + λp(V
pB +BV p) = Gp, p = 0, 1, ..., N − 2.

Therefore, to resolve (P0) in the case d = 3, we should to:
(i) compute eigenvalues and eigenvectors of the matrix B;
(ii) compute gpjk = eipfijk;
(iii) resolve system (6) to obtain V p, and put unml = emlvqml.

3.2.2. Numerical Results.

Example 1. Consider the following problem −∆u = 16π2 sin(4πx) in Ω = ]−1,+1[

u = 0 on Fr(Ω).

This problem has one and only one solution: u(x) = sin(4πx)

Figure 1. Exact solution



444 L. BENAISSA AND N. DAILI

Figure 2. Comparison between exact and approach solutions for N = 11.

Figure 3. Comparison between exact and approach solutions for N = 13.
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Figure 4. Comparison between exact and approach solutions for N = 16.

Example 2. Consider the following problem −∆u = 8π2 sin(2πx) sin(2πy) in Ω = ]−1,+1[2

u = 0 on Fr(Ω).

This problem has one and only one solution: u(x, y) = sin(2πx)sin(2πy).

Figure 5. Exact solution
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Figure 6. Exact solution (with line of contour)

Figure 7. Approach solution for N=7
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Figure 8. Approach solution for N=9

Figure 9. Approach solution for N=11
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Figure 10. Approach solution for N=13

4. Conclusions

Numerical tests prove the best quality of these basis functions. The choice is very efficient
in practice. Further, associated matrices to this choice are positive definite, symmetric and
sufficiently deep. Numerical tests prove our good choice and the convergence.
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[4] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques,
Vol. 1 et 3, Masson, Paris, 1987.

[5] D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods, Theory and Application, SIAM
Publications, Philadelphia, 1977.

[6] Y. Maday and A. Quarteroni, Legendre and Chebyshev Spectral approximations of Burgers Equations,
Numer. Math. Vol. 37 (1981), pp. 321-332.
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