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Abstract

This paper is concerned with the existence of mild solutions and the approximate
controllability for a class of fractional neutral stochastic integro-differential equations with
infinite delay in Hilbert spaces. Firstly, a sufficient condition for the existence is obtained
under non-Lipschitz conditions by means of Sadovskii’s fixed point theorem. Secondly,
the approximate controllability of nonlinear fractional stochastic system is discussed,
under the assumption that the corresponding linear system is approximately controllable.
Finally, an example is given to illustrate the theory.
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1 Introduction

The subject of fractional calculus and its applications has gained a lot of importance during
the past three decades, mainly because it has become a powerful tool in modeling several
complex phenomena in numerous seemingly diverse and widespread fields of science and
engineering [7, 10, 15]. Recently, there has been a significant development in the existence
and uniqueness of solutions of initial and boundary value problem for fractional differential
equations [24]. Neutral differential equations arise in many areas of applied mathematics and
for this reason these equations have received much attention in the last decades. But the
literature related to neutral fractional differential equations is very limited and we refer the
reader to [23].

On the other hand, the study of controllability plays an important role in the control
theory and engineering [2, 11]. In recent years, various controllability problems for different
kinds of dynamical systems have been studied in many publications [1, 3, 5, 6]. From the
mathematical point of view, the problems of exact and approximate controllability are to be
distinguished. However, the concept of exact controllability is usually too strong and has
limited applicability.
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Approximate controllability is a weaker concept than complete controllability and it is
completely adequate in applications [4, 12]. In particular, the fixed point techniques are
widely used in studying the controllability problems for nonlinear control systems. Klamka [8]
studied the practical applicability of the fixed point theorem in solving various controllability
problems for different types of dynamical control systems. Wang [22] derived a set of sufficient
conditions for the approximate controllability of differential equations with multiple delays
by implementing some natural conditions such as growth conditions for the nonlinear term
and compactness of the semigroup. Sakthivel and Anandhi [18] investigated the problem
of approximate controllability for a class of nonlinear impulsive differential equations with
state-dependent delay by using semigroup theory and fixed point technique.

Sakthivel et al. [19] studied the approximate controllability of nonlinear deterministic and
stochastic evolution systems with unbounded delay in abstract spaces. The same author et al.
[20] studied the approximate controllability of deterministic semilinear fractional differential
equations in Hilbert spaces. Kumar and Sukavanam [9] obtained a new set of sufficient
conditions for the approximate controllability of a class of semilinear delay control systems
of fractional order by using the contraction principle and the Schauder fixed point theorem.
More recently, Sakthivel et al. [21] derived a new set of sufficient conditions for approximate
controllability of fractional stochastic differential equations by using the Banach contraction
principale.

In this paper, we are interested in the existence of mild solutions and the approximate
controllability for a class of fractional neutral stochastic integro-differential equations with
infinite delay of the form

cDα
t [x(t) +G(t, xt)] = −Ax(t) +Bu(t) + f(t, xt)

+
∫ t
−∞ σ(t, s, xs)dw(s), t ∈ J := [a, b],

x(t) = φ(t), t ∈ (−∞, 0].

(1)

Here, x(.) takes value in a real separable Hilbert space H with inner product (., .)H and
norm ‖.‖H. The fractional derivative cDα, α ∈ (0, 1), is understood in the Caputo sense.
−A : D(−A) ⊂ H → H is the infinitesimal generator of a strongly continuous semigroup of a
bounded linear operator S(t), t ≥ 0, on H, and the control function u(.) is given in L2F (J,U)
of admissible control functions, U is a Hilbert space, B is a bounded linear operator from U
into H. Let K be another separable Hilbert space with inner product (., .)K and norm ‖.‖K.
w is a given K-valued Wiener process with a finite trace nuclear covariance operator Q ≥ 0
defined on a filtered complete probability space (Ω,F , {Ft}t≥0, IP). histories xt : Ω → Ch
defined by xt = {x(t+ θ), θ ∈ (−∞, 0]} belong to the phase space Ch which will be defined in
section 2. The initial data φ = {φ(t), t ∈ (−∞, 0]} is an F0-measurable, Ch-valued random
variable independent of w with finite second moments, and G : J ×Ch → H, f : J ×H → H,
σ : J × J × H → L02(K,H) are appropriate mappings specified later, L02(K,H) denotes the
space of all Q-HilbertSchmidt operators from K into H.

The paper is organized as follows. In section 2, we briefly present some basic notations
and preliminaries. In section 3, we give the mild solution and existence result of the system
(1) by Sadovskii’s fixed point theorem. We also study the approximate controllability of the
fractional stochastic system (1) under certain assumptions. An example is given to illustrate
our result. To avoid some lengthy calculations arising from proofs of theorems, we give an
appendix which consists of some basic estimates.
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2 Preliminaries

In this section, we shall recall some basic definitions and lemmas from fractional calculus
theory which will be used in the main results [7, 15].

Throughout this paper, (H, ‖.‖H) and (K, ‖.‖K) denote two real separable Hilbert spaces.
We denote by L(K,H) the set of all linear bounded operators from K into H equipped
with the usual operator norm ‖.‖. Let (Ω,F , {Ft}t≥0, IP) be a filtered complete probability
space satisfying the usual condition, which means that the filtration is a right continuous
increasing family and F0 contains all IP-null sets. w = (wt)t≥0 be a Q-Wiener process defined
on (Ω,F , {Ft}t≥0, IP) with the covariance operator Q such that trQ < ∞. We assume that
there exists a complete orthonormal system {ek}k≥1 in K, a bounded sequence of nonnegative
real numbers λk such that Qek = λkek, k = 1, 2, . . . and a sequence {βk}k≥1 of independent
Brownian motions such that

(w(t), e)K =
∞∑
k=1

√
λk(ek, e)Kβk(t), e ∈ K, t ∈ [0, b].

Let L02 = L2(Q1/2K,H) be the space of all HilbertSchmidt operators from Q1/2K into H with
the inner product 〈ψ, π〉L02 = tr[ψQπ?].

Let −A be the infinitesimal generator of an analytic semigroup {S(t)}t≥0 of uniformly
bounded linear operators on H. For the semigroup S(t), there is an M ≥ 1 such that
‖S(t)‖ ≤ M . Let 0 ∈ ρ(−A), the resolvent set of −A. Then, for β ∈ (0, 1], it is possible to
define the fractional power Aβ as a closed linear operator on its domain D(Aβ), being dense
in H, and we denote by Hβ the Banach space D(Aβ) endowed with the norm ‖x‖β = ‖Aβx‖,
which is equivalent to the graph norm of Aβ.

Lemma 2.1 ([14]) Suppose that the preceding conditions are satisfied.

i. if 0 < η ≤ β then the embedding Hη ⊂ Hβ is compact whenever the resolvent operator
of A is compact.

ii. For every β ∈ (0, 1], there exists a positive constant Cβ such that ‖AβS(t)‖ ≤ Cβ
tβ

, t > 0.

Assume that h : (−∞, 0]→ (0,+∞) with l =
∫ 0
−∞ h(t)dt < +∞ a continuous function.

Recall that the abstract phase space Ch is defined by

Ch =

{
ϕ : (−∞, 0]→ H, for any a > 0, (IE|ϕ(θ)|2)1/2 is bounded and measurable

function on [−a, 0] with ϕ(0) = 0 and

∫ 0

−∞
h(s) sup

s≤θ≤0
(IE|ϕ(θ)|2)1/2ds <∞

}
.

If Ch is endowed with the norm

‖ϕ‖Ch =

∫ 0

−∞
h(s) sup

s≤θ≤0
(IE|ϕ(θ)|2)1/2ds, ϕ ∈ Ch,

then (Ch, ‖.‖Ch) is a Banach space.
Let us now recall some basic definitions and results of fractional calculus. For more details

see [7].
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Definition 2.2 The fractional integral of order α with the lower limit 0 for a function f is
defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, t > 0, α > 0

provided the right-hand side is pointwise defined on [0,∞), where Γ is the gamma function.

Definition 2.3 Riemann-Liouville derivative of order α with lower limit zero for a function
f : [0,∞)→ IR can be written as

LDαf(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−nds, t > 0, n− 1 < α < n. (2)

Definition 2.4 The Caputo derivative of order α for a function f : [0,∞) → IR can be
written as

cDαf(t) = LDα

(
f(t)−

n−1∑
k=0

tk

k!
fk(0)

)
, t > 0, n− 1 < α < n. (3)

If f(t) ∈ Cn[0,∞), then

cDαf(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1fn(s)ds = In−αfn(s), t > 0, n− 1 < α < n

If f is an abstract function with values in H, then the integrals appearing in the above
definitions are taken in Bochner’s sense.

At the end of this section, we recall the fixed point theorem of Sadovskii which is used to
establish the existence of the mild solution to the fractional stochastic control system (1).

Lemma 2.5 ([16]) Let Φ be a condensing operator on a Banach space H, that is, Φ is
continuous and takes bounded sets into bounded sets, and µ(Φ(B)) ≤ µ(B) for every bounded
set B of H with µ(B) > 0. If Φ(N) ⊂ N for a convex, closed and bounded set N of H, then
Φ has a fixed point in H (where µ(.) denotes Kuratowski’s measure of noncompactness).

3 The main results

In this section, we consider the stochastic fractional control system (1). We first present
the basic definition of the approximate controllability for the system.

Definition 3.1 ([17]) Let xb(φ;u) be the state value of (1) at the terminal time b corre-
sponding to the control u and the initial value φ. Introduce the set

R(b, φ) = {xb(φ;u)(0) : u(.) ∈ L2(J,U)},

which is called the reachable set of (1) at the terminal time b and its closure in H is denoted
by R(b, φ). The system (1) is said to be approximately controllable on the interval J if
R(b, φ) = H.

Secondly, we present the following definition of mild solutions for the system (1).
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Definition 3.2 ([23]) An H-valued stochastic process {x(t), t ∈ (−∞, b]} is said to be a mild
solution of the system (1) if

i. x(t) is Ft-adapted and measurable, t ≥ 0;

ii. x(t) is continuous on [0, b] almost surely and for each s ∈ [0, t), the function (t −
s)α−1ATα(t−s)G(s, xs) is integrable such that the following stochastic integral equation
is verified:

x(t) = Sα(t)[φ(0) +G(0, φ)]−G(t, xt)−
∫ t

0
(t− s)α−1ATα(t− s)G(s, xs)ds

+

∫ t

0
(t− s)α−1Tα(t− s)Bu(s)ds+

∫ t

0
(t− s)α−1Tα(t− s)f(s, xs)ds

+

∫ t

0
(t− s)α−1Tα(t− s)

[ ∫ s

−∞
σ(s, τ, xτ )dw(τ)

]
ds,

(4)

where Sα(t)x =
∫∞
0 ξα(θ)S(tαθ)xdθ, Tα(t)x = α

∫∞
0 θξα(θ)S(tαθ)xdθ and ξα is the

probability density function defined on (0,∞).

iii. x(t) = φ(t) on (−∞, 0] satisfying ‖φ‖2Ch <∞.

Lemma 3.3 ([23]) The operators Sα(t) and Tα(t) have the following properties:

i. For any fixed t ≥ 0, Sα(t) and Tα(T ) are linear and bounded operators such that for
any x ∈ H

‖Sα(t)x‖H ≤M‖x‖H and ‖Tα(t)x‖H ≤
Mα

Γ(1 + α)
‖x‖H;

ii. Sα(t) and Tα(t) are strongly continuous and compact;

iii. For any x ∈ H, β ∈ (0, 1) and η ∈ (0, 1], we have

ATα(t)x = A1−βTα(t)Aβx and ‖AηTα(t)‖ ≤ αCηΓ(2− η)

tαηΓ(1 + α(1− η))
, t ∈ [0, b].

In order to explain our theorem on the existence of mild solutions, we need the following
assumptions.
(H1): The semigroup S(t) is a compact operator for t > 0, and there exists a positive constant
M such that ‖S(t)‖ ≤M .
(H2): the function G : J × Ch → H is continuous and there exist some constants β ∈ (0, 1)
and MG > 0 such that G is Hβ-valued and

IE‖AβG(t, x)−AβG(t, y)‖2H ≤ MG‖x− y‖2Ch , t ∈ J, x, y ∈ Ch,
IE‖AβG(t, x)‖2H ≤ MG

(
1 + ‖x‖2Ch

)
.

(H3): For each ϕ ∈ Ch,

K(t) = lim
a→∞

∫ 0

−a
σ(t, s, ϕ)dw(s)
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exists and is continuous. Further, there exists a positive constant Mk such that

IE‖K(t)‖2H ≤Mk.

(H4): σ : J × J × Ch → L(K,H) satisfies the following properties:

i. for each (t, s) ∈ D := J × J , σ(t, s, .) : Ch → L(K,H) is continuous and for each x ∈ Ch,
σ(., ., x) : D → L(K,H) is strongly measurable;

ii. there is a positive integrable function m ∈ L1([0, b]) and a continuous nondecreasing
function Λσ : [0,∞)→ (0,∞) such that for every (t, s, x) ∈ J × J × Ch, we have∫ t

0
IE‖σ(t, s, x)‖2L02 ≤ m(t)Λσ(‖x‖2Ch), lim inf

r→∞
Λσ(r)

r
ds = ϑ <∞.

(H5): f : J × Ch → H satisfies the following properties:

i. f(t, .) : Ch → H His continuous for each t ∈ J and for each x ∈ Ch, f(., x) : J → H is
strongly measurable;

ii. there is a positive integrable function n ∈ L1([0, b]) and a continuous nondecreasing
function Λf : [0,∞)→ (0,∞) such that for every (t, x) ∈ J × Ch, we have

IE‖f(t, x)‖2H ≤ n(t)Λf (‖x‖2Ch), lim inf
r→∞

Λf (r)

r
ds = γ <∞.

In order to study the approximate controllability for the fractional control system (1), we
introduce the approximate controllability of its linear part{

cDα
t x(t) = Ax(t) + (Bu)(t), t ∈ J,
x(0) = φ(0).

(5)

For this purpose, we need to introduce the relevant operator

Θb
0 =

∫ b

0
(b− s)α−1Sα(b− s)BB?S?α(b− s)ds,

R(ε,Θb
0) = (εI + Θb

0),

where B? denote the adjoint of B and S?α(t) is the adjoint of Sα(t). It is straightforward that
the operator Θb

0 is a linear bounded operator.
We assume the following additional assumption:

(H6): εR(ε,Θb
0)→ 0 as ε→ 0+ in the strong operator topology.

Note that the assumption (H6) is equivalent to the fact that the linear fractional control
system (5) is approximately controllable on J (see [13]).

Lemma 3.4 ([17]) Assume that x ∈ Cb; then for all t ∈ J , xt ∈ Ch. Moreover

l(IE‖x(t)‖2)
1
2 ≤ ‖xt‖Ch ≤ l sup

s∈[0,t]
(IE‖x(s)‖2)

1
2 + ‖x0‖Ch ,

where l =

∫ 0

−∞
h(s)ds <∞.
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The following lemma is required to define the control function.

Lemma 3.5 ([11]) For any x̂ ∈ L2(Fb,H) there exists φ̂ ∈ L2F (Ω;L2(0, b;L02)) such that

x̂b = IEx̂b +

∫ b

0
φ̂(s)dw(s).

Now for any ε > 0 and x̂ ∈ L2(Fb,H), we define the control function

uε(t) = B?T ?α(b− t)(εI + Θb
0)
−1

×
{
IEx̂b +

∫ b

0
φ̂(s)dw(s)− Sα(b)[φ(0) +G(0, φ)] +G(b, xb)

}
+B?T ?α(b− t)

∫ b

0
(εI + Θb

s)
−1(b− s)α−1ATα(b− s)G(s, xs)ds

−B?T ?α(b− t)
∫ b

0
(εI + Θb

s)
−1(b− s)α−1Tα(b− s)f(s, xs)ds

−B?T ?α(b− t)
∫ b

0
(εI + Θb

s)
−1(b− s)α−1Tα(b− s)

[ ∫ s

−∞
σ(s, τ, xτ )dw(τ)

]
ds.

Our first result is the following theorem on the existence of the mild solution to the frac-
tional stochastic control system (1).

Theorem 3.6 Assume that the assumptions (H1)-(H5) hold. Then for each ε > 0, the
system (1) has a mild solution on [0, b] provided that[

4MG‖A−β‖2l2 + 4MG

l2C2
1−βΓ2(1 + β)b2αβ

β2Γ2(1 + αβ)
+ 4γ

l2M2b2α

Γ2(1 + α)
sup
s∈J

n(s)

+8ϑtr(Q)
l2M2b2α

Γ2(1 + α)
sup
s∈J

m(s)

]
×
[
6 +

42

ε2

(
αMMB

Γ(α+ 1)

)4
b2α

α2

]
< 1.

Proof . Let C((−∞, b],H) be the space of all continuousH-valued stochastic processes {ξ(t), t ∈
(−∞, b]} and Cb = {x : x ∈ C((−∞, b],H), x0 = φ ∈ Ch}. Let ‖.‖b be a seminorm defined by

‖x‖b = ‖x0‖Ch + sup
0≤s≤b

(IE‖x(s)‖2)
1
2 , x ∈ Cb.

Using the control function, for any ε > 0, define the operator Pε : Cb → Cb by

(Pεx)(t) =



φ(t), t ∈ (−∞, 0];

Sα(t)[φ(0) +G(0, φ)]−G(t, xt)−
∫ t

0
(t− s)α−1ATα(t− s)G(s, xs)ds

+

∫ t

0
(t− s)α−1Tα(t− s)Buε(s)ds+

∫ t

0
(t− s)α−1Tα(t− s)f(s, xs)ds

+

∫ t

0
(t− s)α−1Tα(t− s)

[ ∫ s

−∞
σ(s, τ, xτ )dw(τ)

]
ds, t ∈ J.
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Using Lemma 3.3, it follows that

IE

∥∥∥∥∥
∫ t

0
(t− s)α−1ATα(t− s)G(s, xs)ds

∥∥∥∥∥
2

H

≤ IE

(∫ t

0
‖(t− s)α−1A1−βTα(t− s)AβG(s, xs)‖Hds

)2

≤
α2C2

1−βΓ2(1 + β)

Γ2(1 + αβ)
IE

(
‖(t− s)αβ−1AβG(s, xs)‖Hds

)2

.

Applying the Hölder inequality and assumption (H2), we further derive that

IE

∥∥∥∥∥
∫ t

0
(t− s)α−1ATα(t− s)G(s, xs)ds

∥∥∥∥∥
2

H

≤
α2C2

1−βΓ2(1 + β)

Γ2(1 + αβ)

∫ t

0
(t− s)αβ−1ds

∫ t

0
(t− s)αβ−1IE‖AβG(s, xs)‖2Hds

≤
α2C2

1−βΓ2(1 + β)bαβ

Γ2(1 + αβ)αβ

∫ t

0
(t− s)αβ−1IE‖AβG(s, xs)‖2Hds

≤
α2C2

1−βΓ2(1 + β)MGb
αβ

Γ2(1 + αβ)αβ

∫ t

0
(t− s)αβ−1(1 + ‖xs‖2Ch)ds,

which deduces that (t−s)α−1ATα(t−s)G(s, xs) is integrable on J by Bochner’s theorem and
Lemma 3.4.

We shall show that Pε has a fixed point, by Sadovskii’s theorem, which is then a mild
solution for the system (1).
For φ ∈ Ch, define

φ̃ =

{
φ(t), t ∈ (−∞, 0];
Sα(t)φ(0), t ∈ J.

Then φ̃ ∈ Cb. Let x(t) = φ̃(t) + z(t), t ∈ (−∞, b]. It is clear that x satisfies (1) if and only if
z0 = 0 and

z(t) = Sα(t)G(0, φ)−G(t, φ̃t + zt)−
∫ t

0
(t− s)α−1ATα(t− s)G(s, φ̃s + zs)ds

+

∫ t

0
(t− s)α−1Tα(t− s)Buε(s)ds+

∫ t

0
(t− s)α−1Tα(t− s)f(s, φ̃s + zs)ds

+

∫ t

0
(t− s)α−1Tα(t− s)

[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )

]
ds,

where

uα(t) = B?T ?α(b− t)(εI + Θb
0)
−1

×
{
IEx̂b +

∫ b

0
φ̂(s)dw(s)− Sα(b)[φ(0) +G(0, φ)] +G(b, φ̃b + zb)

}
+B?T ?α(b− t)

∫ b

0
(εI + Θb

s)
−1(b− s)α−1ATα(b− s)G(s, φ̃s + zs)ds

−B?T ?α(b− t)
∫ b

0
(εI + Θb

s)
−1(b− s)α−1Tα(b− s)f(s, φ̃s + zs)ds

−B?T ?α(b− t)
∫ b

0
(εI + Θb

s)
−1(b− s)α−1Tα(b− s)

[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )dw(τ)

]
ds.
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Let C0b = {z ∈ Cb, z0 = 0 ∈ Ch}. For any z ∈ C0b , we have

‖z‖b = ‖z0‖Ch + sup
0≤s≤b

(IE‖z(s)‖2)
1
2 = sup

0≤s≤b
(IE‖z(s)‖2)

1
2 .

Thus, (C0b , ‖.‖b) is a Banach space. For each positive number q, set

Bq = {y ∈ C0b , ‖y‖2b ≤ q}.

Then, for each q, Bq is clearly a bounded closed convex set in C0b . From Lemma 3.4, for
z ∈ Bq, we see that

‖φ̃t + zt‖2Ch ≤ 2
(
‖zt‖2Ch + ‖φ̃t‖2Ch

)
≤ 4

(
l2 sup

0≤s≤t
IE‖z(s)‖2 + ‖z0‖2Ch + l2 sup

0≤s≤t
IE‖φ̃(s)‖2 + ‖φ̃0‖2Ch

)
≤ 4l2(q +M2IE‖φ(0)‖2H) + 4‖φ‖2Ch .

(6)

Consider the map Υ on C0b defined by

(Υz)(t) =



0, t ∈ (−∞, 0];

Sα(t)G(0, φ)−G(t, φ̃t + zt)−
∫ t

0
(t− s)α−1ATα(t− s)G(s, φ̃s + zs)ds

+

∫ t

0
(t− s)α−1Tα(t− s)Buε(s)ds+

∫ t

0
(t− s)α−1Tα(t− s)f(s, φ̃s + zs)ds

+

∫ t

0
(t− s)α−1Tα(t− s)

[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )

]
ds, t ∈ J.

Observe that Υ is well defined on Bq for each q > 0.
Moreover, it is obvious that the operator Pε has a fixed point if and only if Υ has a fixed

point. Now, for t ∈ J , we decompose Υ as Υ = Υ1 + Υ2, where the operator Υ1 and Υ2 are
defined on Bq respectively, by

(Υ1z)(t) = Sα(t)G(0, φ)−G(t, φ̃t + zt)−
∫ t

0
(t− s)α−1ATα(t− s)G(s, φ̃s + zs)ds,

(Υ2z)(t) =

∫ t

0
(t− s)α−1Tα(t− s)Buε(s)ds+

∫ t

0
(t− s)α−1Tα(t− s)f(s, φ̃s + zs)ds

+

∫ t

0
(t− s)α−1Tα(t− s)

[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )

]
ds.

Thus, the theorem follows from the next theorem.
2

Theorem 3.7 Assume that assumptions (H1)-(H5) hold. Then, Υ1 is a contractive map-
ping, while Υ2 is compact.

Proof . The theorem follows from lemmas in the appendix and Arzelá-Ascoli theorem.
2

Our second result is the following theorem on the approximate controllability of the frac-
tional stochastic control system (1).
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Theorem 3.8 Assume that the assumptions of Theorem 3.6 hold and, in addition, the func-
tions f,G and σ are uniformly bounded on their respective domains. Further, if S(t) is
compact, then the fractional control system (1) is approximately controllable on J .

f Let xε be a fixed point of the operator Pε. Using the stochastic Fubini theorem, it is easy
to see that

xε(b) = x̂b − ε(εI + Θb
0)
−1
[
IEx̂b +

∫ b

0
φ̂(s)dw(s)− Sα(t)[φ(0) +G(0, φ)]−G(b, xεb)

]
− ε

∫ b

0
(εI + Θb

s)
−1(b− s)α−1ATα(b− s)G(s, xεs)ds

+ ε

∫ b

0
(εI + Θb

s)
−1(b− s)α−1Tα(b− s)f(s, xεs)ds

+ ε

∫ b

0
(εI + Θb

s)
−1(b− s)α−1Tα(b− s)

[ ∫ s

−∞
σ(s, τ, xετ )dw(τ)

]
ds.

It follows from the properties ofG, f and σ that ‖f(s, xεs)‖2+‖σ(s, τ, xετ )‖2 ≤ κ1, ‖AβG(s, xεs)‖2 ≤
κ2 Then there is a subsequence still denoted by {AβG(s, xεs), f(s, xεs), σ(s, τ, xετ )} which con-
verges to weakly to, say, {G(s), f(s), σ(s, τ)}.
From the above equation, we have

IE‖xε(b)− x̂b‖2 ≤ 9‖ε(εI + Θb
0)
−1[IEx̂b − Sα(b)(φ(0) +G(0, φ))]‖2

+ 9IE

(∫ b

0
‖ε(εI + Θb

0)
−1φ̂(s)‖2L02ds

)
+ 9IE‖ε(εI + Θb

0)
−1G(b, xεb)‖2

+ 9IE

(∫ b

0
(b− s)α−1‖ε(εI + Θb

s)
−1ATα(b− s)[G(s, xεs)−G(s)]‖ds

)2

+ 9IE

(∫ b

0
(b− s)α−1‖ε(εI + Θb

s)
−1ATα(b− s)G(s)‖ds

)2

+ 9IE

(∫ b

0
(b− s)α−1‖ε(εI + Θb

s)
−1Tα(b− s)[f(s, xεs)− f(s)]‖ds

)2

+ 9IE

(∫ b

0
(b− s)α−1‖ε(εI + Θb

s)
−1Tα(b− s)f(s)‖ds

)2

+ 9IE

(∫ b

0
(b− s)α−1‖ε(εI + Θb

s)
−1Tα(b− s)

[ ∫ s

−∞
[σ(s, τ, xετ )− σ(s, τ)]

]
‖ds

)2

+ 9IE

(∫ b

0
(b− s)α−1‖ε(εI + Θb

s)
−1Tα(b− s)

[ ∫ s

−∞
σ(s, τ)

]
‖ds

)2

.

On the other hand, by assumption (H6) for all 0 ≤ s ≤ b, the operator ε(εI + Θb
s)
−1 → 0

strongly as ε → 0+ and moreover ‖ε(εI + Θb
s)
−1‖ ≤ 1. Thus, by the Lebesgue dominated

convergence theorem and the compactness of Sα(t) implies that IE‖xε(b) − x̂b‖2 → 0. This
gives the approximate controllability of (1).

2

At last, an example is provided to illustrate our results.

Example 3.9
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Consider the following fractional neutral stochastic partial differential equation with infinite
delays of the form:

cDα
t [z(t, x)− Ĝ(t, z(t− h, x))] = ∂2

∂x2
z(t, x) + µ(t, x) + f̂(t, z(t− h, x))

+
∫ t
−∞ σ̂(t, s, z(s− h, x))dw(s), 0 ≤ x ≤ π, h > 0, t ∈ J := [0, b],

z(t, 0) = z(t, π) = 0, t ∈ J,
z(t, x) = φ(t, x), t ∈ (−∞, 0],

(7)

where cDα
t is a Caputo fractional partial derivative of order 0 < α < 1; φ(t, x) is con-

tinuous; w(t) denotes a standard cylindrical Wiener process defined on a stochastic basis
(Ω, {Ft},F , IP). To rewrite this system into the abstract form (1), let H = L2([0, π]) with
the norm ‖.‖.
Define A : H → H by AX = x′′ with the domain

D(A) = {x ∈ H;x, x′ are absolutely continuous, x′′ ∈ H and x(0) = x(π) = 0}.

Then A generates a symmetric C0-semigroup e−tA in H and there exists a complete orthonor-

mal set {ωn, n = 1, 2, . . .} of eigenvectors of A with ωn(s) =
√

2
π sin(ns), n = 1, 2, . . ..

Then the operator A−
1
2 is given by A−

1
2 ξ =

∞∑
n=1

n(ξ, ωn)ωn on the space D(A−
1
2 ) = {ξ(.) ∈

H,
∑∞
n=1 n(ξ, ωn)ωn ∈ H}.

Now, we present a special phase space Ch. Let h(s) = e2s, s < 0; then l =
∫ 0
−∞ h(s)ds = 1

2 .
Let

‖ϕ‖Ch =

∫ 0

−∞
h(s) sup

s≤θ≤0
(IE‖ϕ(θ)‖2)

1
2ds.

Then (Ch, ‖.‖Ch) is a Banach space.
Define an infinite dimensional space U by U = {u|u =

∑∞
n=2 unωn, with

∑∞
n=2 U2

n < ∞}.
The norm in U is defined by ‖u‖U = (

∑∞
n=2 U2

n)1/2. Now define a continuous linear mapping
B from U into H as Bu = 2u2ω1 +

∑∞
n=2 unωn for u =

∑∞
n=2 unωn ∈ U .

Define the bounded linear operator B : U → H by Bu(t)(x) = µ(t, x), 0 ≤ x ≤ 1. For
(t, ϕ) ∈ J × Ch, where ϕ(θ)(.) = φ(θ, .), (θ, .) ∈ (−∞, 0] × [0, π], let z(t)(.) = z(t, .) and
define f(t, z)(.) = f̂(t, z(.)), G(t, z)(.) = Ĝ(t, z(.)) and σ(t, s, z)(.) = σ̂(t, s, z(.)). Therefore,
with the above choices, the system (7) can be written to the abstract form (1) and all the
conditions of Theorem 3.6 are satisfied. Thus, there exists a mild solution for the system
(7). On the other hand, the linear system corresponding to (7) is approximately controllable
(but not exactly controllable). Hence, all the conditions of Theorem 3.8 are satisfied. Thus
by Theorem 3.8, fractional stochastic control system (7) is approximately controllable on [0, b].

Appendix. Some basic estimates
In this appendix, our main object is to prove theorem 3.7.

Lemma 3.10 Under assumptions (H1)-(H5), for each ε > 0, there exists a positive number
q such that Υ(Bq) ⊂ Bq.

f If it is not true, then for each positive number q, there exists a function zq(.) ∈ Bq, but
Υ(zq) /∈ Bq, that is, IE‖(Υzq)(t)‖2H > q for some t = t(q) ∈ J . For such ε > 0, an elementary
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inequality can show that

q ≤ IE‖Υ(zq)(t)‖2H

≤ 6IE‖Sα(t)G(0, φ)‖2H + 6IE‖G(t, φ̃t + zqt )‖2H + 6IE

∥∥∥∥∥
∫ t

0
(t− s)α−1ATα(t− s)G(s, φ̃s + zqs)ds

∥∥∥∥∥
2

H

+ 6IE

∥∥∥∥∥
∫ t

0
(t− s)α−1Tα(t− s)f(s, φ̃s + zqs)ds

∥∥∥∥∥
2

H
+ 6IE

∥∥∥∥∥
∫ t

0
(t− s)α−1Tα(t− s)Buε(s)ds

∥∥∥∥∥
2

H

+ 6IE

∥∥∥∥∥
∫ t

0
(t− s)α−1Tα(t− s)

[ ∫ s

−∞
σ(s, τ, zqτ + φ̃τ )

]
ds

∥∥∥∥∥
2

H

= 6
6∑
i=1

Ii.

(8)
In what follows, K(α, β) is the number defined by

K(α, β) :=
α2C2

1−βΓ2(1 + β)

Γ2(1 + αβ)
. (9)

Let us now estimate each term above Ii, i = 1, . . . , 6. By Lemma 3.4 and assumptions
(H1)-(H2), we have

I1 ≤M2‖A−β‖2IE‖AβG(0, φ)‖2H ≤M2‖A−β‖2MG

(
1 + ‖φ‖2Ch

)
. (10)

I2 ≤ ‖A−β‖2IE‖AβG(t, φ̃t + zqt )‖2H ≤MG‖A−β‖2
(
1 + ‖φ̃t + zqt ‖2Ch

)
≤ MG‖A−β‖2

(
1 + 4l2(q +M2IE‖φ(0)‖2H) + 4‖φ‖2Ch

)
.

(11)

By Lemma 3.3 and the Hölder inequality, we can deduce that

I3 ≤ IE

(∫ t

0
‖(t− s)α−1A1−βTα(t− s)AβG(s, φ̃s + zqs)‖Hds

)2

≤ K(α, β)

∫ t

0
(t− s)αβ−1ds

∫ t

0
(t− s)αβ−1IE‖AβG(s, φ̃s + zqs)‖Hds

≤ K(α, β)bαβ

αβ

∫ t

0
(t− s)αβ−1IE‖AβG(s, φ̃s + zqs)‖Hds;

using the assumption (H2) and (6), we derive that

I3 ≤ K(α, β)bαβ

αβ

∫ t

0
(t− s)αβ−1MG

(
1 + ‖φ̃s + zqs‖2Ch

)
ds

≤ MGK(α, β)b2αβ

(αβ)2
(1 + 4l2(q +M2IE‖φ(0)‖2H) + 4‖φ‖2Ch).

(12)
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By (6) and the assumption (H5), we have

I4 ≤ IE

(∫ t

0
‖(t− s)α−1Tα(t− s)f(s, φ̃s + zqs)‖Hds

)2

≤
(

Mα

Γ(1 + α)

)2 ∫ t

0
(t− s)α−1ds

∫ t

0
(t− s)α−1IE‖f(s, φ̃s + zqs)‖2Hds

≤
(

Mα

Γ(1 + α)

)2
bα

α

∫ t

0
(t− s)α−1IE‖f(s, φ̃s + zqs)‖2Hds

≤
(

Mα

Γ(1 + α)

)2
bα

α

∫ t

0
(t− s)α−1n(s)Λf

(
‖φ̃s + zqs‖2Ch

)
ds

≤
(

Mα

Γ(1 + α)

)2
b2α

α2
Λf
(
4l2(q +M2IE‖φ(0)‖2H) + 4‖φ‖2Ch

)
sup
s∈J

n(s).

(13)

We have

I5 ≤ IE

(∫ t

0
‖(t− s)α−1Tα(t− s)Buε(s)‖ds

)2

≤
(

Mα

Γ(1 + α)

)2 ∫ t

0
(t− s)α−1ds

∫ t

0
(t− s)α−1IE‖Buε(s)‖2ds

≤
(

Mα

Γ(1 + α)

)2

M2
B

bα

α

∫ t

0
(t− s)α−1IE‖uε(s)‖2ds,

where MB = ‖B‖. Further, by using the assumptions (H3)-(H5), Hölder inequality and
Lemma 3.3, we get

IE‖uε(s)‖2 ≤ 1

ε2
M2
B

(
Mα

Γ(1 + α)

)2[
7‖IEx̂b +

∫ b

0
φ̂(s)dw(s)‖2

+ 7IE‖Sα(b)φ(0)‖2 + 7IE‖G(0φ)‖2 + 7IE‖G(b, φ̃b + zb)‖2

+ 7IE

∥∥∥∥∥
∫ b

0
(b− s)α−1ATα(b− s)G(s, φ̃s + zs)ds

∥∥∥∥∥
2

+ 7IE

∥∥∥∥∥
∫ b

0
(b− s)α−1Tα(b− s)f(s, φ̃s + zs)ds

∥∥∥∥∥
2

+ 7IE

∥∥∥∥∥
∫ b

0
(b− s)α−1Tα(b− s)

[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )dw(τ)

]
ds

∥∥∥∥∥
2]

≤ 7

ε2

(
MMBα

Γ(1 + α)

)2[
2‖IEx̂b‖2 + 2

∫ b

0
IE‖φ̂(s)‖2ds+M2‖φ‖2Ch

+ M2MG‖A−β‖2(1 + ‖φ‖2Ch) +MG‖A−β‖2(1 + 4(l2q + l2M2IE‖φ(0)‖2 + ‖φ‖2Ch))

+
MGK(α, β)b2αβ

(αβ)2
(1 + 4(l2q + l2M2IE‖φ(0)‖2 + ‖φ‖2Ch))

+

(
Mbα

Γ(1 + α)

)2

Λf (4(l2q + l2M2IE‖φ(0)‖2 + ‖φ‖2Ch)) sup
s∈J

n(s) + 2

(
Mbα

Γ(1 + α)

)2

Mk

+ 2

(
Mbα

Γ(1 + α)

)2

tr(Q)Λσ(4(l2q + l2M2IE‖φ(0)‖2 + ‖φ‖2Ch)) sup
s∈J

m(s)

]
.
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Now, we have

I5 ≤
(
MBMα

Γ(1 + α)

)2
b2α

α2

7

ε2

(
MMBα

Γ(1 + α)

)2

MC . (14)

A similar argument involves Burkholder-Davis-Gundy’s inequality and assumptions (H3)-
(H4), we obtain

I6 ≤ IE

(∫ t

0

∥∥∥∥∥(t− s)α−1Tα(t− s)
[ ∫ s

−∞
σ(s, τ, φ̃τ + zqτ )dw(τ)

]∥∥∥∥∥
H
ds

)2

≤
(

Mα

Γ(1 + α)

)2
bα

α

∫ t

0
(t− s)α−1IE

∥∥∥∥∥
∫ s

−∞
σ(s, τ, φ̃τ + zqτ )dw(τ)

∥∥∥∥∥
2

H
ds

≤
(

Mα

Γ(1 + α)

)2
bα

α

∫ t

0
(t− s)α−1

(
2Mk + 2tr(Q)

∫ t

0
IE‖σ(s, τ, φ̃τ + zqτ )‖2L02dτ

)
ds

≤
(

Mα

Γ(1 + α)

)2
bα

α

∫ t

0
(t− s)α−1(2Mk + 2tr(Q)m(s)Λσ(‖φ̃s + zqs‖2Ch))ds

≤
(

Mα

Γ(1 + α)

)2
2Mkb

2α

α2
+

(
Mα

Γ(1 + α)

)2
2tr(Q)b2α

α2
Λσ(4(l2q + l2M2IE‖φ(0)‖2 + ‖φ‖2Ch)) sup

s∈J
m(s).

(15)
Combining these estimates (10)-(15) yields

q ≤ IE‖Υ(zq)(t)‖2H

≤ L0 + 24MG‖A−β‖2l2q +
24l2MGC

2
1−βΓ2(1 + β)b2αβ

β2Γ2(1 + αβ)
q + 42

(
MBMα

Γ(1 + α)

)2
b2α

α2ε2

(
MMBα

Γ(1 + α)

)2

MC

+ 6

(
Mbα

Γ(1 + α)

)2

Λf
(
4l2(q +M2IE‖φ(0)‖2H) + 4‖φ‖2Ch

)
sup
s∈J

n(s)

+ 12

(
Mbα

Γ(1 + α)

)2

tr(Q)Λσ(4(l2q + l2M2IE‖φ(0)‖2 + ‖φ‖2Ch)) sup
s∈J

m(s).

(16)
where

L0 = 6M2‖A−β‖2MG

(
1 + ‖φ‖2Ch

)
+ 6MG‖A−β‖2

(
1 + 4l2M2IE‖φ(0)‖2H) + 4‖φ‖2Ch

)
+

6MGC
2
1−βΓ2(1 + β)

Γ2(1 + αβ)

b2αβ

β2
(1 + 4l2M2IE‖φ(0)‖2H) + 4‖φ‖2Ch) +

12MkM
2b2α

Γ2(1 + α)
.

Dividing both sides of (16) by q and taking q →∞, we obtain that[
4MG‖A−β‖2l2 + 4MG

l2C2
1−βΓ2(1 + β)b2αβ

β2Γ2(1 + αβ)
+ 4γ

l2M2b2α

Γ2(1 + α)
sup
s∈J

n(s)

+8ϑtr(Q)
l2M2b2α

Γ2(1 + α)
sup
s∈J

m(s)

]
×
[
6 +

42

ε2

(
αMMB

Γ(α+ 1)

)4
b2α

α2

]
≥ 1,

which is a contradiction to our assumption. Thus for ε > 0, for some positive number q,
Υ(Bq) ⊂ Bq.

2
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Lemma 3.11 Let assumptions (H1)-(H5) hold. Then Υ1 is contractive.

f Let u, v ∈ Bq. Then

IE‖(Υ1u)(t)− (Υ1v)(t)‖2H

≤ 2IE‖G(t, φ̃t + ut)−G(t, φ̃t + vt)‖2H + 2IE

∥∥∥∥∥
∫ t

0
(t− s)α−1ATα(t− s)G(s, φ̃s + zs)ds

∥∥∥∥∥
2

H

≤ 2‖A−β‖2MG‖ut − vt‖2Ch + 2K(α, β)IE

[ ∫ t

0
(t− s)αβ−1‖Aβ(G(s, φ̃s + us)−G(s, φ̃s + vs))‖Hds

]2
≤ 2‖A−β‖2MG‖ut − vt‖2Ch +

2K(α, β)bαβ

αβ

∫ t

0
(t− s)αβ−1IE‖Aβ(G(s, φ̃s + us)−G(s, φ̃s + vs))‖2Hds

≤ 2‖A−β‖2MG‖ut − vt‖2Ch +
2MGK(α, β)bαβ

αβ

∫ t

0
(t− s)αβ−1‖us − vs‖2Chds.

Hence,

IE‖(Υ1u)(t)− (Υ1v)(t)‖2H ≤ 4MGl
2

(
‖A−β‖2 +K(α, β)

b2αβ

(αβ)2

)
sup
0≤s≤t

IE‖u(s)− v(s)‖2H,

where we have used the fact that u0 = v0 = 0; K(α, β) is defined in (9).
Thus,

IE‖Υ1u−Υ1v‖2b ≤ 4MGl
2

(
‖A−β‖2 +K(α, β)

b2αβ

(αβ)2

)
sup
0≤s≤t

IE‖u− v‖2b ,

so, Υ1 is a contraction by our assumption in Theorem 3.6.
2

Let q > 0 an Υ2(Bq) ⊂ Bq.

Lemma 3.12 Let assumptions (H1)-(H5) hold. Then Υ2 maps bounded sets to bounded sets
in Bq.

Proof . For each t ∈ J , z ∈ Bq and ε > 0, from (6), we have

‖zt + φ̃t‖2Ch ≤ 4l2(q +M2IE‖φ(0)‖2H) + 4‖φ‖2Ch := q′.
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By the similar argument as Lemma 3.10, we obtain

IE‖Υ2z(t)‖2H ≤ 3IE

∥∥∥∥∥
∫ t

0
(t− s)α−1Tα(t− s)f(s, φ̃s + zs)ds

∥∥∥∥∥
2

H
+ 3IE

∥∥∥∥∥
∫ t

0
(t− s)α−1Tα(t− s)Buε(s)ds

∥∥∥∥∥
2

H

+ 3IE

∥∥∥∥∥
∫ t

0
(t− s)α−1Tα(t− s)

[ ∫ s

−∞
σ(s, τ, φ̃sτ + zsτ )dw(τ)

]
ds

∥∥∥∥∥
2

H

≤ 3

(
Mα

Γ(1 + α)

)2
bα

α

∫ t

0
(t− s)α−1n(s)Λf

(
‖φ̃s + zqs‖2Ch

)
ds

+ 3

(
MBMα

Γ(1 + α)

)4
b2α

α2

7

ε2
MC

+ 3

(
Mα

Γ(1 + α)

)2
bα

α

∫ t

0
(t− s)α−1(2Mk + 2tr(Q)m(s)Λσ(‖φ̃s + zqs‖2Ch))ds

≤ 3

(
Mα

Γ(1 + α)

)2
b2α

α2
Λf (q′) sup

s∈J
n(s) + 3

(
MBMα

Γ(1 + α)

)4
b2α

α2

7

ε2
MC

+ 4

(
Mα

Γ(1 + α)

)2
Mkb

α

α2
+ 4

(
Mα

Γ(1 + α)

)2
tr(Q)bα

α2
Λσ(q′) sup

s∈J
m(s)

:= ∆,

which implies that for each z ∈ Bq, ‖Υ2z‖2b ≤ ∆.
2

Lemma 3.13 Let assumptions (H1)-(H5) hold. Then the set {Υ2z, z ∈ Bq} is an equicon-
tinuous family of functions on J .

Proof . Let 0 < ε < t < b and δ > 0 such that ‖Tα(s1) − Tα(s2)‖ < ε, for every s1, s2 ∈ J
with |s1 − s2| < δ. For z ∈ Bq, 0 < |h| < δ, t+ h ∈ J , we have

IE‖Υ2z(t+ h)−Υ2z(t)‖2H

≤ 9IE

∥∥∥∥∥
∫ t

0
[(t+ h− s)α−1 − (t− s)α−1]Tα(t+ h− s)Buε(s)ds

∥∥∥∥∥
2

H

+ 9IE

∥∥∥∥∥
∫ t+h

t
(t+ h− s)α−1Tα(t+ h− s)Buε(s)ds

∥∥∥∥∥
2

H

+ 9IE

∥∥∥∥∥
∫ t

0
(t− s)α−1[Tα(t+ h− s)− Tα(t− s)]Buε(s)ds

∥∥∥∥∥
2

H

+ 9IE

∥∥∥∥∥
∫ t

0
[(t+ h− s)α−1 − (t− s)α−1]Tα(t+ h− s)f(s, φ̃s + zs)ds

∥∥∥∥∥
2

H

+ 9IE

∥∥∥∥∥
∫ t+h

t
(t+ h− s)α−1Tα(t+ h− s)f(s, φ̃s + zs)ds

∥∥∥∥∥
2

H

+ 9IE

∥∥∥∥∥
∫ t

0
(t− s)α−1[Tα(t+ h− s)− Tα(t− s)]f(s, φ̃s + zs)ds

∥∥∥∥∥
2

H
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+ 9IE

∥∥∥∥∥
∫ t

0
[(t+ h− s)α−1 − (t− s)α−1]Tα(t+ h− s)

[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )dw(τ)

]
ds

∥∥∥∥∥
2

H

+ 9IE

∥∥∥∥∥
∫ t+h

t
(t+ h− s)α−1Tα(t+ h− s)

[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )dw(τ)

]
ds

∥∥∥∥∥
2

H

+ 9IE

∥∥∥∥∥
∫ t

0
(t− s)α−1[Tα(t+ h− s)− Tα(t− s)]

[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )dw(τ)

]
ds

∥∥∥∥∥
2

H
.

Applying Lemma 3.3, assumptions (H4)-(H5) and the Hölder inequality, we obtain

IE‖Υ2z(t+ h)−Υ2z(t)‖2H

≤ 9

(
MBMα

Γ(1 + α)

)2 ∫ t

0
[(t+ h− s)α−1 − (t− s)α−1]ds

∫ t

0
[(t+ h− s)α−1 − (t− s)α−1]IE‖uε(s)‖2ds

+ 9

(
MBMα

Γ(1 + α)

)2
hα

α

∫ t+h

t
(t+ h− s)α−1IE‖uε(s)‖2ds+ 9ε2M2

B

bα

α

∫ t

0
(t− s)α−1IE‖uε(s)‖2ds

+ 9

(
Mα

Γ(1 + α)

)2 ∫ t

0
[(t+ h− s)α−1 − (t− s)α−1]ds

×
∫ t

0
[(t+ h− s)α−1 − (t− s)α−1]n(s)Λf (q′)ds

+ 9

(
Mα

Γ(1 + α)

)2
hα

α

∫ t+h

t
(t+ h− s)α−1n(s)Λf (q′)ds

+ 9ε2
bα

α

∫ t

0
(t− s)α−1n(s)Λf (q′)ds

+ 9

(
Mα

Γ(1 + α)

)2 ∫ t

0
[(t+ h− s)α−1 − (t− s)α−1]ds

×
∫ t

0
[(t+ h− s)α−1 − (t− s)α−1][2Mk + 2tr(Q)m(s)Λσ(q′)]ds

+ 9

(
Mα

Γ(1 + α)

)2
hα

α

∫ t+h

t
(t+ h− s)α−1[2Mk + 2tr(Q)m(s)Λσ(q′)]ds

+ 9ε2
bα

α

∫ t

0
(t− s)α−1[2Mk + 2tr(Q)m(s)Λσ(q′)]ds.

Therefore, for ε sufficiently small, the right-hand side of the above inequality tends to zero
as h → 0. On the other hand, the compactness of Tα(t), t > 0 implies the continuity in the
uniform operator topology. Thus, the set {Υ2z, z ∈ Bq} is equicontinuous.

2

Lemma 3.14 Let assumptions (H1)-(H5) hold. then Υ2 maps Bq into a precompact set in
Bq.
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Proof . Let 0 < t ≤ b be fixed and ε be a real number satisfying 0 < ε < t. For δ > 0, define
an operator Υε,δ

2 on Bq by

(Υε,δ
2 )(t) = α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)S((t− s)αθ)Buε(s)dθds

+ α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)S((t− s)αθ)f(s, φ̃s + zs)dθds

+ α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)S((t− s)αθ)
[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )dw(τ)

]
dθds

= S(εαδ)α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)S((t− s)αθ − εαδ)Buε(s)dθds

+ S(εαδ)α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)S((t− s)αθ − εαδ)f(s, φ̃s + zs)dθds

+ S(εαδ)α

∫ t−ε

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)S((t− s)αθ − εαδ)
[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )dw(τ)

]
dθds.

Since S(t), t > 0, is a compact operator, the set {(Υε,δ
2 z)(t), z ∈ Bq} is precompact in H for

every ε ∈ (0, t), δ > 0. Moreover, for each z ∈ Bq, we have

IE‖(Υ2z)(t)− (Υε,δ
2 z)(t)‖2H

≤ 6α2IE

∥∥∥∥∥
∫ t

0

∫ δ

0
θ(t− s)α−1ξα(θ)S((t− s)αθ)Buε(s)dθds

∥∥∥∥∥
2

H

+ 6α2IE

∥∥∥∥∥
∫ t

t−ε

∫ ∞
δ

θ(t− s)α−1ξα(θ)S((t− s)αθ)Buε(s)dθds
∥∥∥∥∥
2

H

+ 6α2IE

∥∥∥∥∥
∫ t

0

∫ δ

0
θ(t− s)α−1ξα(θ)S((t− s)αθ)f(s, φ̃s + zs)dθds

∥∥∥∥∥
2

H

+ 6α2IE

∥∥∥∥∥
∫ t

t−ε

∫ ∞
δ

θ(t− s)α−1ξα(θ)S((t− s)αθ)f(s, φ̃s + zs)dθds

∥∥∥∥∥
2

H

+ 6α2IE

∥∥∥∥∥
∫ t

0

∫ δ

0
θ(t− s)α−1ξα(θ)S((t− s)αθ)

[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )dw(τ)

]
dθds

∥∥∥∥∥
2

H

+ 6α2IE

∥∥∥∥∥
∫ t

t−ε

∫ ∞
δ

θ(t− s)α−1ξα(θ)S((t− s)αθ)
[ ∫ s

−∞
σ(s, τ, φ̃τ + zτ )dw(τ)

]
dθds

∥∥∥∥∥
2

H
.

A similar argument as before can show that

IE‖(Υ2z)(t)− (Υε,δ
2 z)(t)‖2H

≤ 6αM2bα
∫ t

0
(t− s)α−1

[
M2
B

7

α2

(
αMBM

Γ(1 + α)

)2

MC + n(s)Λf (q′) + [2Mk + 2tr(Q)m(s)Λσ(q′)

]
ds×(∫ δ

0
θξα(θ)dθ

)2

+
6αM2εα

Γ(1 + α)

∫ t

t−ε
(t− s)α−1

[
M2
B

7

α2

(
αMBM

Γ(1 + α)

)2

MC + n(s)Λf (q′)

+2Mk + 2tr(Q)m(s)Λσ(q′)

]
ds→ 0 as ε, δ → 0+.

Therefore, there are relatively compact sets arbitrary close to the set {Υ2(t), z ∈ Bq}; hence
the set {(Υ2z)(t), z ∈ Bq} is also precompact in Bq.

2
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