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Abstract

This article deals with an economic order quantity (EOQ) inventory model for items

with imperfect quality in fuzzy stochastic environment, wherein shortages are allowed and

completely backlogged. Fuzzy stochastic environment means linguistic ‘impreciseness’ and

statistical ‘uncertainty’ both appear simultaneously. Due to uncertain demand trend, im-

perfect production process, natural disaster etc., the demand rate or imperfect quality items

in the lot size can’t predict precisely or to fit the exact probability density function. In this

context, we assume that demand rate as a fuzzy number and fraction of defective items as

a fuzzy random variable. We formulate the model and derive the total profit which is a

function of fuzzy random variable. The fuzzy random renewal reward theorem is used to

find the fuzzy expected total profit per unit time. The fuzzy expected total profit function

is defuzzified by using the signed distance method. The closed form solution of the model is

derived and subsequently the concavity of the total profit function is proved. The solution

procedure is illustrated with the help of numerical examples. Sensitivity of decision variables

for change in different parameters is examined and discussed.

Keywords: EOQ inventory model; Imperfect quality; Fuzzy random variable; Fuzzy renewal

reward theorem; Signed distance method.

1 Introduction

Incorporation of real life situations in the inventory modeling acquired a keen area of research

in the recent trends. It provides the competitive advantage as well as keep consistency in main-

tenance of authenticity of the organization. Though the EOQ (economic order quantity) and

the EPQ (economic production quantity) models have been successfully applied in industry for

a long period of time, but still some of the assumptions of these models are not realistic. One

of the unrealistic assumption in an inventory model is that all items produced/received are of

good quality. But, in a production system due to defective production process, natural disas-

ters, damage or breakage in transit, or for many other reasons, the lot sizes produced/received

may contain some defective items. Models related to imperfect quality production process, ini-

tially considered by [Rosenblatt and Lee, 1986] and [Porteus, 1986]. Later, [Salameh and Jaber,
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2000] discussed an inventory model, where all items were screened before meeting up the de-

mand and imperfect items sold as a single batch at a discounted price prior to receiving next

shipment. Several authors [Chung et al., 2009; Eroglu and Ozdemir, 2007; Maddah and Jaber,

2008; Maddah et al., 2010; Papachristos and Konstantaras, 2006; Wee et al., 2007] have modi-

fied or extended the [Salameh and Jaber, 2000] model in various directions. [Papachristos and

Konstantaras, 2006] emphasized on the assumptions of Salameh and Jaber’s model, especially

to avoid the shortages during screening period. [Eroglu and Ozdemir, 2007; Wee et al., 2007]

extended that model in the case of backorder. [Eroglu and Ozdemir, 2007] considered that the

defective items are two types, one is imperfect quality and the other is scrap items. [Chung

et al., 2009] assumed that inventories were carried in two warehouse namely, owns warehouse

and ranted warehouse. [Maddah and Jaber, 2008], [Maddah et al., 2010] and [Chang and Ho,

2010] enhanced the [Salameh and Jaber, 2000] and [Wee et al., 2007] models by implementing

the renewal reward theorem to obtain the expected annual profit.

From the article of [Salameh and Jaber, 2000], we notice that some of the previous researchers

have assumed that the imperfect quality items and demand rate are deterministic variables or

random variables with a known probability distribution function. But real fact is quite different.

It may not always be possible to estimate the probability distribution function or predict precise

values of these variables. With the development of fuzzy set theory, uncertainty theory, rough

theory, etc., the technique and approaches of these theories are being widely accepted and

implemented in each and every area of science, engineering and mathematics. Here, we focus

on the implementation of fuzzy set theory in inventory management. [Chang et al., 1998]

extended classical EOQ model with backorder by assuming backorder quantity as fuzzy number.

[Yao et al., 2000] extended the classical EOQ model in fuzzy environment with the assumption

that demand rate is fuzzy number. [Chang et al., 2006] developed a fuzzy inventory model

for deteriorating items and shortage, where cost coefficients were triangular fuzzy numbers.

[Chang, 2004] extended the [Salameh and Jaber, 2000] model in fuzzy environment by assuming

that the annual demand and fraction of defective items are fuzzy numbers. [Kazemi et al.,

2010] developed a fuzzy EOQ model with backorder, where demand rate and cost coefficients

are fuzzy numbers. [Björk, 2009] extended the classical EOQ model with backorder in fuzzy

environment by assuming that demand rate and lead time are fuzzy numbers. [Liu and Zheng,

2012] extended the [Eroglu and Ozdemir, 2007] model in fuzzy environment by considering the

fraction of defective items as fuzzy variable. [Kumar et al., 2012] address fuzzy EOQ models with

ramp type demand rate and Weibull deterioration rate, wherein cost parameters and backlogging

rate are taken as fuzzy numbers.

Fuzzy set theory concern with the linguistic ‘impreciseness’ or ‘vagueness’. But, in real life

situations many systems or events concern not only with this linguistic ‘impreciseness’ or ‘vague-

ness’, but also with statistical ‘uncertainty’ together. In 1978, [Kwakernaak, 1978] introduced

the concept of fuzzy random variable and its fuzzy expectation. Later, [Puri and Ralescu, 1986]

developed and discussed it in another way. [Gil et al., 2006] and [Shapiro, 2009] closely stud-

ied the both type of fuzzy random variables. Some authors like [Chang et al., 2006; Dey and

Chakraborty, 2009; Dutta et al., 2007; Lin, 2008] etc. extended the classical continuous review

or periodic review inventory model in fuzzy random environment. [Hu et al., 2010] developed a

single-period supply chain model with defective products and fuzzy random demand. Recently,
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[Das et al., 2011] developed a fuzzy-stochastic inventory model with imperfect quality items,

where fraction of imperfect quality items and machine failure time are random variables while

cost coefficients are fuzzy numbers.

In this study, we extend the model of [Chang and Ho, 2010] in fuzzy random environment.

We assume that the annual demand is a fuzzy number and fraction of imperfect quality items is

a fuzzy random variable. Consequently, the total profit per cycle and scheduling period become

as functions of fuzzy random variable. Between the two consecutive replenishment namely

(n − 1)th and nth, the inter-arrival time (scheduling period) is a fuzzy random variable. The

process continuously repeats itself for infinite time horizon. So, this process can be referred as

a fuzzy renewal process [Wang and Watada, 2009; Zhao et al., 2007]. Hence, we apply fuzzy

random renewal reward theorem [Hwang, 2000; Hwang and Yang, 2011] to estimate the fuzzy

expected annual profit function. The fuzzy expected total profit and fuzzy expected scheduling

period are unique fuzzy numbers. Further, for each case, we employ Yao and Wu [2000] ranking

criterion for fuzzy numbers to find the crisp estimate of total average annual profit along with the

corresponding optimal lot size and backorder quantity. We show analytically that the defuzzified

cost function is concave. We consider some numerical examples in the support of developed

model. Lastly, we have studied the effect of decision variables and cost function for changes in

different parameter values.

2 Preliminaries

Before presenting the proposed fuzzy inventory model with backorders, we need to introduce

some definitions and basics about fuzzy set [Kaufmann and Gupta, 1991; Yao and Wu, 2000;

Zimmermann, 2001], fuzzy random variable [Gil et al., 2006; Kwakernaak, 1978; Shapiro, 2009]

and fuzzy random renewal process [Hwang, 2000; Hwang and Yang, 2011; Popova and Wu, 1999;

Wang and Watada, 2009].

2.1 Fuzzy set

Definition 2.1 A fuzzy set Ã on the given universe X is a set of ordered pairs

Ã = {(x, µÃ(x)) : x ∈ X},

where µÃ : X −→ [0, 1] is called membership function or grade of membership of x in Ã.

Remark 2.1 If the range of µÃ admits only two values 0 and 1, then µÃ degenerates to a usual

set characteristic function.

Definition 2.2 If Ã is a fuzzy set in X, then the crisp set

Aα = {x ∈ X : µÃ(x) ≥ α} is called α-cut (or α-level) set.

Definition 2.3 A fuzzy set Ã is convex if

µÃ(λx1 + (1− λ)x2) ≥ min
(
µÃ(x1), µÃ(x2)

)
.

Definition 2.4 A fuzzy set Ã of X is called normal if there exists a x ∈ X such that µÃ(x) = 1.
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Definition 2.5 A fuzzy number M̃ , is a convex normalized fuzzy set on real line R and its

membership function µM̃ is piecewise continuous.

Definition 2.6 A fuzzy set Ã = (a, b, c), where a < b < c and defined on R, is called triangular

fuzzy number, if membership function of Ã is given by

µÃ(x) =


x−a
b−a , a ≤ x ≤ b;
c−x
c−b , b ≤ x ≤ c;

0, otherwise.

Interval arithmetic [Kaufmann and Gupta, 1991]

Let us suppose that I1 = [a, b] and I2 = [c, d], where a < b and c < d, be two intervals defined by

ordered pairs of real numbers with lower and upper bounds. Then the following relation hold.

[a, b] + [c, d] = [a+ c, b+ d],

[a, b]− [c, d] = [a− d, b− c],

[a, b].[c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)],

[a, b]÷ [c, d] = [a, b].

[
1

d
,
1

c

]
provided that 0 /∈ [c, d]

and k[a, b] =


[ka, kb], for k > 0;

[kb, ka], for k < 0.

Decomposition principle [Kaufmann and Gupta, 1991; Yao and Wu, 2000]

Suppose FR be family of fuzzy numbers on real line R, whose elements satisfy the properties of

definition 2.5. For each M̃ ∈ FR and 0 ≤ α ≤ 1, the α-cut of M̃ is Mα = [M−
α ,M+

α ], a closed

interval. The decomposition principle allow us to express the M̃ as

M̃ =
∪

α∈[0,1]

[M−
α ,M+

α ]

with membership function

µM̃ (x) =
∨

α∈[0,1]

α ∧ CMα(x) =
∨

α∈[0,1]

µMα(x),

where M−
α and M+

α are the left and right end points of the closed interval [M−
α ,M+

α ], and

CMα(x) =

{
1, x ∈ Mα;

0, othewise.

Definition 2.7 [Yao and Wu, 2000]

Let M̃ ∈ FR, then the signed distance of M̃ can be defined as

d(M̃, 0) =
1

2

∫ 1

0
[M−

α +M+
α ]dα.
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2.2 Fuzzy random renewal reward process

Definition 2.8 [Kwakernaak, 1978; Shapiro, 2009]

Let (Ω,B, P ) be a probability space, where Ω is sample space, B is σ-algebra of subsets of Ω,

and P is the probability measure. Then the fuzzy random variable X̃, is measurable function

from Ω to family of fuzzy numbers FR. For each α ∈ (0, 1] and ω ∈ Ω, X̃(ω) ∈ FR satisfies the

following properties:

X−
α (ω) = infXα(ω) and X+

α (ω) = supXα(ω) are real valued random variables on (Ω,B, P );

and their expectations EX−
α and EX+

α exist. If the expectations EX−
α and EX+

α exist, then

EX−
α = E[X−

α ] =
∫
ΩX−

α f(x)dx and EX+
α = E[X+

α ] =
∫
ΩX+

α f(x)dx, where f(x) is probability

density function.

Let X̃n be a fuzzy random variable denote the interarrival time between the (n − 1)th and

nth events, n = 1, 2, . . . , respectively. Define S̃0 = 0 and

S̃n =

n∑
i=1

X̃i, ∀ n ≥ 1, (2.1)

then the process {S̃n, n ≥ 1} is called a fuzzy stochastic process [Zhao et al., 2007]. For each

ω ∈ Ω and n ∈ N(set of positive integers), S̃n(ω) is a fuzzy number. For α ∈ (0, 1], the α-cut of

S̃n(ω) is denoted by Sn,α(ω) and is defined as

Sn,α(ω) = [S−
n,α(ω), S+

n,α(ω)] =
[
inf{t : µS̃n(ω)

(t) ≥ α}, sup{t : µS̃n(ω)
(t) ≥ α}

]
. (2.2)

Let Ñ(t) denote the total number of the events that have occurred by time t, i.e.,

Ñ(t) = max{n : 0 ≤ S̃n ≤ t}.

For any ω ∈ Ω and α ∈ [0, 1], we can define

N−
α (t)(ω) = max{n : 0 ≤ S−

n,α(ω) ≤ t} (2.3)

and N+
α (t)(ω) = max{n : 0 ≤ S+

n,α(ω) ≤ t}. (2.4)

For a ω ∈ Ω, Ñ(t)(ω) is a non-negative integer-valued fuzzy number. Hence Ñ(t) is a fuzzy

random variable.

Definition 2.9 Fuzzy renewal process [Hwang, 2000]

Let X̃n denote the fuzzy random time interval between the (n − 1)th and nth events. If

{X̃1, X̃2, . . . , X̃n, . . .} is a sequence of independent and identically distributed fuzzy random

variables, the fuzzy counting process {Ñ(t), t ≥ 0} is called fuzzy random renewal process. Ñ(t)

can be defined with the help of decomposition principle [[Yao and Wu, 2000]]as

Ñ(t) =
∪

α∈(0,1]

[N−
α (t), N+

α (t)], (2.5)

where [N−
α (t), N+

α (t)] is a random interval, for a ω ∈ Ω the end points N−
α (t) and N−

α (t) are

defined as in equations (2.3) and (2.4).
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Theorem 2.1 Elementary fuzzy renewal theorem [Hwang, 2000]

EÑ(t)

t
→ 1

EX̃1

as t → ∞. (2.6)

Let us consider the sequence of pair of independent and identically distributed fuzzy random

variables, (X̃1, Ỹ1), (X̃2, Ỹ2), . . . on the probability space (Ω,B, P ), where X̃n is the interarrival

time between the (n−1)th and nth event and Ỹn is the reward associated with the nth interarrival

time X̃n, n = 1, 2, . . . , respectively.

Let C̃(t) denote the total reward earned by the time t, i.e.,

C̃(t) =

Ñ(t)∑
i=1

Ỹi, (2.7)

where Ñ(t) is fuzzy random renewal variable.

Theorem 2.2 Fuzzy renewal reward theorem [Hwang and Yang, 2011]

If EY −
1,α < ∞, EY +

1,α < ∞, EX−
1,α < ∞ and EX+

1,α < ∞ for 0 ≤ α ≤ 1, then

lim
t→∞

EC̃(t)

t
=

EỸ1

EX̃1

. (2.8)

3 Notations and assumptions

The following notations and assumptions are used to develop the model.

3.1 Notations

λ annual demand rate

x per year screening rate

p random fraction of defective items in the lot size y, with density function f(p)

c per unit purchasing cost

s per unit selling price

v salvage value of per unit defective item

h holding cost per unit per year

b back order cost per unit per year

d per unit screening cost

K ordering cost per order

y order quantity

w back order quantity

t time interval, during which all items are screened

T the time interval between two replenishment

p̃ = (p−∆1, p, p+∆2) is a fuzzy random variable, denoting the fraction of the defective

items in the lot size

λ̃ = (λ−∆3, λ, λ+∆4) is the fuzzy annual demand.
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Fig. 1: Behavior of the inventory level with complete backordering

3.2 Assumptions

1. The items are replenished instantaneously.

2. The lead time is zero.

3. A fraction p of each lot size y contains defective items, and p is uniformly distributed in

the interval [al, au], 0 ≤ al < au < 1. The expected defective items E[p]y, are sold in a

single batch at a discounted price prior to receiving next shipment.

4. The screening process and demand proceeds simultaneously, but screening rate is greater

than demand rate (i.e., x > λ).

5. For avoiding the shortage during the screening period t, the minimum fraction of good-

quality item (1−p−∆2)y must be greater than or equal to the maximum demand (λ+∆4)t

[see Salameh and Jaber, 2000], that is,

p+∆2 ≤ 1− λ+∆4

x
. (3.1)

6. Shortage are allowed and completely backlogged. The backorder quantity is delivered

without any defects.

7. A single product is considered.

4 Mathematical formulation of the model

The inventory level is illustrated in Fig. 1. At the beginning of the scheduling period a batch

of product of size y is replenished by the vendor. It is assumed that even though the 100%
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screening process has not been conducted when they received the batch of the product, the

backorder quantity delivered without any defects [see Chang and Ho, 2010].

The time interval T , between two consecutive replenishment is

T =
(1− p)y

λ
. (4.1)

Total revenue per cycle is

TR = s(1− p)y + vpy. (4.2)

The inventory total cost per cycle is sum of ordering, purchasing, screening, holding and back-

ordering costs.

TC = K + cy + dy + h

[
(y − py − w)2

2λ
+

py2

x

]
+

bw2

2λ
. (4.3)

The net profit per cycle is equal to the difference of total revenue and total cost, i.e.,

TP = TR− TC

= s(1− p)y + vpy −K − cy − dy − h
[(y − py − w)2

2λ
+

py2

x

]
− bw2

2λ
. (4.4)

For the purpose of easier fuzzy arithmetic operation, we re-write the total profit per cycle from

equation (4.4) as

TP (w, y) = (v − c− d)y −K − hy2

x
+

(
s− v +

hy

x

)
yq + hwy

q

λ

−hy2

2

q2

λ
− (b+ h)w2

2

1

λ
, (4.5)

where q = 1− p.

As discussed earlier, due to various reason, the lot size received by the retailer is not cent

percent perfect. A fraction p of the lot size is defective. Sometime the value of p is determined

by the experts’ experiences, such as “the fraction of defective items is about p” with probability

P. However, the linguistic information of experts may varies randomly. So, keep it in mind, we

assume that the fraction of defective items is a fuzzy random variable, p̃ = (p−∆1, p, p+∆2),

where 0 ≤ ∆1 ≤ E[p], 0 ≤ ∆2 ≤ 1 − E[p], and p is uniformly distributed. Also, in real life

business transaction, it is not always possible to estimate the exact annual demand. The annual

demand may have some fluctuation, especially in a perfect competitive market. So, instead of

a crisp annual demand λ, the experts may suggest in linguistic sense as, the annual demand is

about λ̃ = (λ−∆3, λ, λ+∆4), where 0 ≤ ∆3 < λ and ∆4 ≥ 0.

The fuzzy random total profit per cycle is

T̃P (w, y) = (v − c− d)y −K − hy2

x
+

(
s− v +

hy

x

)
yq̃ + hwy

q̃

λ̃

−hy2

2

q̃2

λ̃
− (b+ h)w2

2

1

λ̃
(4.6)
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and fuzzy random scheduling period is

T̃ = y
q̃

λ̃
, (4.7)

where q̃ = 1− p̃ = (1− p−∆2, 1− p, 1− p+∆1) = (q −∆2, q, q +∆1).

The fuzzy expectations of fuzzy random variables T̃P (w, y) and T̃ can be written as

ẼTP (w, y) = (v − c− d)y −K − hy2

x
+

(
s− v +

hy

x

)
yE[q̃] + hwy

E[q̃]

λ̃

−hy2

2

E[q̃2]

λ̃
− (b+ h)w2

2

1

λ̃
(4.8)

and ẼT = y
E[q̃]

λ̃
. (4.9)

The α-cut of ẼTP and ẼT are, respectively

ETPα(w, y) = [ETP−
α , ETP+

α ] (4.10)

and ETα = [ET−
α , ET+

α ] (4.11)

where

ETP−
α = (v − c− d)y −K − hy2

x
+

(
s− v +

hy

x

)
y(E[q]−∆2 +∆2α)

+hwy
E[q]−∆2 +∆2α

λ+∆4 −∆4α
− hy2

2

E[q +∆1 −∆1α]
2

λ−∆3 +∆3α
− (b+ h)w2

2

1

λ−∆3 +∆3α
,

(4.12)

ETP+
α = (v − c− d)y −K − hy2

x
+

(
s− v +

hy

x

)
y(E[q] + ∆1 −∆1α)

+hwy
E[q] + ∆1 −∆1α

λ−∆3 +∆3α
− hy2

2

E[q −∆2 +∆2α]
2

λ+∆4 −∆4α
− (b+ h)w2

2

1

λ+∆4 −∆4α

(4.13)

and ET−
α =

y(E[q]−∆2 +∆2α)

λ+∆4 −∆4α
, (4.14)

ET+
α =

y(E[q] + ∆1 −∆1α)

λ−∆3 +∆3α
(4.15)

The derivation of equations (4.12)–(4.15) are shown in Appendix A.

Now, our aim is to find the fuzzy expected profit per unit time. As we discussed in the intro-

duction section, fuzzy random total profit per cycle and fuzzy random scheduling period generate

a fuzzy renewal process with rewards. So, the fuzzy expected annual profit ẼTPU(w, y), can

be obtained by applying the fuzzy random renewal reward theorem [see Hwang and Yang, 2011;

Zhao et al., 2007].

ẼTPU(w, y) =
ẼTP (w, y)

ẼT (y)
. (4.16)
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The fuzzy expectations ẼTP and ẼT are unique fuzzy numbers. Now, we employ the signed

distance method to find the equivalent deterministic cost function (say ETP (w, y)) from the

above fuzzy cost function.

ETP (w, y) = d
(
ẼTPU(w, y), 0

)
=

1

2

∫ 1

0

[
ETPU−

α (w, y) + ETPU+
α (w, y)

]
dα

= (v − c− d)A− K

y
A− hy

x
A+

(
s− v +

hy

x

)
B + hwl − hy

2
m− (b+ h)w2

2y
n, (4.17)

where

A =
1

2

∫ 1

0

( λ−∆3α

E[q] + ∆1α
+

λ+∆4α

E[q]−∆2α

)
dα, (4.18)

B =
1

2

∫ 1

0

((E[q]−∆2α)(λ−∆3α)

E[q] + ∆1α
+

(E[q] + ∆1α)(λ+∆4α)

E[q]−∆2α

)
dα, (4.19)

l =
1

2

∫ 1

0

((E[q]−∆2α)(λ−∆3α)

(E[q] + ∆1α)(λ+∆4α)
+

(E[q] + ∆1α)(λ+∆4α)

(E[q]−∆2α)(λ−∆3α)

)
dα, (4.20)

m =
1

2

∫ 1

0

(E[q2] + ∆2
1α

2 + 2∆1E[q]α

E[q] + ∆1α
+

E[q2] + ∆2
2α

2 − 2∆2E[q]α

E[q]−∆2α

)
dα (4.21)

and n =
1

2

∫ 1

0

( 1

E[q] + ∆1α
+

1

E[q]−∆2α

)
dα. (4.22)

Derivation of equation (4.17) to equation (4.22) are shown in Appendix B.

To find the optimum solution, we use classical method. For this we equate partial derivatives

to zero
∂ETP

∂y
=

KA

y2
− hA

x
+

hB

x
− hm

2
+

(b+ h)nw2

2y2
= 0

and
∂ETP

∂w
= hl − (b+ h)nw

y
= 0,

which give

y∗ =

√√√√ KA

h
[
A
x − B

x + m
2 − hl2

2(b+h)n

] (4.23)

and w∗ =
hly∗

(b+ h)n
. (4.24)

(Concavity of ETP (w, y) is shown in Appendix C).

Special case i: Only demand rate is in fuzzy sense

In this case, we assume that annual demand is fuzzy number and fraction of defective items is

a random variable. Putting ∆1 = ∆2 = 0, then from equations (4.18)–(4.22), we have

A =
1

2

∫ 1

0

(λ−∆3α

E[q]
+

λ+∆4α

E[q]

)
dα =

1

E[q]

(
λ+

∆4 −∆3

2

)
, (4.25)
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B =
1

2

∫ 1

0
(λ−∆3α+ λ+∆4α)dα = λ+

∆4 −∆3

4
, (4.26)

l =
1

2

∫ 1

0

(λ−∆3α

λ+∆4α
+

λ+∆4α

λ−∆3α

)
dα

=
λ(∆4 +∆3)

2∆2
4

log
(λ+∆4

λ

)
+

λ(∆4 +∆3)

2∆2
3

log
( λ

λ−∆3

)
− 1

2

(∆3

∆4
+

∆4

∆3

)
,(4.27)

m =
1

2

∫ 1

0

(E[q2]

E[q]
+

E[q2]

E[q]

)
dα =

E[q2]

E[q]
(4.28)

and n =
1

2

∫ 1

0

( 1

E[q]
+

1

E[q]

)
dα =

1

E[q]
. (4.29)

The optimal order quantity and backorder quantity for this case can be easily obtained from

equations (4.23) and (4.24), where A, B, l, m and n are given in equations (4.25)–(4.29).

Special case ii: Only fraction of defective items is in fuzzy sense

In this case, it is assumed that the fraction of defective items is fuzzy random variable, while

annual demand is crisp. If we put ∆3 = ∆4 = 0, then from equations (4.18)–(4.22), we have

A =
1

2

∫ 1

0

( λ

E[q] + ∆1α
+

λ

E[q]−∆2α

)
dα

=
λ

2

[ 1

∆1
log

(E[q] + ∆1

E[q]

)
+

1

∆2
log

( E[q]

E[q]−∆2

)]
, (4.30)

B =
λ

2

∫ 1

0

(E[q]−∆2α

E[q] + ∆1α
+

E[q] + ∆1α

E[q]−∆2α

)
dα

=
λE[q](∆1 +∆2)

2

[ 1

∆2
1

log
(E[q] + ∆1

E[q]

)
+

1

∆2
2

log
( E[q]

E[q]−∆2

)]
− λ

2

(∆1

∆2
+

∆2

∆1

)
,(4.31)

l =
1

2

∫ 1

0

(E[q]−∆2α

E[q] + ∆1α
+

E[q] + ∆1α

E[q]−∆2α

)
dα =

B

λ
, (4.32)

m =
1

2

∫ 1

0

(E[q2] + ∆2
1α

2 + 2∆1E[q]α

E[q] + ∆1α
+

E[q2] + ∆2
2α

2 − 2∆2E[q]α

E[q]−∆2α

)
dα and (4.33)

n =
1

2

∫ 1

0

( 1

E[q] + ∆1α
+

1

E[q]−∆2α

)
dα. (4.34)

The optimal order quantity and backorder quantity for this case can be easily obtained from

equations (4.23) and (4.24), for that A, B, l, m and n are given in equations (4.30)–(4.34).

5 Analysis

1. When b → ∞, i.e., shortages are not allowed, then h
b+h → 0. This implies backorder

quantity w∗∗ = 0 and lot size is,

y∗∗ =

√
KA

h[Ax − B
x + m

2 ]
. (5.1)
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2. It is obvious from equations (4.23) and (5.1), y∗ ≥ y∗∗.

3. When b increases, h
(b+h) decreases; consequently both y∗ and w∗ will decrease.

4. When the annual demand rate is crisp and fraction of defective items is a random variable

i.e., ∆3 = 0 = ∆4 and ∆1 = 0 = ∆2. Then from relation (4.18) to (4.22) we get,

A = λ
E[q] , B = λ, l = 1, m = E[q2]

E[q] and n = 1
E[q] . The lot size and backorder quantity

becomes as

y† =

√√√√ 2λK

h
[
E[(1− p)2] + 2λE[p]

x − h(E[1−p])2

(b+h)

] (5.2)

and w† =
hE[1− p]y†

b+ h
. (5.3)

This is [Chang and Ho, 2010] optimal policy.

Further, if we considering q = 1 (i.e., the fraction of defective items, p = 0), then from

relation (5.2) and (5.3), we can obtain

ycl =

√
2Kλ

h

√
b+ h

b

and wcl =
h

b+ h
ycl.

This is the classical EOQ model with backorder.

6 Numerical examples and its sensitivity analysis

The preceding theory can be illustrated with some numerical examples. We adopt the data from

[Wee et al., 2007] paper. The parameters are as follows:

λ = 50 000 units/year, K = $100/order, h = $5/unit/year, x = 175200, d = $0.5/unit, c

= $25/unit, b = $10/unit/year, s = $50/unit, v = $20/unit, The fraction of defective items

p is uniformly distributed with probability density function, f(p) = 25, 0 ≤ p ≤ 0.04. So,

E[p] = 0.02, i.e., E[q] = E[1 − p] = 0.98 and E[q2] = E[(1 − p)2] = 0.9605, ∆′
1 = ∆′

2 = 0.01,

∆′
3 = ∆′

4 = 5000.

Example 1. We first take an example in which shortages are allowed. If we take ∆i = ∆′
i, i =

1, 2, 3, 4. Then the optimal solution for the above data is, y∗ = 1759.39, w∗ = 579.396 and the

total annual profit, ETP = 1214610.

Sensitivity of fuzzy demand and fuzzy random fraction of defective items:

The sensitivity of fuzzy demand and fuzzy random fraction of defective items are shown in Fig.

2, where “percentage change” means, ∆i = ∆′
i + z% of ∆′

i, z = −60,−40,−20, 0, 20, 40, 60 and

i = 1, 2, 3, 4. We can observed from Fig. 2,

1. When ∆2 is fixed and ∆1 increases, then the lot size y∗ decreases marginally while back-

order quantity w∗ and total annual average profit ETP (w∗, y∗) increase slightly, and as a

result, fuzzy estimated fraction of defective items d(E[p̃], 0) = E[p]+ ∆2−∆1
4 also decreases.
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Conversely, if ∆1 is fixed and ∆2 increases, then y∗ increases slightly, but w∗ and ETP

almost constant. Thus we can say that the left spread of fuzzy fraction of defective items

is more sensitive than right spread.

2. When ∆4 is fixed and ∆3 increases, then y∗, ETP (w∗, y∗) decrease, while w∗ varies slightly;

as a result estimated fuzzy annual demand d(λ̃, 0) = λ + ∆4−∆3
4 decreases. Conversely, if

∆3 is fixed and ∆4 increases, then y∗, ETP and w∗ all increase and estimated demand

d(λ̃, 0) also increases. Fig. 2 indicates that the right spread ∆4 of fuzzy demand is more

sensitive then the left spread ∆3.

3. Overall we can say that the fuzzy demand is more sensitive compared to fuzzy random

fraction of defective item.
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Fig. 2: Sensitivity of spreads of fuzzy demand and fuzzy random fraction of defective items when

shortages are allowed

Example 2. In this example, it is assumed that shortages are not allowed. As discussed in the

Analysis section, the backorder quantity w∗∗ = 0 and lot size y∗∗ is given in equation (5.1). For

the data given in the beginning of this section, the optimal solution is, y∗∗ = 1434.92 and total

annual profit ETP (y∗∗) = 1213290.

Let ychang and ETPchang denote the [Chang, 2004] order quantity and expected total annual

profit, respectively. So, for the above data, ychang = 1434.69 and ETPchang = 1212170.
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Fig. 3: Sensitivity of spreads of fuzzy demand and fuzzy random fraction of defective items when

shortages are not allowed

Sensitivity of fuzzy demand and fuzzy random fraction of defective items:

The sensitivity of fuzzy demand and fuzzy random fraction of defective items are shown in Fig.

3.

1. When ∆2 is fixed and ∆1 increases, then both of the order quantities y∗∗ and ychang
decrease while ETP (y∗∗) and ETPchang increase, and estimated fraction of defective items

decreases. Conversely, if ∆1 is fixed and ∆2 increases, then y∗∗ and ychang increase,

ETP (y∗∗) decreases slightly and ETPchang decreases moderately and estimated fraction

of defective items increases.

2. When ∆4 is fixed and ∆3 increases, then y∗∗, ychang, ETP (y∗∗) and ETPchang decrease

and the estimated demand in fuzzy sense increases. Conversely, if ∆3 is fixed and ∆4

increases, then the result is just opposite.

3. The fuzzy demand is more sensitive than the fraction of defective items for both of the

optimal policies.

4. Fig. 3 clearly show that the our model gives the better result than the [Chang, 2004]

model i.e., fuzzy renewal reward theorem is better approach.
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7 Conclusion

This paper deals with an EOQ inventory model for items with imperfect quality under fuzzy

random environment. Shortages are allowed and backlogged. Due to unreliability in supply

process, transportation etc., the received items are not cent percent perfect. The fraction of

defective items may be imprecise (linguistic sense), and this linguistic information may varies

randomly by experts’ experiences. Thus the fraction of defective quality items is a fuzzy random

variable. Similarly, considering a real life business transaction (due to imprecise nature of

demand), the annual demand is represented by a fuzzy number. The fuzziness in demand and

mixture of fuzziness and randomness in the fraction of defective items lead to fuzzy random total

profit per cycle and scheduling period. We have applied fuzzy random renewal reward theorem

to obtain the fuzzy expected profit per unit time. Further, signed distance method is used to

derive the equivalent crisp total profit function from fuzzy function.

We analytically examined the effect of parameters on the optimal policies. When the backo-

rdering cost increases, then the order quantity and backorder quantity both decrease. If backo-

rdering cost tends to infinity, then the backorder quantity is zero, i.e., in this situation shortages

are not allowed. The classical EOQ model with backorder quantity and [Chang and Ho, 2010]

model are special case of our model.

The model is illustrated with the help of numerical examples, and sensitivity of the deferent

parameters are also examined. Numerical examples show the significant differences between our

model and others. Example 2 make a comparison of ours and [Chang, 2004] optimal policies.

This example shows that the fuzzy random renewal reward theorem gives better results. This

model further can be extended with realistic assumptions such as partial backlogging, fuzzy cost

coefficients, etc.

Appendix A

The α-cut of q̃ and λ̃ are, respectively, [q−α , q
+
α ] = [q −∆2 +∆2α, q +∆1 −∆1α] and [λ−

α , λ
+
α ] =

[λ−∆3 +∆3α, λ+∆4 −∆4α].

Now, we use arithmetical operation of intervals as discussed in Preliminaries section [for detail

see [Kaufmann and Gupta, 1991]], to find the α-cut of fuzzy 1
λ̃
, q̃2, ẼTP (w, y), ẼT etc., and

finally ẼTUP (w, y). The α-cut of 1
λ̃
is

[ 1

λ+
α
,
1

λ−
α

]
=

[ 1

λ+∆4 −∆4α
,

1

λ−∆3 +∆3α

]
.

The α-cut of q̃2 is
[
min{q−2

α , q−α q
+
α , q

+2
α }, max{q−2

α , q−α q
+
α , q

+2
α }

]
, but q−α < q+α , hence

[q2−α , q2+α ] = [q−2
α , q+2

α ] = [(q −∆2 +∆2α)
2, (q +∆1 −∆1α)

2].

The α-cut of fuzzy expectations E[q̃] and E[q̃2] are[
E[q−α ], E[q+α ]

]
=

[
E[q]−∆2 +∆2α,E[q] + ∆1 −∆1α

]
and

[
E
[
q2−α ], E[q2+α ]

]
=

[
E[q −∆2 +∆2α]

2, E[q +∆1 −∆1α]
2
]
.
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The α-cut of E[q̃]

λ̃
and E[q̃2]

λ̃
are

[(E[q]

λ

)−

α
,
(E[q]

λ

)+

α

]
=

[E[q−α ]

λ+
α

,
E[q+α ]

λ−
α

]
=

[E[q]−∆2 +∆2α

λ+∆4 −∆4α
+

E[q] + ∆1 −∆1α

λ−∆3 +∆3α

]
and[(E[q2]

λ

)−

α
,
(E[q2]

λ

)+

α

]
=

[E[q2−α ]

λ+
α

,
E[q2+α ]

λ−
α

]
=

[E[q −∆2 +∆2α]
2

λ+∆4 −∆4α
+

E[q +∆1 −∆1α]
2

λ−∆3 +∆3α

]
.

Hence, the left and right end points of the α-cut of ẼTP (w, y) and ẼT are

ETP−
α (w, y) = (v − c− d)y −K − hy2

x
+

(
s− v +

hy

x

)
yE[q−α ] + hwy

E[q−α ]

λ+
α

−hy2

2

E[q2+α ]

λ−
α

− (b+ h)w2

2

1

λ−
α
,

ETP−
α (w, y) = (v − c− d)y −K − hy2

x
+

(
s− v +

hy

x

)
yE[q+α ] + hwy

E[q+α ]

λ−
α

−hy2

2

E[q2−α ]

λ+
α

− (b+ h)w2

2

1

λ+
α
,

ET−
α = y

E[q−α ]

λ+
α

and ET+
α = y

E[q+α ]

λ−
α

.

Appendix B

The end points of the α-cut of ẼTPU(w, y) are

ETPU−
α =

ETP−
α

ET+
α

and ETPU+
α =

ETP+
α

ET−
α

.

Hence,

ETP (w, y) =
1

2

∫ 1

0

(ETP−
α

ET+
α

+
ETP+

α

ET−
α

)
dα

= (v − c− d)A− K

y
A− hy

x
A+

(
s− v +

hy

x

)
B + hwl − hy

2
m− (b+ h)w2

2y
n,

where

A =
1

2

∫ 1

0

( λ−∆3 +∆3α

E[q] + ∆1 −∆1α
+

λ+∆4 −∆4α

E[q]−∆2 +∆2α

)
dα,

B =
1

2

∫ 1

0

( (E[q]−∆2 +∆2α)(λ−∆3 +∆3α)

E[q] + ∆1 −∆1α
+

(E[q] + ∆1 −∆1α)(λ+∆4 −∆4α)

E[q]−∆2 +∆2α

)
dα,

l =
1

2

∫ 1

0

( (E[q]−∆2 +∆2α)(λ−∆3 +∆3α)

(E[q] + ∆1 −∆1α)(λ+∆4 −∆4α)
+

(E[q] + ∆1 −∆1α)(λ+∆4 −∆4α)

(E[q]−∆2 +∆2α)(λ−∆3 +∆3α)

)
dα,

m =
1

2

∫ 1

0

(E[q2] + ∆2
1(1− α)2 + 2∆1E[q](1− α)

E[q] + ∆1 −∆1α
+

E[q2] + ∆2
2(1− α)2 − 2∆2E[q](1− α)

E[q]−∆2 +∆2α

)
dα,

n =
1

2

∫ 1

0

( 1

E[q] + ∆1 −∆1α
+

1

E[q]−∆2 +∆2α

)
dα.
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If we put, 1 − α = β, in the above integrals, then we get the equations (4.18)–(4.22). Since,

0 ≤ ∆1 ≤ E[p], 0 ≤ ∆2 < 1 − E[p], 0 ≤ ∆3 ≤ λ and ∆4 ≥ 0, hence A, B, l, m and n all are

positive.

Appendix C

∂2ETP

∂y2
= −2KA

y3
− (b+ h)nw2

y3
,

∂2ETP

∂w2
= −(b+ h)n

y

and
∂2ETP

∂w∂y
=

(b+ h)nw

y2
.

Since ∂2ETP
∂y2

< 0, ∀ y > 0 and w, and

∂2ETP

∂y2
.
∂2ETP

∂w2
−

(∂2ETP

∂w∂y

)2
=

2KA(b+ h)n

y4
> 0 ∀ y > 0.

Hence, the function of ETP (w, y) is concave for y > 0 and w ≥ 0.
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