Some New Families of Edge Product Cordial Graphs

S. K. Vaidya
Department of Mathematics, Saurashtra University
Rajkot - 360005, Gujarat, India
Email: samirkvaidya@yahoo.co.in
C. M. Barasara
Atmiya Institute of Technology and Science,
Rajkot-360005, Gujarat, India
Email: chirag.barasara@gmail.com

Abstract

For a graph $G=(V(G), E(G))$, an edge labeling function $f: E(G) \rightarrow\{0,1\}$ induces a vertex labeling function $f^{*}: V(G) \rightarrow\{0,1\}$ such that $f^{*}(v)$ is the product of the labels of the edges incident to v. This function f is called edge product cordial labeling of G if the edges with label 1 and label 0 differ by at most 1 and the vertices with label $1 \&$ label 0 also differ by at most 1 . In this paper we investigate some new families of edge product cordial graph.

Keywords: Cordial graph, Product cordial graph, Edge Product cordial graph.
2010 Mathematics Subject Classification: 05C78

1. Introduction

We begin with simple, finite, connected and undirected graph $G=(V(G), E(G))$. We will give brief summary of definitions and other information which are useful for the present investigations. The terms not defined here are used in the sense of Chartrand and Lesniak [1].

Definition 1.1. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain condition(s). If the domain of the mapping is the set of vertices (or edges) then the labeling is called a vertex labeling (or an edge labeling).

For an extensive survey on graph labeling and bibliographic references we refer to Gallian [2].
Most of the graph labeling techniques trace their origin to graceful labeling introduced independently by Rosa [3] and Golomb [4]. The famous Ringel-Kotzig graceful tree conjecture and illustrious work by Kotzig [5] brought a tide of labeling problems having graceful theme.

In 1987, Cahit [6] introduced the cordial labeling as a weaker version of graceful and harmonious labelings. Some labeling schemes are also introduced with minor variations in cordial theme. In 2004, Sundaram et al. [7] have introduced product cordial labeling in which the absolute difference in cordial labeling is replaced by product of the vertex labels.

The edge analogue of product cordial labeling was introduced by Vaidya and Barasara [8] and they named it as edge product cordial labeling which is defined as follows.

Definition 1.2. For a graph $G=(V(G), E(G))$, an edge labeling function $f: E(G) \rightarrow\{0,1\}$
induces a vertex labeling function $f^{*}: V(G) \rightarrow\{0,1\}$ defined as $f^{*}(v)=\prod f\left(e_{i}\right)$ for $\left\{e_{i} \in E(G) / e_{i}\right.$ is incident to $\left.v\right\}$.

Now denoting the number of vertices of G having label i under f^{*} as $v_{f}(i)$ and the number of edges of G having label i under f as $e_{f}(i)$. Then f is called edge product cordial labeling of graph G if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph G is called edge product cordial if it admits edge product cordial labeling.

Definition 1.3. The tadpole is formed by joining the end point of a path P_{m} to a cycle C_{n}. It is denoted by $C_{n} @ P_{m}$.

Definition 1.4. The triangular snake T_{n} is obtained from the path P_{n} by replacing every edge of a path by a triangle C_{3}.

Definition 1.5. The double triangular snake $D T_{n}$ consists of two triangular snakes that have a common path.

Definition 1.6. The quadrilateral snake Q_{n} is obtained from the path P_{n} by replacing every edge of a path by a cycle C_{4}.

Definition 1.7. The double quadrilateral snake $D Q_{n}$ consists of two quadrilateral snakes that have a common path.

Definition 1.8. The double fan $D F_{n}$ is given by $P_{n}+2 K_{1}$.

In this paper we investigate some new families of edge product cordial graphs.

2. Main Results

Theorem 2.1. The tadpole $C_{n} @ P_{m}$ is an edge product cordial graph for $m+n$ is even or $m+n$ is odd and $m>n$ while not an edge product cordial for $m+n$ odd and $m<n$.

Proof. Let $e_{1}, e_{2}, \ldots, e_{m-1}$ be the edges of path P_{m} and $e_{m}, e_{m+1}, \ldots, e_{m+n-1}$ be the edges of cycle C_{n}. Consider tadpole $G=C_{n} @ P_{m}$ having $m+n-1$ vertices and $m+n-1$ edges. Without loss of generality assume that e_{m-1}, e_{m} and e_{m+n-1} are adjacent edges. We consider following two cases.
Case 1: When $m+n$ is even.
Then the result holds as proved by Vaidya and Barasara [8] all unicyclic graph of odd size is edge product cordial.

Case 2: When $m+n$ is odd.
Subcase 1: When $m>n$.

$$
\begin{aligned}
& f\left(e_{i}\right)=1 ; \quad 1 \leq i \leq \frac{m+n-1}{2} \\
& f\left(e_{i}\right)=0 ; \quad \text { otherwise } .
\end{aligned}
$$

In view of the above defined labeling pattern we have

$$
\begin{aligned}
& v_{f}(0)=v_{f}(1)=\frac{m+n-1}{2} \\
& e_{f}(0)=e_{f}(1)=\frac{m+n-1}{2}
\end{aligned}
$$

Subcase 2: When $m<n$.
In order to satisfy the edge condition for edge product cordial graph it is essential to assign label 0 to $\frac{m+n-1}{2}$ edges out of $m+n-1$ edges. The edges with label 0 will give rise at least $\frac{m+n+1}{2}$ vertices with label 0 and at most $\frac{m+n-3}{2}$ vertices with label 1 out of total $m+n-1$ vertices. Therefore $\left|v_{f}(0)-v_{f}(1)\right| \geq 2$. Thus the vertex condition for edge product cordial graph is violated.

Hence, the tadpole $C_{n} @ P_{m}$ is an edge product cordial graph for $m+n$ is even or $m+n$ is odd and $m>n$ while not an edge product cordial for $m+n$ odd and $m<n$.

Example 2.2. The tadpole $C_{5} @ P_{8}$ and its edge product cordial labeling is shown in Figure 1.

Figure 1
Theorem 2.3. The graph T_{n} is edge product cordial graph.
Proof. Let path P_{n} having vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges $e_{1}, e_{2}, \ldots, e_{n-1}$. To construct triangular snake T_{n} from path P_{n} join v_{i} and v_{i+1} to new vertex w_{i} by edges $e_{2 i-1}^{\prime}=v_{i} w_{i}$ and $e_{2 i}^{\prime}=v_{i+1} w_{i}$ for $i=1,2, \ldots, n-1 .\left|V\left(T_{n}\right)\right|=2 n-1$ and $\left|E\left(T_{n}\right)\right|=3 n-3$. We consider following two cases.

Case 1: When n is odd.

$$
\begin{array}{lc}
f\left(e_{i}\right)=1 ; & 1 \leq i \leq \frac{n-1}{2} \\
f\left(e_{i}\right)=0 ; & \text { otherwise } \\
f\left(e_{i}^{\prime}\right)=1 ; & 1 \leq i \leq n-1 \\
f\left(e_{i}^{\prime}\right)=0 ; & \text { otherwise }
\end{array}
$$

In view of the above defined labeling patten we have

$$
\begin{gathered}
v_{f}(0)=v_{f}(1)+1=n \\
e_{f}(0)=e_{f}(1)=\frac{3 n-3}{2}
\end{gathered}
$$

Case 2: When n is even.

$$
\begin{array}{lc}
f\left(e_{i}\right)=1 ; & \quad 1 \leq i \leq \frac{n}{2} \\
f\left(e_{i}\right)=0 ; & \text { otherwise } \\
f\left(e_{i}^{\prime}\right)=1 ; & 1 \leq i \leq n-1 \\
f\left(e_{i}^{\prime}\right)=0 ; & \text { otherwise }
\end{array}
$$

In view of the above defined labeling pattern we have

$$
\begin{gathered}
v_{f}(0)=v_{f}(1)+1=n \\
e_{f}(0)+1=e_{f}(1)=\frac{3 n-2}{2}
\end{gathered}
$$

Thus in all cases we have $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence, the graph T_{n} snake is edge product cordial graph.

Example 2.4. The graph T_{5} and its edge product cordial labeling is shown in Figure 2.

Figure 2
Theorem 2.5. The graph $D T_{n}$ is an edge product cordial graph for odd n and not an edge product cordial for even n.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices and $e_{1}, e_{2}, \ldots, e_{n-1}$ be the edges of path P_{n}. To construct double triangular snake $D T_{n}$ from path P_{n} join v_{i} and v_{i+1} to two new vertices w_{i} and w_{i}^{\prime} by edges $\quad e_{2 i-1}^{\prime}=v_{i} w_{i}, \quad e_{2 i}^{\prime}=v_{i+1} w_{i}, \quad e_{2 i-1}^{\prime \prime}=v_{i} w_{i}^{\prime} \quad$ and $\quad e_{2 i}^{\prime \prime}=v_{i+1} w_{i}^{\prime}$ for $i=1,2, \ldots, n-1$. $\left|V\left(D T_{n}\right)\right|=3 n-2$ and $\left|E\left(D T_{n}\right)\right|=5 n-5$. We consider following two cases.

Case 1: When n is odd.

$$
\begin{aligned}
& f\left(e_{i}\right)=0 ; \quad 1 \leq i \leq \frac{n-1}{2} \\
& f\left(e_{i}\right)=1 ; \quad \text { otherwise } \\
& f\left(e_{i}^{\prime}\right)=0 ; \quad 1 \leq i \leq n-1 \\
& f\left(e_{i}^{\prime}\right)=1 ; \quad \text { otherwise } \\
& f\left(e_{i}^{\prime \prime}\right)=0 ; \quad 1 \leq i \leq n-1 \\
& f\left(e_{i}^{\prime \prime}\right)=1 ; \quad \text { otherwise }
\end{aligned}
$$

In view of the above defined labeling patten we have

$$
\begin{gathered}
v_{f}(0)=v_{f}(1)+1=\frac{3 n-1}{2} \\
e_{f}(0)=e_{f}(1)=\frac{5 n-5}{2}
\end{gathered}
$$

Case 2: When n is even.
In order to satisfy the edge condition for edge product cordial graph it is essential to assign label 0 to at least $\left\lfloor\frac{5 n-5}{2}\right\rfloor$ edges out of $5 n-5$ edges. The edges with label 0 will give rise at least $\frac{3 n}{2}$ vertices with label 0 and at most $\frac{3 n}{2}-2$ vertices with label 1 out of total $3 n-2$ vertices. Therefore $\left|v_{f}(0)-v_{f}(1)\right| \geq 2$. Thus the vertex condition for edge product cordial graph is violated.

Hence, the graph $D T_{n}$ is an edge product cordial graph for odd n and not an edge product cordial for even n.

Example 2.6. The graph $D T_{5}$ and its edge product cordial labeling is shown in Figure 3.

Figure 3
Theorem 2.7. The graph Q_{n} is edge product cordial graph for odd n and not an edge product cordial graph for even n.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices and $e_{1}, e_{2}, \ldots, e_{n-1}$ be the edges of path P_{n}. To construct Q_{n} from path P_{n} we join v_{i} and v_{i+1} to two new vertices w_{i} and w_{i}^{\prime} by edges $e_{2 i-1}^{\prime}=v_{i} w_{i}$, $e_{2 i}^{\prime}=v_{i+1} w_{i}^{\prime}$, and $e_{i}^{\prime \prime}=w_{i} w_{i}^{\prime}$ for $i=1,2, \ldots, n-1 .\left|V\left(Q_{n}\right)\right|=3 n-2$ and $\left|E\left(Q_{n}\right)\right|=4 n-4$. We
consider following two cases.
Case 1: When n is odd.

$$
\begin{array}{lc}
f\left(e_{i}\right)=0 ; \quad 1 \leq i \leq \frac{n-1}{2} \\
f\left(e_{i}\right)=1 ; \quad \text { otherwise } \\
f\left(e_{i}^{\prime}\right)=0 ; \quad 1 \leq i \leq n-1 \\
f\left(e_{i}^{\prime}\right)=1 ; \quad \text { otherwise } \\
f\left(e_{i}^{\prime \prime}\right)=0 ; \quad 1 \leq i \leq \frac{n-1}{2} \\
f\left(e_{i}^{\prime \prime}\right)=1 ; \quad \text { otherwise }
\end{array}
$$

In view of the above defined labeling patten we have

$$
\begin{gathered}
v_{f}(0)=v_{f}(1)+1=\frac{3 n-1}{2} \\
e_{f}(0)=e_{f}(1)=2 n-2
\end{gathered}
$$

Case 2: When n is even.
In order to satisfy the edge condition for edge product cordial graph it is essential to assign label 0 to $2 n-2$ edges out of $4 n-4$ edges. The edges with label 0 will give rise at least $\frac{3 n}{2}$ vertices with label 0 and at most $\frac{3 n}{2}-2$ vertices with label 1 out of total $3 n-2$ vertices. Therefore $\left|v_{f}(0)-v_{f}(1)\right| \geq 2$. Thus the vertex condition for edge product cordial graph is violated.

Hence, the graph Q_{n} is an edge product cordial graph for odd n and not an edge product cordial for even n.

Example 2.8. The graph Q_{5} and its edge product cordial labeling is shown in Figure 4.

Theorem 2.9. The graph $D Q_{n}$ is edge product cordial for odd n and not an edge product cordial for even n.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices and $e_{1}, e_{2}, \ldots, e_{n-1}$ be the edges of path P_{n}. To construct $D Q_{n}$ from path P_{n} we join v_{i} and v_{i+1} to four new vertices $w_{i}, w_{i}^{\prime}, x_{i}$ and x_{i}^{\prime} by edges $e_{2 i-1}^{\prime}=v_{i} w_{i}, e_{2 i}^{\prime}=v_{i+1} w_{i}^{\prime}, e_{i}^{\prime \prime}=w_{i} w_{i}^{\prime}, e_{2 i-1}^{a}=v_{i} x_{i}, e_{2 i}^{a}=v_{i+1} x_{i}^{\prime}$ and $e_{i}^{b}=x_{i} x_{i}^{\prime}$ for $i=1,2, \ldots, n-1$.
$\left|V\left(D Q_{n}\right)\right|=5 n-4$ and $\left|E\left(D Q_{n}\right)\right|=7 n-7$. We consider following two cases.
Case 1: When n is odd.

$$
\begin{array}{lc}
f\left(e_{i}\right)=0 ; \quad 1 \leq i \leq \frac{n-1}{2} \\
f\left(e_{i}\right)=1 ; \quad \text { otherwise } \\
f\left(e_{i}^{\prime}\right)=0 ; \quad 1 \leq i \leq n-1 \\
f\left(e_{i}^{\prime}\right)=1 ; \quad \text { otherwise } \\
f\left(e_{i}^{\prime \prime}\right)=0 ; \quad 1 \leq i \leq \frac{n-1}{2} \\
f\left(e_{i}^{\prime \prime}\right)=1 ; \quad \text { otherwise } \\
f\left(e_{i}^{a}\right)=0 ; \quad 1 \leq i \leq n-1 \\
f\left(e_{i}^{a}\right)=1 ; \quad \text { otherwise } \\
f\left(e_{i}^{b}\right)=0 ; \quad 1 \leq i \leq \frac{n-1}{2} \\
f\left(e_{i}^{b}\right)=1 ; \quad \text { otherwise }
\end{array}
$$

In view of the above defined labeling patten we have

$$
\begin{gathered}
v_{f}(0)=v_{f}(1)+1=\frac{5 n-3}{2} \\
e_{f}(0)=e_{f}(1)=\frac{7 n-7}{2}
\end{gathered}
$$

Case 2: When n is even.
In order to satisfy the edge condition for edge product cordial graph it is essential to assign label 0 to at least $\left\lfloor\frac{7 n-7}{2}\right\rfloor$ edges out of $7 n-7$ edges. The edges with label 0 will give rise at least $\frac{5 n-2}{2}$ vertices with label 0 and at most $\frac{5 n-6}{2}$ vertices with label 1 out of total $5 n-4$ vertices. Therefore $\left|v_{f}(0)-v_{f}(1)\right| \geq 2$. Thus the vertex condition for edge product cordial graph is violated.

Hence, the graph $D Q_{n}$ is an edge product cordial graph for odd n and not an edge product cordial for even n.

Example 2.10. The graph $D Q_{5}$ and its edge product cordial labeling is shown in Figure 5.

Theorem 2.11. The graph $D F_{n}$ is not an edge product cordial graph.

Proof. We consider following two cases.
Case 1: When n is odd.
In order to satisfy the edge condition for edge product cordial graph it is essential to assign label 0 to $\frac{3 n-1}{2}$ edges out of $3 n-1$ edges. The edges with label 0 will give rise at least $\frac{n+5}{2}$ vertices with label 0 and at most $\frac{n-1}{2}$ vertices with label 1 out of total $n+2$ vertices. Therefore $\left|v_{f}(0)-v_{f}(1)\right| \geq 3$. Thus the vertex condition for edge product cordial graph is violated.

Case 2: When n is even.
In order to satisfy the edge condition for edge product cordial graph it is essential to assign label 0 to at least $\left\lfloor\frac{3 n-1}{2}\right\rfloor$ edges out of $5 n-5$ edges. The edges with label 0 will give rise at least $\frac{n+4}{2}$ vertices with label 0 and at most $\frac{n}{2}$ vertices with label 1 out of total $n+2$ vertices. Therefore $\left|v_{f}(0)-v_{f}(1)\right| \geq 2$. Thus the vertex condition for edge product cordial graph is violated.

Hence, the graph $D F_{n}$ is not an edge product cordial graph.

3. Concluding Remarks

We contribute some new results on edge product cordial labeling. The labeling pattern is demonstrated by means of illustrations. To derive similar results for other graph families and in the context of different labeling problems is an open area of research.

Acknowledgement.

The authors are highly thankful to anonymous referee for valuable suggestions and kind comments.

REFERENCES

1. G. Chartrand and L. Lesniak, Graphs and Digraphs, 4/e, Chapman \& Hall, New York, 2004.
2. J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19, \#DS6, 2012. Available online: http://www.combinatorics.org
3. A. Rosa, On certain valuation of the vertices of the graph, in Theory of graphs (International Symposium, Rome, July 1963), (1964) 349-355.
4. S. W. Golomb, How to number a graph, in Graph Theory and Computing (edited by R. C. Read), Academic Press, New York, 23-37, 1972.
5. A. Kotzig, On Certain Vertex Valuations of Finite Graphs, Util. Math., 4 (1973) 67-73.
6. I. Cahit, Cordial Graphs: A weaker version of graceful and harmonious Graphs, Ars Combinatoria, 23 (1987) 201-207.
7. M. Sundaram, R. Ponraj and S. Somasundaram, Product cordial labeling of graphs, Bulletin of Pure and Applied Sciences (Mathematics and Statistics), 23E (2004) 155-163.
8. S. K. Vaidya and C. M. Barasara, Edge Product Cordial Labeling of Graphs, Journal of

Mathematical and Computational Science, 2(5) (2012) 1436-1450.
Available online: http://scik.org/index.php/jmcs/article/view/420/189

