AMO - Advanced Modeling and Optimization, Volume 15, Number 1, 2013 On the Decomposition of Total Graphs

Jijo Thomas and Joseph Varghese
Department of Mathematics, Christ University, Bangalore, India
Email: josephvk@gmail.com

Abstract

Obtaining a graph from any given graph is a popular area of research in Graph Theory. Concept of Total Graph falls under this category. All the vertex-vertex adjacency, vertexedge incidence and edge-edge incidence relations are considered in the formation of the Total Graph. For a finite simple connected graph $\mathrm{G}, \mathrm{T}(\mathrm{G})$ can be decomposed into G and complete subgraphs of order equal to the degrees of each of the vertices in G. Also, T(G) can be decomposed into disjoint union of $\mathrm{L}(\mathrm{G})$ and q copies of C_{3}, where q is the size of G .

Keywords: Degree sequence, Total Graph, Line Graph, Incidence Graph.

2010 Mathematics Subject Classification: 05C78

1. Introduction

We consider a graph $\mathrm{G}(p, q)$ with p vertices and q edges which is simple, connected, undirected and finite. Here, p and q are respectively called the order and size of G. Let v be a vertex of G . The number of edges incident with v is known as the degree of v, denoted by $\operatorname{deg}_{\mathrm{G}}(v)$, or merely by $\operatorname{deg}(v)$.[Chartrand, 2006] If the degrees of the vertices of a graph G are listed in a non-increasing sequence S , then S is called the degree sequence of G. For a graph G, obtaining edge disjoint sub-graphs (i.e. intersection of the edge set of all the sub-graphs is empty) whose union is the actual graph G is called decomposition of the given graph G. Line Graph, $\mathrm{L}(\mathrm{G})$, of undirected graph G is a graph that represents the adjacencies between the edges of G. Given a graph G, each vertex of $L(G)$ represents an edge of G and two vertices of $L(G)$ are adjacent if and only if their corresponding edges are adjacent in G. An Incidence Graph, $\mathrm{I}(\mathrm{G})$, is a graph whose vertices represent vertices and edges in G. Two vertices in $\mathrm{I}(\mathrm{G})$ are adjacent if and only if there is a vertex-edge incidence in G. Total Graph of a graph G, denoted by $T(G)$, is a graph whose vertices are represented by each vertex and each edge of G . There is an edge between two vertices in $T(G)$ if and only if there is edge-edge adjacency or edgevertex incidence or vertex-vertex adjacency in G. [West, 2002 and Harary, 2001]

We know that $\mathrm{T}(\mathrm{G})$ is isomorphic to the square of the subdivision graph $\mathrm{S}(\mathrm{G})$.
i.e. $\mathbf{T}(\mathbf{G}) \approx[\mathbf{S}(\mathbf{G})]^{2}$.[Harary, 2001]

But we also know that $\mathrm{S}(\mathrm{G}) \approx \mathrm{I}(\mathrm{G})$.
Hence, $T(G)$ is isomorphic to the square of the incidence graph $I(G)$.
i.e. $\mathbf{T}(\mathbf{G}) \approx[\mathbf{I}(\mathbf{G})]^{2}$

From the definition of total graph we can also define the total graph as the disjoint union of given graph, line graph and incidence graph.
i.e. $\mathbf{T}(\mathbf{G})=\mathbf{G} \cup \boldsymbol{L}(\boldsymbol{G}) \cup I(\boldsymbol{G})$

This is possible because in $T(G)$ vertex-vertex adjacency will give us G itself, edge-edge adjacency gives us line graph of G, denoted by $L(G)$ and vertex-edge incidence will give
us incidence graph of G, denoted by $I(G)$. From the definition of total graph G, it is obvious that $\mathrm{L}(\mathrm{G})$ and $\mathrm{I}(\mathrm{G})$ in $\mathrm{T}(\mathrm{G})$ are disjoint.

2. Decomposition of $T(G)$ into G and K_{n} 's

Let $\mathrm{K} n$ denote a complete graph of n vertices. Every edge in G becomes a K_{3} in $T(G)$. If we explore this phenomenon, we obtain the following result.

Theorem 2.1. Let G be an undirected simple finite graph. Total Graph of G can be decomposed into G and $K_{d_{i}+:}$'s, where d d_{i} 's are degrees of each of the vertices in G. i.e. $T(G)$ $=G \mathrm{U} \mathrm{K}_{\mathrm{d} 1+1} \mathrm{U} \mathrm{K}_{\mathrm{d} 2+1} \mathrm{U} \ldots \ldots . . \mathrm{U} \mathrm{K}_{\mathrm{dn}+1}$, where d_{i} 's are degrees of each vertex in G.

Proof: Since $T(G)$ is the total graph of G, every vertex in $T(G)$ is represented by either a vertex or an edge in G. Two vertices in $T(G)$ are adjacent if and only if there is a corresponding vertex-vertex adjacency or edge-edge adjacency or an edge-vertex incidence in G. Now, the vertex-vertex adjacency in G will give exactly the same copy of G in $T(G)$. We also know that for each vertex-edge incidence and edge-edge adjacency in G, there exists an edge in $T(G)$.
Let v_{1} be an arbitrary vertex in G with degree d_{1}.
So v_{1} is incident with d_{1} edges.
Let $\mathrm{e}_{1}, \mathrm{e}_{2} \ldots \ldots . \mathrm{e}_{\mathrm{d} 1}$ be these edges.
i.e., all these e_{i} 's are incident with v_{1}. Hence in $\mathrm{T}(\mathrm{G})$, a vertex corresponding to v_{1} is adjacent to all vertices corresponding to $\mathrm{e}_{\mathrm{i} \text { 's }}$.
Since in G, all e_{i} 's are incident to v_{1}, obviously all e_{i} 's are adjacent with each other.
Hence all e_{i} 's will form a complete graph with d_{i} vertices in $T(G)$.
But all e_{i} 's are incident with v_{1} and hence with the addition of the corresponding vertex in $T(G)$ to the already formed complete graph, the new complete graph is with $d_{1}+1$ vertices. i.e. $K_{d 1+1}$ is formed in $T(G)$.

Since v_{1} is arbitrary, it is true for all vertices.
Now we have to show that all such complete graphs are disjoint.
Let w be an edge common to $\mathrm{K}_{\mathrm{d} 1+1}$ and $\mathrm{K}_{\mathrm{d} 2+1}$ in $\mathrm{T}(\mathrm{G})$.
i.e., w is there in $\mathrm{K}_{\mathrm{d} 1+1}$ and w is also there in $\mathrm{K}_{\mathrm{d} 2+1}$.

Hence the end vertices of w must be in both $\mathrm{K}_{\mathrm{d} 1+1}$ and $\mathrm{K}_{\mathrm{d} 2+1}$.
Let $w=\mathrm{e}_{1} \mathrm{e}_{2}$.
We know that e_{1} and e_{2} are adjacent in $T(G)$ since their corresponding edges are incident with some v_{1} in G .
Hence they are adjacent in $\mathrm{K}_{\mathrm{d} 1+1}$.
We know that since w is also in $\mathrm{K}_{\mathrm{d} 2+1}$ and the corresponding vertices of e_{1} and e_{2} are adjacent in G, which means they are incident with another vertex other than v_{1}.
Let it be v_{2}.
Therefore e_{1} and e_{2} are incident with v_{1} and v_{2}.
But this will lead to a multiple edge in G .
It is a contradiction, since G is a simple graph.
Hence all the complete graphs in $T(G)$ are disjoint.
Hence we can decompose $T(G)$ into disjoint union of G and p complete graphs with di+1 vertices, where $\mathrm{d} i$ is the degree of each of the p vertices in G .
Hence the proof.
Corollary 2.1.1. Let K_{n} be a complete graph with n vertices. Then $T\left(K_{n}\right)=$ $\bigcup_{i=1}^{n+1} K_{n_{i}} K_{n i}$'s are copies of K_{n}.

Proof: From Theorem 2.1 we get, $T(G)=G U K_{d 1+1} U_{K d 2+1} U \ldots \ldots \ldots . U_{K d n+1}$, where d_{i} 's are degrees of the vertices in K_{n}.
There are n vertices in K_{n} all of degree $n-1$.
i.e. $d_{i}=n-1$

Hence
$\mathrm{T}(\mathrm{G})=\mathrm{G} \mathrm{U} \mathrm{K}_{\mathrm{n}-1+1} \mathrm{U} \mathrm{K}_{\mathrm{n}-1+1} \mathrm{U} \ldots \ldots . . . \mathrm{U} \mathrm{K}_{\mathrm{n}-1+1}$
$T(G)=G^{\prime} U K_{n} U K_{n} U \ldots \ldots \ldots . . U K_{n}$.
So $T(G)$ can be decomposed into G and union of n copies K_{n}. Here G is K_{n}.
Therefore $T(G)$ can be decomposed into union of $(n+1) K_{n}$'s.
i.e., $T\left(K_{n}\right)=\bigcup_{i=1}^{n+1} K_{v_{i}}$, where $K_{n i}$'s are copies of K_{n}.

Hence the proof.

3. Decomposition of $T(G)$ into $L(G)$ and C_{3} 's

We know that total graph of any graph is the disjoint union of line graph, incidence graph of the given graph and the given graph itself. The edge-vertex incidence of each edge in G is producing a C_{3} in $T(G)$. It is seen that number of these C_{3} 's can be found out. It is described in the next theorem.

Theorem 3.1. Let $G(p, q)$ be a simple undirected finite simple graph. Then $T(G)$ can be decomposed into $L(G)$ and q copies of C_{3}.

Proof: Let $G(p, q)$ be the given Graph. The total graph of G is the disjoint union of G and the line graph of G and incidence graph of G.
i.e. $\mathrm{T}(\mathrm{G})=\mathrm{G} \cup L(G) \cup I(G)$ where $\mathrm{G}, \mathrm{L}(\mathrm{G})$ and $\mathrm{I}(\mathrm{G})$ are disjoint.

Clearly, $T(G)$ contains $L(G)$.
So when we remove $L(G)$ from $T(G)$ what is remaining $T(G)$ is $G U I(G)$.
Let $e=u v$ be an edge in G.
Hence e will become a vertex in $\mathrm{I}(\mathrm{G})$ and will be incident with u and v.
Therefore $e u$ and $e v$ will be two distinct edges in $\mathrm{I}(\mathrm{G})$.
Evidently in GU I(G), e-u-v-e will form C_{3}.
Since e is arbitrary, for each edge in G we get a new copy of C_{3}.
Since G contains q edges, we get q copies of C_{3}.
Thus $\mathrm{T}(\mathrm{G})$ can be decomposed into $\mathrm{L}(\mathrm{G})$ and q copies of C_{3}.
Hence the proof.
Corollary 3.1.1. Let C_{n} be the cycle with n vertices, then $T\left(C_{n}\right)$ can be decomposed into C_{n} and n copies of C_{3}.

Proof: The proof is direct from the Theorem 3.1.
Here, G is $\mathrm{C} n$. $\mathrm{C} n$ has n edges.
Also, $L\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{C}_{\mathrm{n}}$.
Hence from the above theorem we can conclude that $T\left(C_{n}\right)$ can be decomposed into C_{n} and n copies of C_{3}.
Hence the proof.

4. Conclusion

In this paper we had concentrated on decomposition of total graphs. The results that we discussed in decomposition of total graph are $T(G)=G U K_{d 1} U K_{d 2} U \ldots \ldots . . U K_{d n}$. and $\mathrm{T}(\mathrm{G}(\mathrm{p}, \mathrm{q}))=\mathrm{L}(\mathrm{G}) \mathrm{Uq} \mathrm{C}_{3}$. There is a lot of scope for the further study of decomposition of total graphs of some graph operations like Cartesian product, tensor product etc.

REFERENCES

1. Chartrand, G. and Zhang, P., (2006) "Degree Sequences," in Introduction to Graph Theory, Tata McGraw-Hill Ltd., New York.
2. Harary, F., (2001) Graph Theory, Narosa Publishing House, New Delhi, India.
3. West, D. B., (2002) "Graphic Sequences," in Introduction to Graph Theory (Second Edition), Pearson Education, New Delhi, India.
