In this paper we state a definition of v_k-Cyclic path covering to find the Cyclic path covering number of a digraph in which some of the vertex have privilege of being interior vertex of more than one path and we find v_k-Cyclic path Covering Number of simple digraph and we defined the $\{v_{k_1}, v_{k_2}, v_{k_3} \ldots v_{k_m}\}$- Cyclic path covering and have found the $\{v_{k_1}, v_{k_2}, v_{k_3} \ldots v_{k_m}\}$- Cyclic path covering number of such coverings. Also we defined e_m-Cyclic path Covering Number and finally found the $\{e_m, v_k\}$-Cyclic path covering number of any digraph.

Keywords: Cyclic path cover, Cyclic path covering number, v_k-Cyclic path cover, e_m-Cyclic path Covering Number.

2010 Mathematics Subject Classification: 05C38, 05C45, 05C70.

1. Introduction

If we consider the context of mobile traffic streams in a city road network, every vehicle driver would wish to encounter as many green signals at junctions as possible so as to minimize fuel consumption and travel time as also maximize unhindered distance so travelled. This necessitates relative optimization of signal times at various junctions in the road network in order to provide maximum possible average length mobile traffic streams-one may expect such an optimal traffic flow in the network to occur with maximum probability when the number mobile traffic streams in the network is minimum. Thus for any finite digraph G the parameter $\psi(G) = \min \{|\psi| : \psi \in G_G\}$, where G_G denotes the set of all distinct Cyclic path covers of G, is an ideal limit for any reasonably realistic measure of “mobility” of traffic flow in the city road network with G as the underlying digraph. In our recent development of city in many places there are so many flyovers and over bridges at the road crossings to minimise the traffic signals. This motivates the development of v_k-Cyclic path cover which is being discussed elaborately in this paper. The concept of path decomposition and path covering number of a digraph was introduced by Harary[1]. The preliminary results on this paper were obtained by Harary and Schwenk[2], Perecohe[3] and Stanton etal.[4], [5]. Here the paths may intersect any number times only at the specified vertex of G. To get non-intersecting paths we impose some extra conditions in the definition of Path Covering. We follow the notations and terminology of Harary [6],[7]. All digraph considered in this paper are assumed to be connected digraphs without isolated points. Let $D = (V,E)$ be a digraph. We denote the number of vertices if D by n and the number of edges in D by e.

Definition 1.1. A Path covering of a digraph D is a collection ψ of (not necessarily open) paths in D such that every edge of D is in exactly one path in ψ and the minimum cardinality taken over all Path covers ψ of D with $|\psi| = \eta$ is called the Path covering number of D.

Definition 1.2. [8],[9]
A Cyclic Path covering of a digraph D is a collection Γ of (not necessarily open) paths in D whose union is D satisfying the conditions for distinct paths P_i and P_j with terminal vertices u, v and w, z respectively,

$$P_i \hat{\cup} P_j = \begin{cases} \{A, A \text{ is the subset of the set } \{u, v, w, z\} \} & \text{if } P_i \text{ and } P_j \text{ are cyclic.} \\
\emptyset, & \text{if } \phi \end{cases}$$

Definition 1.3. [8],[9],[10],[11]
The Cyclic Path covering number of D is defined to be the minimum cardinality taken over all Cyclic Path covers of D. Any Cyclic Path cover Γ of G with $|\Gamma| = \gamma$ is called a minimum Cyclic Path cover of D.

2. v_k - Cyclic Path Cover

Definition 2.1. [11]
A v_k-Cyclic Path covering of a digraph D is a collection Γ_k of paths (not necessarily open) in D whose union is D satisfying the conditions for distinct paths P_i and P_j with terminal vertices u, v and w, z respectively,

$$P_i \hat{\cup} P_j = \begin{cases} \{A, A \text{ is the subset of the set } \{u, v, w, z\} \} & \text{if } P_i \text{ and } P_j \text{ are cyclic.} \\
\emptyset, & \text{if } \phi \end{cases}$$

Definition 2.2 [11]
The v_k-Cyclic path covering number γ_k of D is defined to be the minimum cardinality taken over all v_k-Cyclic path covers of D.

Example 2.3.
Consider the following digraph (Figure.1). The v_k-Cyclic path covers are

![Figure 1](image)

Here the path covers are

- $\psi_1 = \{v_1v_2v_4v_5, v_3v_2v_3\}$,
- $\psi_2 = \{v_1v_2v_3, v_2v_4v_5\}$,
- $\psi_3 = \{v_1v_2v_4, v_4v_5, v_3v_2v_3\}$,
- $\psi_4 = \{v_1v_2, v_2v_4, v_4v_5, v_3v_2, v_2v_3\}$

Then the path covering number = 2.
The v_2-Cyclic Path cover are $\{v_1v_2v_3,v_2v_4v_5v_2\}$, $\{v_1v_2v_4v_5v_2v_3\}$. Therefore the v_2- cyclic path covering number is $\gamma_2 = 1$.

Example 2.4. Consider the digraph D given in the following figure.

![Figure 2](image)

Here the path covers are $\psi_1 = \{aebcda, ced\}$,
$\psi_2 = \{aeda, cebc, cd\}$,
$\psi_3 = \{aebcda, ced\}$
$\psi_4 = \{ae, eb, bc, ce, cd, ed, da\}$

Then the path covering number is 2.

The Cyclic path covers are $\{ae, eb, bc, ce, cd, ed, da\}$, $\{ebcda, ce, cd\}$, $\{ebe, cdae, cd\}$, $\{edae, ebc, ce, cd\}$, $\{edae, ebd, ce\}$, $\{dae, ebc, ced, cd\}$. Here the Cyclic path covering number $\gamma = 3$.

The v_3-cyclic path cover is $\{aebcda, ced\}$. Therefore the v_3- cyclic path covering number is $\gamma_3 = 2$.

Lemma 2.5. In a digraph D for a vertex v_k with degree 1 or 2 the v_k Cyclic path covering number is same as that of Cyclic path cover.

Proof: As there is almost one and only one path is possible through the vertex v_k, there is no change in the number of directed paths to cover the digraph D. With reference to the definitions 1.2 and 1.3 we have the v_k-Cyclic path covering number is same as that of Cyclic path covering number.

Lemma 2.6. In a digraph D for a vertex of degree 3 the v_k-path covering number is γ.

Proof: Let v_k be a vertex of degree 3 on a digraph D. There is only one path through v_k. Further there is no chance for more than one path through v_k. Therefore $\gamma_k = \gamma$.

Lemma 2.7. In a simple digraph D with a vertex v_k with $d'(v_k) = d'(v_k) = 2$ the v_k-Cyclic path cover number is $\gamma_k = \gamma - 1$.

65
Proof: Let v_k be a vertex with total degree 4. Then there must be 4 adjacent vertices say $v_{k1}, v_{k2}, v_{k3}, v_{k4}$ and there are 5 different possible degree configuration at v_k. They are (i) $d^-(v_k) = 4$ and $d^+(v_k) = 0$ (ii) $d^-(v_k) = 3$ and $d^+(v_k) = 1$, (iii) $d^-(v_k) = 2$ and $d^+(v_k) = 2$, (iv) $d^-(v_k) = 1$ and $d^+(v_k) = 3$, and (v) $d^-(v_k) = 0$ and $d^+(v_k) = 4$. As more than one directed path is allowed through v_k, the v_k-Cyclic path cover ψ_k, allows two different directed paths through the same vertex v_k as interior vertex. This is possible only in the case (iii). Actually, the Cyclic path cover ψ admits only one path P_1 through the vertex v_k as internal vertex. In the case (iii), there can be two directed paths in ψ_k in which v_k is the terminal vertex of two directed paths. These two paths create only one path P_2 in which v_k is internal vertex and $P_1 \neq P_2$. The remaining vertices in D follows the conditions that are same in ψ an ψ_k. Thus, we have ψ_k with one path less than the number of paths in ψ. Thus we have $\gamma_k = \gamma - 1$.

Lemma 2.8. In a simple digraph D with a vertex v_k with $d^-(v_k) = 2$ and $d^+(v_k) = 3$ or $d^-(v_k) = 3$ and $d^+(v_k) = 2$, the v_k-Cyclic path cover number is $\gamma_k = \gamma - 1$.

Proof: Let v_k be a vertex with degree 5. Then there will be 5 adjacent vertices say $v_{k1}, v_{k2}, v_{k3}, v_{k4}$ and v_{k5} and there are 6 different possible degree configuration at v_k. They are (i) $d^-(v_k) = 5$ and $d^+(v_k) = 0$ (ii) $d^-(v_k) = 4$ and $d^+(v_k) = 1$, (iii) $d^-(v_k) = 3$ and $d^+(v_k) = 2$, (iv) $d^-(v_k) = 2$ and $d^+(v_k) = 3$, (v) $d^-(v_k) = 1$ and $d^+(v_k) = 4$ and (vi) $d^-(v_k) = 0$ and $d^+(v_k) = 5$. As more than one path allowed through v_k, the v_k-Cyclic path cover ψ_k, allows two
The cyclic path cover ψ admits only one path P_1 through the vertex v_k as internal vertex. There are three paths in ψ in which v_k is one of terminal vertex in their respective paths. Any two of these paths can be joined at v_k and create only one path P_2 in which v_k is internal vertex and $P_1 \neq P_2$. The remaining vertices in D follows the conditions as they are in ψ and ψ_k. Thus in ψ_k we have one path less than the number of paths in ψ.

Therefore we have $\gamma_k = \gamma - 1$.

Lemma 2.9. In a simple digraph D with a vertex v_k with $d^-(v_k) = 3$ and $d^+(v_k) = 3$, the v_k-cyclic path cover number is $\gamma_k = \gamma - 2$.

Proof: Let v_k be a vertex with degree 6. Then there must be 6 adjacent vertices say v_{k1}, v_{k2}, v_{k3}, v_{k4}, v_{k5} and v_{k6} and there are 7 different possible degree configuration at v_k. They are (i) $d^-(v_k) = 6$ and $d^+(v_k) = 0$, (ii) $d^-(v_k) = 5$ and $d^+(v_k) = 1$, (iii) $d^-(v_k) = 4$ and $d^+(v_k) = 2$, (iv) $d^-(v_k) = 3$ and $d^+(v_k) = 3$, (v) $d^-(v_k) = 2$ and $d^+(v_k) = 4$, (vi) $d^-(v_k) = 1$ and $d^+(v_k) = 5$ and (vii) $d^-(v_k) = 0$ and $d^+(v_k) = 6$. As more than one path are allowed through v_k, the v_k cyclic path cover ψ_k, allows three different paths through the same vertex v_k as interior vertex. The cyclic path cover ψ admits only one path P_1 through the vertex v_k as internal vertex. There are four directed paths in ψ_k in which v_k is one of terminal vertex in each directed paths. These four directed paths combined at v_k to create two different directed paths P_2 and P_3 different from P_1 in which v_k is internal vertex. The remaining vertices in D follows the conditions as they are in ψ and ψ_k.

Thus in ψ_k we have two paths less than the number of paths in ψ. (ie) $\gamma_k = \gamma - 2$.

Theorem 2.10. Let v_k be the vertex in D with $d^-(v_k) = m$ and $d^+(v_k) = n$. Then the v_k-Cyclic path covering number $\gamma_k = \gamma - \left[\min\{d^-(v_k),d^+(v_k)\} - 1 \right]$, where γ is the Cyclic path covering number of D.

Proof: The vertex v_k may have the degree $1, 2, 3, \ldots$. If v_k has degree 1 or 2 then the result is obvious by using the lemma 2.5. If the degree of the vertex is 3 then we have $\gamma_k = \gamma$ (lemma 2.6). If the vertex v_k is such that $d^-(v_k) = d^+(v_k) = 2$, the v_k-Cyclic path cover number is $\gamma_k = \gamma$ (lemma 2.7). For the vertex v_k with total degree 5 such that with $d^-(v_k) = 2$ and $d^+(v_k) = 3$ or $d^-(v_k) = 3$ and $d^+(v_k) = 2$, the v_k-Cyclic path cover number is $\gamma_k = \gamma - 1$ (lemma 2.8). Even if the vertex v_k with degree 6 such that $d^-(v_k) = 3$ and $d^+(v_k) = 3$, the v_k-Cyclic path cover number is $\gamma_k = \gamma - 2$ (lemma 2.9). Thus by considering all these results by induction we have the v_k-Cyclic path covering number $\gamma_k = \gamma - \left[\min\{d^-(v_k),d^+(v_k)\} - 1 \right]$, where γ is the Cyclic path covering number of D.

Definition 2.11. Let $v_{k1}, v_{k2}, v_{k3}, \ldots, v_{km}$ are some of the vertices of D. Then $\{v_{k1}, v_{k2}, v_{k3}, \ldots, v_{km}\}$-Cyclic path covering of the digraph D is a collection $\Gamma_{v_{k1}, v_{k2}, v_{k3}, \ldots, v_{km}}$ of (not necessarily open) paths in D satisfying the conditions for distinct paths P_i and P_j with terminal vertices u, v, w, z respectively,

$$P_i \not\subset P_j$$

if P_i and P_j are cyclic.

$$V_{u1}, V_{u2}, \ldots, V_{um}$$

if V_{ui} is the internal vertex of some P_{ik} and P_{jk}.

Definition 2.12. The $\{v_{k1}, v_{k2}, v_{k3}, \ldots, v_{km}\}$-Cyclic path covering number $\hat{\gamma}_{v_{k1}, v_{k2}, v_{k3}, \ldots, v_{km}}$ of D is defined to be the minimum cardinality taken over all $\{v_{k1}, v_{k2}, v_{k3}, \ldots, v_{km}\}$-Cyclic path covers of D.

Corollary 2.13. Let $v_{k1}, v_{k2}, v_{k3}, \ldots, v_{km}$ are some of the vertices of D. Then $\{v_{k1}, v_{k2}, v_{k3}, \ldots, v_{km}\}$-Cyclic path covering number $\gamma_{v_{k1}, v_{k2}, v_{k3}, \ldots, v_{km}}$ of the digraph D is

$$\gamma_{v_{k1}, v_{k2}, v_{k3}, \ldots, v_{km}} = \gamma - \sum_{i=1}^{\infty} \left[\min\{d^-(v_{ki}),d^+(v_{ki})\} - 1 \right]$$

3. e_m-Cyclic Path Cover

Definition 3.1. [11],[12],[13],[14]

A e_m-Cyclic directed path cover of a digraph D is a collection ψ_m of paths (not necessarily open) in D whose union is D satisfying the following conditions for distinct paths P_i and P_j with terminal vertices u, v, w, z respectively,
\{e_m, v_h\}-Cyclic Path Covering Number of Digraphs

Pi \(\bar{E}P_j = \begin{cases}
A, & \text{if } P_i \text{ and } P_j \text{ are cyclic.} \\
\phi, & \text{if } e_m \text{ is one of the arc in both } P_i \text{ and } P_j \\
e_m, & \text{if } e_m \text{ is the subset of the set } \{u, v, w, z\}
\end{cases}\)

Definition 3.2. [11],[12],[13],[14]

The \(e_m\)-Cyclic path covering number \(\gamma_m\) of \(D\) is defined to be the minimum cardinality taken over all \(e_m\)-Cyclic directed path covers of \(D\).

Theorem 3.3. For a digraph \(D\) with edge \(e_m\) the \(e_m\)-Cyclic path covering number is

\[
\gamma_m = \gamma - \left[\min \left\{ d^-(v'_m), \ d^- (v^h_m) \right\} - 1 \right]
\]

where \(\gamma\) is the Cyclic path covering number of \(D\) and \(v'_m\) and \(v^h_m\) are the tail and head vertex of the arc \(e_m\).

Proof: let \(\psi_m\) be the \(e_m\)-Cyclic path covering of the digraph \(D\) and \(\gamma_m\) be the \(e_m\) Cyclic path covering number of \(D\). Here \(e_m\) may be in any one of the following cases:

1) \(e_m\) may be the arc in a directed path \(P\) of length more than 1.
2) \(e_m\) may be a directed path of length 1.

Case (1): As \(e_m\) is an arc in \(P\) and let \(v'_m\) and \(v^h_m\) be the tail and head vertices of the arc \(e_m\).

Now arc \(e_m\) may be in one of the following 2 cases.

i) \(e_m\) is the intermediate arc in \(P\).
ii) \(e_m\) is the terminal arc in \(P\).

Case (ii) Then \(e_m\) has the following cases.

a) Degree of one vertex is 1.

Then there is nothing to prove.

b) the indegree and outdegree of both \(v'_m\) and \(v^h_m\) equal to 1.

Now also there is nothing to prove.

c) out degree of \(v^h_m\) one end vertex is 2.

Even in this case there is no change in the number of path coverings.

b) the in degree and out degree of both \(v'_m\) and \(v^h_m\) equal to 2.

As \(e_m\) is the intermediate arc and \(v'_m\) and \(v^h_m\) are the start and end vertices of \(e_m\), there must be two paths \(P_1\) and \(P_2\) whose end and start vertices are \(v'_m\) and \(v^h_m\) respectively.

As \(e_m\) allows more than one path, joining \(P_1\) and \(P_2\) as \(P^* = P_1 \lor \{e_m\} \lor P_2\) we have a new path. Thus in the Cyclic directed path cover one path has been minimized.

\(\gamma_m = \gamma - 1\).
e) \(d^+(v'_m) = 3 \) and \(d^-(v'_m) = 2 \).

Now in this case there must be two paths \(P^1_1 \) and \(P^2_1 \) are having end vertex \(v'_m \) and the directed path \(P^1_2 \) has start vertex at \(v^h_m \).

Now we get the new path in one of the following manner

\(P^1_1 \{e_m\} \rightarrow P^1_2 \) or \(P^2_1 \{e_m\} \rightarrow P^2_2 \)

Thus one path in the Cyclic path covering is reduced.

Therefore we have \(\gamma^m = \gamma - 1 \).

f) If \(d^+(v'_m) = d^-(v^h_m) = 3 \).

Now in this case there must be two paths \(P^1_1 \) and \(P^2_1 \) having end terminal vertex as \(v'_m \) and two paths \(P^1_2 \) and \(P^2_2 \) having start terminal vertex as \(v^h_m \).

Now we get two paths in the following manner.

(i) \(P^1_1 \{e_m\} \rightarrow P^1_2 \) or \(P^2_1 \{e_m\} \rightarrow P^2_2 \)

(ii) \(P^1_1 \{e_m\} \rightarrow P^1_2 \) or \(P^2_1 \{e_m\} \rightarrow P^2_2 \)

Thus two paths are being reduced from the total number of Cyclic path cover.

Therefore \(\gamma^m = \gamma - 2 \).

In general, \(\gamma^m = \gamma - \left[\min \{d(v'_m), d(v^h_m)\} - 1 \right] \)

Case: (2) \(e_m \) is a directed path of length 1.

Let \(v'_m \) and \(v^h_m \) be the start and end vertices of \(e_m \).

a) If anyone of this vertex is of total degree \(\leq 2 \) then there is nothing to prove.
\{e_m, v_h\} - Cyclic Path Covering Number of Digraphs

(i.e there is no change in the minimal Cyclic path cover)

b) \(d(v'_m) = d(v^h_m) \geq 2\)

Then \(v'_m\) and \(v^h_m\) will be the intermediate vertex of some path \(P_{mt}\) and \(P_{mh}\). Now the reduction in the number of paths is possible only if \(d'(v'_m) \geq 2\) and \(d'(v^h_m) \geq 2\) (i). If \(d'(v'_m) = 2\) and \(d'(v^h_m) = 2\), then there is a path \(P^i_{mt}\) that is having \(v'_m\) as the end vertex and another path \(P^i_{mh}\) that is having \(v^h_m\) as the starting vertex apart from the paths \(P_{mt}\) and \(P_{mh}\) that are having \(v'_m\) and \(v^h_m\) as internal vertices respectively. Now there is a possibility to make a new path as \(P^i_{mh} \rightarrow \{e_m\} \rightarrow P^i_{mt}\)

Thus there is a reduction in the number of paths by one. \(\gamma_m = \gamma - 1\).

(i.e.) \(\gamma_m = \gamma - 3 +2 = \gamma - \min\{d(v_m), d(v_{2m})\} +2\)

c) If \(d'(v'_m) = 3\) and \(d'(v^h_m) = 2\)

Then \(v'_m\) and \(v^h_m\) will be the intermediate vertex of some path \(P_{mt}\) and \(P_{mh}\) respectively and as \(d'(v'_m) = 3\), there must be a paths \(P^i_{mt}\) and \(P^h_{mt}\) that is incident at \(v'_m\) and similarly as \(d'(v^h_m) = 2\) there is a path \(P^1_{mh}\) that has the start vertex at \(v^h_m\). Now there is possibility to get two new path as

(i) \(P^1_{mt} \rightarrow \{e_m\} \rightarrow P^i_{mh}\) or \(P^1_{mh} \rightarrow \{e_m\} \rightarrow P^i_{mt}\)

Thus there is a reduction in the number of paths by one. \(\gamma_m = \gamma - 1\). (i.e. \(\gamma_m = \gamma - [2 - 1] = \gamma - [\min\{d(v'_m), d(v^h_m)\} - 1]\). This same is the case for \(d'(v'_m) = 2\) and \(d'(v^h_m) = 3\)

d) If \(d'(v'_m) = 3\) and \(d'(v^h_m) = 4\)

As usual \(v'_m\) and \(v^h_m\) will be the intermediate vertices in the path \(P_{mt}\) and \(P_{mh}\) and as \(d'(v'_m) = 3\) and \(d'(v^h_m) = 4\) there must be paths \(P^i_{mt}\) and \(P^2_{mt}\) that are incident at \(v'_m\) and the paths \(P^i_{mh}\), \(P^2_{mh}\) and \(P^3_{mh}\) that are have the start vertex at \(v^h_m\). Now there is a possibility to get 2 new paths as

(i) \(P^i_{mt} \rightarrow \{e_m\} \rightarrow P^i_{mh}\) or \(P^i_{mh} \rightarrow \{e_m\} \rightarrow P^2_{mt}\)

(ii) \(P^2_{mt} \rightarrow \{e_m\} \rightarrow P^i_{mh}\) or \(P^2_{mh} \rightarrow \{e_m\} \rightarrow P^2_{mt}\)

This thus there is a reduction in the number of path covers by 2 and so the following results

\(\gamma_m = \gamma - 2\). (i.e., \(\gamma_m = \gamma - 3 + 1 = \gamma - \min\{d'(v'_m), d'(v^h_m)\} + 1\)

e) If \(d'(v'_m) = 4\) and \(d'(v^h_m) = 3\)

As usual \(v'_m\) and \(v^h_m\) will be the intermediate edges in the path \(P_{mt}\) and \(P_{mh}\) and as \(d'(v'_m) = 4\) and \(d'(v^h_m) = 3\) there must be paths \(P^i_{mt}\), \(P^2_{mt}\) and \(P^3_{mt}\) that are having end vertex at \(v'_m\) and the paths \(P^i_{mh}\) and \(P^2_{mh}\) that have the start vertex at \(v^h_m\). Now there is a possibility to get 2 new paths as

(i) \(P^i_{mt} \rightarrow \{e_m\} \rightarrow P^i_{mh}\) or \(P^i_{mh} \rightarrow \{e_m\} \rightarrow P^2_{mt}\)

(ii) \(P^i_{mt} \rightarrow \{e_m\} \rightarrow P^2_{mh}\)

\(\gamma_m = \gamma - 2\)
Thus there is a reduction in the number of path covers by 2 and so the following result $\gamma_m = \gamma - 2$.

(i.e., $\gamma_m = \gamma - 3 + 1 = \gamma - \lfloor \min\{d' (v_m^t), d' (v_m^h)\} \rfloor$)

In general we have for any digraph the e_m-Cyclic path covering is

$$\gamma_m = \gamma - \lfloor \min\{d' (v_m^t), d' (v_m^h)\} \rfloor - 1$$

Definition 3.4. A $\{e_m, v_k\}$-Cyclic path cover of a digraph D is a collection ψ_{mk} of directed paths (may be closed) in D whose union is D satisfying the conditions for distinct paths P_i and P_j with terminal vertices u, v and w, z respectively,

$$P_i \notin P_j = \begin{cases} A, A \text{ is the subset of the set } \{u, v, w, z\} \\ \phi, \text{ if } P_i \text{ and } P_j \text{ are cyclic.} \\ v_k, \text{if } v_k \text{ is internal vertex of both } P_i \text{ and } P_j, \\ e_m, \text{if } e_m \text{ is one of the arc in both } P_i \text{ and } P_j \end{cases}$$

Definition 3.5. $\{e_m, v_k\}$-Cyclic path covering number γ_m

The $\{e_m, v_k\}$-Cyclic path covering number γ_{mk} of D is defined to be the minimum cardinality taken over all $\{e_m, v_k\}$-Cyclic path covers of D.

Theorem 3.6. For a digraph G with edge e_m and vertex v_k the $\{e_m, v_k\}$-Cyclic path covering number is

$$\gamma_{mk} = \gamma - \left[\min\{d^-(v_k), \quad d^+(v_k)\} \right] - 1$$

$$- \left[\min\{d^+(v_k^t), \quad d^-(v_k^h)\} \right] - 1$$

where γ is the Cyclic path covering number of D and v_k^i and v_k^h are tail and the head vertices of e_m.

Proof: Let e_m and v_k be any one edge and vertex of the digraph D. If v_k is one of the terminal vertex of e_m then $\gamma_{mk} = \gamma_m$. Otherwise if v_k is different from the terminal vertices of e_m, then we have

$$\gamma_{mk} = \gamma - \left(\text{reduction of paths due to } v_k \right)$$

$$- \left(\text{reduction of path due to } e_m \right).$$

(i.e), $\gamma_{mk} = \gamma - \left[\min\{d^-(v_k), \quad d^+(v_k)\} \right] - 1$

$$- \left[\min\{d^+(v_k^t), \quad d^-(v_k^h)\} \right].$$

4. Conclusion

As the motivation behind the development of the cyclic path cover is mobile road traffic, some to avoid the congestion at the road junction, the junctions are made with flyovers. Even some of the roads are built with flyovers. Thus the k^{th} junctions can be treated as v_k vertex and the m^{th} roads can be treated as e_m edge. Thus if k^{th} junction and m^{th} road are made with flyovers these can be easily treated with $\{e_m, v_k\}$ cyclic path covers.
{\epsilon_m, v_k}\)-Cyclic Path Covering Number of Digraphs

REFERENCES

11. A. Solairaju and G. Rajasekar, On \{\epsilon_m, v_k\}\)- Cyclic Path covering number, *Antarctica Journal of Mathematics*– accepted for publication.