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Abstract 
 

Given any positive integer k , a ),( qp -graph ),(= EVG  is strongly k -indexable if there exists a 

bijection 1},{0,1,2,: −→ pVf K  such that 1},2,1,,{=))(( −++++ qkkkkGEf K  where 

)()(=)( vfufuvf ++  for any edge Euv∈  and )}(:)({=)(( GEeefGEf ∈++ ; f  is called a  
strong k -indexer of G . In particular, G  is said to be strongly indexable whenever it admits a 1
-strong indexer (or, simply a  strong indexer). Even though many graphs are not strongly indexable, 
their line graphs may still be strongly indexable. The paper expounds the connection of strong indexers 
of graphs with Sidon sequences and Fibonacci sequences and explores classes of strongly indexable 
chain graphs whose blocks are complete or, the so-called `Husimi trees'. 
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1.  Introduction 
Unless mentioned otherwise, by a  graph we shall mean in this paper a finite, undirected, connected 
graph without loops or multiple edges. Terms not defined here are used in the sense of Harary  [10].  

Acharya and Hegde [2] introduced the concept of an `indexer' of a finite graph as a special case 
of arithmetic labelings [1]. In the general setting, labeling of a graph ),(= EVG  is an assignment f  
of distinct nonnegative integers to the vertices of G ; it is an  indexer of G  if the induced `edge 
function' N→+ )(: GEf , from )(GE  into the set N  of natural numbers, defined by the rule: 

)(),()(=)( GEuvvfufuvf ∈∀++ , is also injective. It is known that every finite graph G  has an 
indexer [1]; hence, an indexer f  of G  is said to be  optimal if )}({:=][ )( vfmaxGf GVv∈  has the 

least possible value )(Gυ  amongst all the indexers of G . Clearly, 1|)(|)( −≥ GVGυ  for any finite 
graph G . For any given positive integer k , an indexer f  of G  is said to be k -arithmetic and G  

a k -arithmetic graph, if },2,1,,{=)}(:)({:=))(( K++∈++ kkkGEuvuvfGEf . Not every 
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graph is k -arithmetic as indicated by the following theorem for finite graphs. 
 

Theorem 1.1 [1].  Let ),(= EVG  be any ),( qp -graph and f  be any k -arithmetic indexer of G
, where k  is odd. Then, there exists an `equitable partition' of V  into two subsets oV  and eV  such 

that there are exactly 
−+


2

1kq
 edges each of which joins a vertex of oV  with one of eV , where 

.  denotes the least integer function.  
 
In the above theorem, an  equitable partition of a nonempty finite set X  is defined as a 

partition },{ 21 XX  of X  such that the cardinalities of 1X  and 2X  differ by at most one, that is, if 
1|||||| 21 ≤− XX .  

Next, if G  is a ),( qp -graph, an indexer f  is called a k -strong indexr of G , if for some 
positive integer k,  

1},{0,1,2,=)}(:)({:=))(( −∈ pGVvvfGVf K  
and 1},2,1,,{=))(( −++++ qkkkkGEf K . Further, G  is said to be k -strongly indexable if it 
admits a k -strong indexer. Again, as mentioned already, for any positive integer k , not every graph is 
k -strongly indexable. If )(GV  is countably infinite, then any bijection f  from )(GV  onto the set 

{0}∪N  of nonnegative integers such that },2,1,,{=))(( K+++ kkkGEf  is defined as a k
-strong indexer of G . In particular, if 1=k  in these definitions, then f  is called a strong indexer of 
G  and the graph G  is said to be strongly indexable if it admits a strong indexer. We will frequently 
use the following results which are proved in  [1, 2]. 

 
Theorem 1.2[1, 2].  For any indexable ),( qp -graph 32, −≤ pqG .  

 
Theorem 1.3[1].  Every strongly indexable finite graph has at most one nontrivial component which is 
either a star or has a triangle.  

 
     Kotzig and Rosa  [13] called a ),( qp -graph ),(= EVG  edge-magic if it admits an edge-magic 
labeling of G  which is defined as a bijection },{1,2,)()(: qpGEGVf +→∪ K  such that there 
exists a constant s  (called the magic number of f ) with )(,=)()()( GEuvsuvfvfuf ∈∀++ . 
Enomoto et.al.  [7] called an edge-magic labeling f  of G  super-edge-magic if 

},{1,2,=))(( pGVf K  and },2,1,{=))(( qpppGEf +++ K  and G  super-edge-magic if 
there exists a super-edge-magic labeling of G . The following Lemma of Figueroa-Centeno et.al. [8] 
gives an interesting connection between k -strongly indexable graphs and super-edge-magic graphs. 

 
Lemma 1.4[8].  A ),( qp -graph G  is super-edge-magic if and only if there exists a bijective 
function },{1,2,)(: pGVf K→  such that the set )}(:)()({= GEuvvfufS ∈+  consists of q  
consecutive integers. In such a case, f  can be extended to a super-edge-magic labeling of G  with 
constant sqpc ++=  where )(= Smins  and )}(,2),(1),({= qpcpcpcs +−+−+− K .  

 
It has been recently proved [4] that the class of strongly indexable graphs are proper subclass of 

super-edge-magic graphs. 
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Remark 1.5[4].  For any positive integer k , if a ),( qp -graph G  is k -strongly indexable then 
every k -strong indexer of G  extends to G  a super-edge-magic graph with its magic number equal 
to 2+++ kqp . Conversely, if G  is super-edge-magic with magic number c  then G  has a k
-strong indexer with qpck −−− 2= .  
 
Remark 1.6 [4].  Let f  be a super-edge-magic labeling of G  and let )(1)(=)( GVuufug ∈∀−
, so that g  is a k -strong indexer of G  with qpck −−− 2= . If c  is the magic number of 
super-edge-magic labeling of the ),( qp -graph G , then 4=121 ++++≥ ppc  and 6=c  
results in isolated edge, which is the trivial case. Hence, 6≥c . Also, 0=)}({)( vgmin GVv∈  and 

kegmin GEe =)}({)(∈ . Hence, 24226)(2= ≥⇒≥⇔−−≥+−− kkkqpck .  
 
From Remark 1.6, we see that the converse of Remark 1.5 is likely to fail for 1=k  and, in 

fact, it does in view of the result that the cycle nC  is strongly indexable if and only if 3=n  (see [2]) 
and the following result with any value of 4≥n . 

 
Theorem 1.7 [8].  A cycle 3, ≥nCn , is super-edge-magic if and only if n  is odd.  
 

Recently, an interesting application of strongly k -indexable cycles has been found in 
Euclidean plane geometry [12]. In this paper, we are inclined to bring out few newer aspects of strongly 
indexable graphs. 

 
2.  Strongly Indexable Line Graphs 
Theorem 1.3 implies that no triangle-free graph other than the star 1,1, ≥nK n  is strongly indexable. 

However, line graph )(GL  of such a graph G  contains a triangle whenever G  contains a vertex of 
degree greater than or equal to three and hence there is a possibility that )(GL  could be strongly 
indexable. In fact, nn KKL =)( 1,  and we know that nK  is strongly indexable if and only if 

{1,2,3}∈n . The cartesian product graph 2KPn ×  is called the n  -ladder with n  steps. Since this 
graph is triangle-free it is not strongly indexable by Theorem 1.3. However, the line graph of the 3
-ladder 23 KP ×  and of the 4 -ladder 24 KP ×  are strongly indexable as shown in Figure 1. We 
surmise that the line graph of the n -ladder is strongly indexable for all integers 5≥n . 

 
Figure 1: 
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The following result gives a necessary condition for a graph to have a strongly indexable line 
graph. 

 
Theorem 2.1.  If G  is a ),( qp -graph such that its line graph )(GL  is strongly indexable then  

 (1)1),6())(( 2

1=
−≤∑ qvd i

p

i
 

where )( ivd  denotes the degree of the vertex iv  in G , and the bound in (1) is best possible.  
 

Proof. This can be easily deduced from Theorem 1.2 and the fact that there are exactly 
2

1=
))(( i

p

i
vdq ∑+−  edges in )(GL  (see [10], Theorem 8.1, p.72). That the bound in (1) is attainable 

can be seen from the graph +
3C , where +H  denotes the graph obtained from the given graph H  by 

augmenting a new vertex 'v  as also the new edge 'vv  for each vertex )(HVv∈ .  
 
Problem 1.  Characterize ),( qp -graphs that attain the bound in (1).  
 
Conjecture 2.2.  For every ),( qp -graph G  for which the bound in (1) is attained, )(GL  is 
strongly indexable.  

 
However, one can easily find counter-examples to the converse of Theorem 2.1 and what 

Conjecture 2.2 claims is that for such a graph there is a strict inequality in (1). 
 

3.  Co-strongly Indexable Graphs 
From Theorem 1.2 it is easy to deduce that for no ),( qp -graph G , both G  and its 

complement G  can be strongly indexable. However, both G  and its line graph )(GL  can be 
strongly indexable as, for instance, 3P  and 23)( PPL ≅  are both strongly indexable. Hence, we define 
a  co-strongly indexable graph as a graph G  such that both G  and )(GL  are strongly indexable. 

 
Proposition 3.1.  If G  is a connected co-strongly indexable ),( qp -graph then either 4≤p  or 

3)( ≥∆ G .  
 

Proof. Let G  be as given. Suppose G  is triangle-free. Then, Theorem 1.3 implies that 11,= −pKG , 

the star with 1−p  pendant vertices and hence 1)( −≅ pKGL . Then, since )(GL  is also strongly 
indexable, Theorem 1.2 implies that 31≤−p , i.e., 4≤p .  

Hence, let 5≥p . Then, the above argument implies that G  has a triangle. Now, if 

2)( ≤∆ G  then we get 3KG ≅ , a contradiction to our assumption that 5≥p . ■ 
 
The  dot-composed graph (c.f.: [10], p.23) 23 KK •  and its line graph xK −4  (i.e., one edge 

x  deleted from 4K ) are both strongly indexable; thus, 23 KK •  is co-strongly indexable graph of 
order 4 containing a triangle as well as a vertex of degree 3≥ . 

 
Problem 2.  Characterize co-strongly indexable graphs.  
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4.  Connection with Sidon sequences and Fibonacci sequences 

For the vertices of a clique in a graph to be labeled so that no edge label is repeated, the labels 
must be chosen from a set of positive integers in which the sums of the pairs of distinct vertex labels are 
all distinct. Such a set is called a  Sidon set (e.g., see [18]). When the members of the Sidon set are 
placed in ascending order, the resulting sequence is called a Sidon sequence or a well-spread sequence. 
Choose a Sidon sequence ),,,( 21 rsss K  in which the largest element rs  is as small as possible. If 

)(rs  denotes the smallest possible value of rs  taken over all Sidon sequences of length r  then, a 
Sidon sequence of length r  with largest element )(rs  must have 0  as the smallest element. Note 
that the Fibonacci sequence )( nf , defined by 2=1,= 21 ff  and 21= −− + nnn fff , is a Sidon 
sequence. Hence, Fibonacci numbers provide a reasonably good upper bound for the function σ  
whose values are all elements of a Sidon sequence. As a generalization of the concept of Sidon sets, a 
set of integers is called a ),( 21 nn  -set if every 1n -element subset determines at least 2n  distinct 
differences. Let )(ng  be the largest number such that any n -element ),( 21 nn -set contains a 
g(n)-element Sidon set (i.e., a subset of g(n) elements with distinct sums). 

Acharya and Germina [5] raised the following new problem and proved that ̀ Given a Fibonacci 
sequence )( rf  with 2=1,= 21 ff  there exists a connected maximal strongly indexable graph of 
order 1+rf  and size 12 −rf  that contains a clique of order r '. 

 
Problem 3 [4].  Given the set )(FnS  of the first );( ian  terms of a given generalized Sidon set, 
determine the class of all non-isomorphic strongly indexable chain graphs whose blocks are all 
complete and for which )()( GfSn ⊂F  for some strong indexer f .  

 
        The above problem can also be viewed in a different direction as: Given a Sidon sequence 

),,,( 21 rsss K  in which the largest element rs  is as small as possible and a set of integers, called a 
),( ii qp  -set so that every ip -element subset determines iq  distinct integers, determine the class of 

all non-isomorphic strongly indexable graphs for which )()( GfSn ⊂F  for some strong indexer f . 
 

5. Strongly-indexable Husimi chains 
Barrientos  [6] defines a chain graph as one with blocks mBBB ,,, 21 K  such that for every iBi,  and 

1+iB  have a common vertex in such a way that the block cut-point graph (see [10]) is a path. Sin-Min 
Lee and J. Yun-Chin Wang  [19] denote the chain graph with n  blocks and the sequence of n  blocks 
of complete graphs )(),(),( 21 naKaKaK K  by )),,,(;( 21 naaanCK K , with 2≥ia . If 

2==== 21 naaa K , then 1=,2))(2,2,;( +nPnCK K . In general, a separable graph in which every 
block is complete is well known as Husimi tree and hence we refer to 2)),,,,(;( 21 ≥in aaaanCK K  
as a Husimi chain. In another view, note that the path is a member of a larger class of trees called  
caterpillars; a caterpillar is defined as a tree removal of whose  pendant vertices (i.e., vertices of 
degree 1) results in a path called its  spine. Clearly, the line graph )(GL  of a caterpillar G  with 

),,,,,( 1210 nn uuuuu −K  as its spine is obtained as a chain of  cliques (i.e., maximal complete 
subgraphs; c.f.: [10]) of various orders `glued' to one another in a sequence such that the edge 

niuueee iiiii ≤≤−+ 1,=, 11 , in )(GL  supports the clique iQ  whose other vertices correspond to the  
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pendant edges (i.e., edges incident to pendant vertices) incident to iu  in G . In fact, it is this view that 
prompted us to study strong indexability of Husimi chains in detail. 

It is well known that nP  is super-edge-magic ( k -strongly indexable for 
2

= nk ) and is 

strongly indexable if and only if 3=n . If 3==== 21 naaa K , then ,3))(3,3,;( KnCK  is the 
triangular snake which is graceful if 4)1,2(modn ≅  (see,  [16]). Sin-Min Lee et.al.  [19] 
investigated the existence of super-edge-magic labelings of certain classes of Husimi chains. Recently, 
the following general result has been established. 

 
Theorem 5.1. [5].  Let ),(= EVG  be any graph, not necessarily finite, f  be an arbitrary 
assignment of integers to the vertices of G  and let )()(=)( vfufuvf ++  for each edge uv  in G . 
Then in every cycle of G  there are an even number of edges with odd +f -values.  

 
 

Corollary 5.2 [5].  Let ),(= EVG  be any Eulerian ),( qp -graph. If G  is strongly k -indexable 
then 4)2(modq ≡/ . Further, exactly one of the following congruences holds: 

4)0(modq ≡ ,  
andmodkandmodq 2)0(4)1( ≡≡  

2)1(4)3( modkandmodq ≡≡ .  
 
 

Remark 5.3 [5]. Corollary 5.2 can be used to rule out the possibility of certain classes of Eulerian 
graphs from their being strongly indexable. In this way, for instance, the cycles nC  for values of 

4)2(1 modorn ≡  cannot be strongly indexable. Of course, in general, nC  is not strongly indexable 
for any value of 4≥n  by virtue of Theorem 1.1, thus demonstrating that the converse of Corollary 5.2 
does not hold. A more complex example of an Eulerian graph that is not strongly indexable by this 
argument is the complement of +

3K  (see [5]). An infinite class of Eulerian graphs that are not strongly 
indexable is the class of Husimi trees in which the number of blocks is 4)3(modm ≡  since, in such a 
graph 4)1(|)(|, modHEH ≡ . One such well known class is that of ``friendship graphs'' 

12:= KtKFt +  (which consists of t  triangles glued at one common vertex whence tF  consists of 
tq 3=  edges, so that 4)3(2 modort ≡  yielding 4)1(2 modorq ≡  in the respective cases).  

 
If 2=n , then 

2121 )),((2; aa KKaaCK •≅ , the dot-composition (c.f. [3]), or more commonly called  

one-point union, of two complete graphs. 
 

Theorem 5.4.  For 2=n  and 2=1a , )),((2; 21 aaCK  is strongly indexable if and only if 42 ≤a .  
 
Proof. A strong indexer of )),((2; 21 aaCK  in each of the cases 2,3,4=2a  is shown in Figure 2. If 

52 ≥a  then 3)))(2,(2;(2>)))(2,(2;( 22 −aCKpaCKq , and hence )),((2; 21 aaCK  is not strongly 
indexable by virtue of Theorem 1.2.  
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Figure 2:  
   

Theorem 5.5.  For 2=n  and 3=1a , )),((2; 21 aaCK  is strongly indexable if and only if 4=2a .  
 
Proof. If 3=2a , then (3,3))(2;CK  is a triangular snake with two blocks and is an Eulerain graph 
with number of edges 4)2(6= modq ≅ . Hence, by Corollary 5.2, (3,3))(2;CK  is not strongly 
indexable. A strong indexer of ))(3,(2; 2aCK  for 4=2a  is depicted in Figure 3. If 52 ≥a  then 

3)))(2,(2;(2)))(2,(2;( 22 −≥ aCKpaCKq , whence the graph is not strongly indexable by Theorem  
1.2. 

 
   

Figure 3:  
   

Theorem 5.6.  For 2=n  and 52 ≥a , ))(3,(2; 2aCK  is not strongly indexable.  
 
Proof. When 52 ≥a , we get 3)))(3,(2;((2>)))(3,(2;( 22 −aCKpaCKq , whence the result follows 
from Theorem 1.2.  
 
Theorem 5.7.  For 2=n  and 41 ≥a , )),((2; 21 aaCK  is not strongly indexable for all 42 ≥a .  

 
Proof. In accordance with Theorem 1.2, the proof is immediate since 41 ≥a  implies 

3))),((2;(2>))),((2;( 2121 −aaCKpaaCKq  for all 42 ≥a .  
 
Next, we consider Husimi chains with three blocks. There are several cases to consider. First, 

note that the graph )),,((3;)),,((3; 123321 aaaCKaaaCK ≅ . 
 

Theorem 5.8.  For 3=n , the chain graph )),,((3; 321 aaaCK  is   
• strongly indexable if ),,( 321 aaa  is any of the triples (2,4,3) , (2,3,3) , (2,3,4)(2,2,4),(3,4,4),
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(2,3,2) , (4,3,4)(4,2,4),  and (2,4,4) .  
• 2 -strongly indexable if (2,4,2),(2,2,2)=),,( 321 aaa   

• not k -strongly indexable if ),,( 321 aaa  is one of (2,2,3)  and 5),(2,2, 33 ≥aa
5),(2,3,=),,( 33321 ≥aaaaa  

5),(2,4,=),,( 33321 ≥aaaaa  

),,( 321 aaa  is one of (3,2,4)(3,2,3),  and 5),(3,2, 33 ≥aa 3),(3,3,=),,( 33321 ≥aaaaa  

),,( 321 aaa  is one of (3,4,3)  and 5),(3,4, 33 ≥aa 5),(4,2,=),,( 33321 ≥aaaaa  
5),(4,3,=),,( 33321 ≥aaaaa   

  
Proof. A strong indexer and a 2 -strong indexer of graphs cited in (a) and (b) of the theorem are given 
in Figure 4, Figure 5 and Figure 6. One can easily verify that these are the only choices for these 
strongly indexable graphs since, by virtue of Corollary 5.2, none of the graphs listed in (c) of the 
theorem can be 2 -strongly indexable. ■ 

 
We now consider chain graphs with more than three blocks. 
 

Theorem 5.9.  For 4=n , the chain graph )),,,((4; 4321 aaaaCK , is   
• strongly indexable if ),,,( 4321 aaaa  is any one of (2,3,2,4) , (2,3,3,5)(2,3,3,4),  and (2,3,4,4)   
• 2 -strongly indexable if ),,,( 4321 aaaa  is any one of (2,2,2,2)

(2,3,3,3)(2,2,3,3),(2,2,4,2),(2,3,2,3),  and (2,3,4,2) .  
• 3 -strongly indexable if ),,,( 4321 aaaa  is one of (2,2,2,4)  and (3,3,3,3) .  
• 4 -strongly indexable if (2,3,3,2)=),,,( 4321 aaaa .  
• 5 -strongly indexable if (2,2,3,2)=),,,( 4321 aaaa   

• not k -strongly indexable if ),,,( 4321 aaaa  is any one of (2,2,2,3) , (3,2,3,3)(3,2,2,3),  and 

5),(2,2,2, 44 ≥aa .  

 
Figure 4:  
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                                        Figure 5:  
   

 
   

Figure 6:  
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Figure 7:  
   
 

 
Figure 8:  
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Figure 9:  

   
 

Proof. A strong indexer, a 2 -strong indexer, a 3 -strong indexer, a 4 -strong indexer and a 5 -strong 
indexer of the chain graphs described in the parts (i), (ii), (iii), (iv) and (v) of the theorem, respectively, 
are depicted in Figure 7, Figure 8 and Figure 9. By virtue of Theorem 1.2 and Corollary 5.2, none of the 
graphs listed in (vi) of the theorem is k -strongly indexable for any value of k  and in particular for 

1=k . ■ 
 
 

Remark 5.10.  For simplicity of presentation, we will represent a strong indexer of a Husimi chain 
(or, equivalently, `chain graph') whose blocks are complete graphs tK , in the form of t -tuples and 
call each t -tuple a  sequence and the strong indexer is written as a  string of such sequences 
corresponding to the complete blocks in the Husimi chain. For example, consider the strongly 
indexable Husimi chain (2,3,4,4))(4;CK ; we represent a strong indexer of it as the string: 

)(4,1,0,2)7)(7,5,3,4(8,6)(6,9, .  
 

Theorem 5.11.  For 3≥n , the graphs ,4))(2,4,4,;( KnCK  are strongly indexable, whereas 
,4,2))(2,4,4,;( KnCK  are 2 -strongly indexable.  

 
Proof. We have a strong indexer of (2,4))(2;CK  as the string 1,0)(3,4)(4,2,  and a 2 -strong 
indexer of the chain graph (2,4,2))(3;CK  as 3,0)(0,2).(1,5)(5,4,  
  Now, add 2  to each of the numbers in the string and include 1,0  in the last sequence of the string; 
we obtain a strong indexer of the chain graph (2,4,4))(3;CK  as ,0)5,2)(2,4,1(3,7)(7,6, . To obtain a 
2 -strong indexer of the chain graph (2,4,4,2))(3;CK , add 1 to each of the numbers in the sequence 
and include 2,0  in the last sequence of the string. Again, in the 2 -strong indexer of the chain graph 



B.D. Acharya and  Germina, K.A. 
 

14 
 

(2,4,4,4))(4;CK , add 2  to each of the numbers in the string and include 1,0  in the last sequence of 
the string. In general, given a 2 - strong indexer of ,4,2))(2,4,4,;( KiCK , add 2  to each of the 
numbers in the string and include 1,0  in the last sequence of the string; we obtain a strong indexer of 
the chain graph ,4,4))(2,4,4,;( KiCK . To obtain a 2 -strong indexer of the chain graph 

,4,4,2))(2,4,4,1;( K+iCK  from a similar string for ,4,4))(2,4,4,;( KiCK , add 1 to each of the 
numbers in the string and include 2,0  in the last sequence of the string. Continuing like this, we get the 
series of chain graphs that are 2 -strongly indexable and strongly indexable alternately and so on. 
Hence, we can take the block 4K  as many times as we wish so that the graphs ,4))(2,4,4,;( KnCK  
are all strongly indexable and the graphs ,4,2))(2,4,4,;( KnCK  are all 2 -strongly indexable. (See 

Figure 10). ■ 
 

  
Figure 10:  

    
 
 

Remark 5.12.  We start with a strongly indexable Husimi chain ,4))(2,4,4,;(=1 KnCKC , for any 
3≥n , and can construct a 2 -strongly indexable graph 3,4,2)),(2,4,4,;(=1 ≥′ nnCKC K . From 

1C′ , we construct 3,4)),(2,4,4,;(=2 ≥nnCKC K , which is strongly indexable and from 2C , we 
construct ,4,2))(2,4,4,;(=2 KnCKC′ , 3≥n , which is 2 -strongly indexable. Proceeding in this 
manner, we get an ascending sequence K⊂′⊂⊂′⊂ 2211= CCCCC , where iC  is strongly 

indexable and iC′  is 2 -strongly indexable for each index i . Figure 10 illustrates this construction. 
The method of obtaining the sequences of 2 -strongly indexable chain graphs (or strongly indexable 
chain graphs) can be started with a 2 -strongly indexable chain graph ,4,2))(2,4,4,;( KnCK , 
instead of the strongly indexable chain graph ,4))(2,4,4,;( KnCK .  
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Theorem 5.13. For 3≥n , the graphs ,4))(3,4,4,;( KnCK  are strongly indexable and 

,4,2))(3,4,4,;( KnCK  are 2 -strongly indexable.  
 
Proof. Let us start with 3C , the cycle of length three, which is strongly indexable with the strong 
indexer (1,2,0) . Next, label the vertices of (3,2))(2;CK  as the string 0)(3,1,2)(2, , which is a 2
-strong indexer of the graph. Now, add 2  to each of the numbers in the string 0)(3,1,2)(2,  and 
include 0,1  in its last sequence to obtain a strong indexer of (3,4))(2;CK  given by the string 

2,0,1)(5,3,4)(4, . Next, add 1 to each of the numbers in this string and augment (2,0)  as the last 
sequence in the resulting string; this gives the 2 -strong indexer of the chain graph (3,4,2))(3;CK  as 
the new string )3,1,2)(2,0(6,4,5)(5, . To obtain a strong indexer of the chain graph (3,4,4))(3;CK , 
add 2  to each of the numbers in this string and include the sequence (1,0)  as last sequence in the 
resulting string which is the strong indexer given by the new string )3,1,2)(2,0(6,4,5)(5, . Continuing 
in this manner, we get a series of chain graphs that are strongly indexable as well as another series of 2
-strongly indexable graphs. Hence, we can have the block 4K  as many times as we wish yielding the 
chain graphs ,4))(3,4,4,;( KnCK  that are strongly indexable as also the chain graphs 

,4,2))(3,4,4,;( KnCK  that are 2 -strongly indexable. (See Figure 11). ■ 
  

 
                                        Figure  11: 
   
 

Remark 5.14.  As stated in Remark 5.12, for 3≥n , we can have similar construction of chain graphs 
,4))(3,4,4,;( KnCK ,which are strongly indexable and then from ,4))(3,4,4,;( KnCK  one can 

obtain the chain graph ,4,2))(3,4,4,;( KnCK  which is 2 -strongly indexable and then from 
,4,2))(3,4,4,;( KnCK  a strongly indexable chain graph ,4,4))(3,4,4,;( KnCK , and so on. Figure 

11 illustrates this construction. Proceeding like this, we can get an ascending chain 
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KK,: 2211 ⊂′⊂⊂′⊂ CCCCC  where iC  is strongly indexable and iC′  is 2 -strongly indexable 
graph for each positive integer i . The same construction can be done by taking a 2 -strongly 
indexable chain graph ,4,2))(3,4,4,;( KnCK  as the initial graph, instead of the strongly indexable 
chain graph ,4))(3,4,4,;( KnCK .  

 
Theorem 5.15.  For 3≥n , the graphs )),(2,3,4,4,;( KnCK  are strongly indexable.  

 
Proof. We start with (2,3,4))(3;CK  together with one of its strong indexers given by the string 

)4)(4,2,0,1(5,3)(3,6, . Add 3  to each of the numbers in this string and append the sequence (4,2,0,1) 
at the end of the string to obtain the strong indexer of (2,3,4,4))(4;CK  given by the string 

)(4,2,0,1)7)(7,5,3,4(8,6)(6,9, . Again, add 3  to each of the numbers and append the sequence 
(4,2,0,1) at the end of the string to get a strong indexer of chain graph ))(2,3,4,4,4(5;CK  given by the 
string (4,2,0,1)(7,5,3,4)(10,8,6,7)(9,12,10)(11,9) . Proceeding like this, we get a strong indexer 

of )),(2,3,4,4,;( KnCK . (See, Figure 12) ■ 

 
   

Figure 12: 
   
 

Theorem 5.16.  For 3≥n , the graphs )),(4,2,4,4,;( KnCK  are strongly indexable.  
 

Proof. We start with the chain graph (4,2,4))(3;CK  together with one of its strong indexers given by 
the string ,1)3,4)(4,2,0(7,6,5,3)( . Add 3  to each of the numbers in this string and append the 
sequence (4,2,0,1)  at its end to get the strong indexer of (4,2,4,4))(4;CK  as the new string 

(6,7)(10,9,8,6)  4,2,0,1)(7,5,3,4)( . Again, adding 3  to each of the numbers in the new string and 
adjoining it with the last sequence (4,2,0,1) we get the strong indexer for ))(4,2,4,4,4(5;CK  given by 



Strongly Indexable Graphs: Some New Perspectives 
 

17 
 

the new string  
 2,0,1).,5,3,4)(4,0,8,6,7)(79)(9,10)(1(13,12,11,  

  Continuing in this manner, we get a sequence of strongly indexable chain graphs 
)),(4,2,4,4,;( KnCK  such that for all 3≥i ,  

 )).(4,2,4,4,1;()),(4,2,4,4,4;( KK +⊂ iCKiCK  

  (See, Figure 13). ■  
 

 
Figure  13: 

   
 

Theorem 5.17.  For 3≥n , the graphs )),(4,3,4,4,;( KnCK  are strongly indexable.  
 
Proof. Consider the strong indexer of the chain graph (4,3,4))(3;CK  given by the string 

7,2,0)(8,6,4,7)(  (0,3,1,5) . Add 3  to each of the numbers in this string and append the sequence 
(4,2,0,1)  at the end of it to get the strong indexer of (4,3,4,4))(4;CK  given by the new string 

,2,0,1)3,8,6,4)(4)(10,5,3)((11,9,7,10 . Hence, adding 3  to each of the numbers of the above new 
string and appending (4,2,0,1) as the last sequence we get the strong indexer for ))(4,3,4,4,4(5;CK  
given by the new string (7,5,3,4)(6,11,9,7)),13)(13,8,6(14,12,10,  (4,2,0,1) . We can continue this 

labeling procedure to obtain a strong indexer of )),(4,3,4,4,;( KnCK  in general. (See Figure 14). ■  
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Figure  14: 

   
 

Theorem 5.18.  For 4>n , the graphs ,4)),(2,3,3,5,4;( KnCH  are strongly indexable.  
 

Proof. Consider the strong indexer of the chain graph (2,3,3,5))(4;CK  given by the string  
 .7,4,2,0,1)9)(9,3,7)((5,8)(8,6,  

Then add 3  to each of the numbers in this string and append (4,2,0,1)  as the last sequence to it so 
that we get a strong indexer for ))(2,3,3,5,4(5;CK  as the new string  

 ,0,1).5,3,4)(4,2,10)(10,7,9,12)(12,6(8,11)(11,  
  We can continue this procedure to get the strong indexer of  

,4)),(2,3,3,5,4;( KnCK  in general as shown in Figure 15. ■  

 
Figure 15: 
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Figure 16: 

   
 

Remark 5.19.  Another construction of classes of strongly indexable Husimi chains is as follows: Start 
with the strongly indexable graph 21 = KC ; from 1C  construct (4,4))(2;=2 CKC  and then from 

2C  to ))(4,4,2,4,4(5;=3 CKC , and from 3C  construct ,4,4))(4,4,4,2,4(7;=4 CKC . In general, 

following the same pattern of construction, given iC  we can construct 1+iC . The construction is 
illustrated in Figure 16.  
 
6.  Deficiency of strongly indexable graphs 
Kotzig and Rosa [14] defined the magic deficiency of a graph G , denoted )(Gµ  as the minimum 
number of isolated vertices that we have to union with G  so that the resulting graph is magic. If G  is 
magic then )(Gµ  is defined to be zero. Figueroa et.al  [9] extended this concept to super edge-magic 
labeling and calculated the deficiency of many classes of super edge-magic graphs. Hegde  [11] 
defined this deficiency as vertex dependent characteristic of graphs for k -strongly indexable graphs. 

 
Definition 6.1 [11]. The  k -vertex dependent characteristic of a graph G , denoted by )(Gd k

c , is the 
minimum number of isolated vertices needed to be added to G  so that the resulting disconnected 
graph is strongly k -indexed. If a graph G  is not strongly k -indexable by adding any number of 
isolated vertices then )(Gd k

c  is defined to be infinity and if G  is strongly k -indexable then )(Gd k
c  

is postulated to be 0= . (In the notations here, k  will be omitted if 1=k .)  
 

    The following results are due to Hegde [11]. 
 
Theorem 6.2[11].  For any 1>k , the k -vertex dependent characteristic of nC  is given by 
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







≡∞

≡

4).(2
0

4)(01
=)(

modnif
oddisnif

modnif
Cd n

k
c  

 
Theorem 6.3 [11].  For any 1>k , the k -vertex dependent characteristic of nK  is 

 








≥∞ 5.
4=1
1,2,3=0

=)(
nif
nif
nif

Kd n
k
c  

 
Theorem 6.4 [11]. For any 1>k , the k -vertex dependent characteristic of 1)1)((, −−≤ nmK nm .  

 
Invoking Lemma 1.4 one can conclude that the deficiency of super-edge magic graphs and the 

vertex dependent characteristic of a k -strongly indexable graphs (for 2≥k ) are same. In this section, 
we initiate a study of the deficiency (or vertex dependent characteristic) of a strongly indexable graph 
G ; we shall call it  strongly indexable deficiency of G  and denote it by )(Gds . If a graph G  is not 

strongly indexable by adding any number of isolated vertices then )(Gds  is defined to be infinity (∞
) and if G  is strongly indexable then )(Gds  is taken to be zero (0). Following observations are 
immediate. 

 
Observation 6.5.  The strongly indexable deficiency of the cycle nC  is given by  

 




≥∞ 4.
3=0

=)(
nif
nif

Cd ns  

Observation 6.6.  The strongly indexable deficiency of the complete bipartite graph nmK ,  is given by 

 




≥∞ 2.
0

=)( ,
, normeitherif

staraisKif
Kd nm

nms  

Theorem 6.7.  The strongly indexable deficiency of the complete graph nK  is given by 

 








≥∞ 5.
4=1
1,2,3=0

=)(
nif
nif
nif

Kd ns  

Proof.  Since 321 ,, KKK  and 14 KK ∪  are strongly indexable, )(=0=)( 14 KKdKd sns ∪  for 

1,2,3=n . It is easy to verify that 1=)( 4Kds .  
Next, if possible let 1mKKn ∪ , 5≥n  be strongly indexable for some m . Then, there exists 

a strong indexer  
 1},{0,1,2,3,)(: 1 −+→∪ nmmKKVf n K  

such that },{1,2,3,=))(( 21 nCmKKEf n K∪+ . Clearly ))((0,1,2 nKVf∈ . Without loss of 

generality, assume that 1=)(0,=)( 21 vfvf  and 2=)( 3vf . Now, ))((33=)( 21 nKVfvvf ∈/⇒ , 

which in turn implies ))((4,5,6))((4 nn KEfKVf +∈⇒∈ . Hence ))((5,6 nKVf∈/  so that 7  
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should necessarily be in ))(( nKVf , which implies ))((7,8,9,11 nKEf +∈  and hence 

))((10 nKEf +∈/ . Proceeding like this, we see that irrespective of how many number of isolated 

vertices are added to nK , nK  cannot be made strongly indexable. Hence, for ∞≥ =)(5, ns Kdn  .■ 
 
Since the only strongly indexable trees are stars, nK1, , and we cannot have a strong indexer of 

a tree other than stars by adding any number of isolated vertices, we have the following theorem.  
 
Theorem 6.8.  The strongly indexable deficiency of a tree T  is is given by 

 

 



∞

≅
.

0
=)( 1,

otherwise
KTif

Td n
s  

 
7.  Conclusions and scope 

 We have generated infinitely many classes of strongly indexable Husimi chains. It is worth 
investigating in general which Husimi trees are strongly indexable. Invoking Corollary 5.2, one can 
explore the classes of Eulerian graphs that are strongly indexable. An infinite class of Eulerian graphs 
that are not strongly indexable is the class of  Husimi trees (viz., connected separable graphs in which 
every block is a triangle) in which the number of blocks is 4)3(modm ≡  since, in such a graph 

4)1(|)(|, modHEH ≡ . One such well known class is that of ``friendship graphs'' 12:= KtKFt + , 
which consists of t  triangles glued at one common vertex whence tF  consists of tq 3=  edges, so 
that 4)3(2 modort ≡  yielding 4)1(2 modorq ≡  in the respective cases. We conjecture that 
"Any Husimi tree consisting of 4)0(modt ≡  triangle blocks is strongly indexable". One major 
difference between magic deficiency and strongly indexable deficiency is that magic deficiency is finite 
for almost all classes of graphs, while strongly indexable deficiency need not necessarily be finite for 
abundantly many graphs. It is worth studying the conditions that guarantee infinite strongly indexable 
deficiency and also to characterize the classers of graphs having finite strongly indexable deficiency. 
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