
AMO∗Advanced Modeling and Optimization, Volume 14, Number 3, 2012

A bio-economic model of fishery where prices
depend on harvest

Youssef ELFOUTAYENIa,b, Mohamed KHALADIa
aMathematical Populations Dynamics Laboratory

Department of Mathematics, Faculty of Sciences Semlalia

University Cadi Ayyad Marrakech Morocco

and UMI UMMISCO, IRD - UPMC, France

khaladi@ucam.ac.ma
bComputer Sciences Department, School of Engineering

and Innovation, Private University of Marrakech

youssef foutayeni@yahoo.fr

Abstract: Most bio-economic models do not take into account the vari-
ational of the price of fish population. Usually, the existing models consider
that the prices of the fish populations are constants. In this work, we will
take that the price of fish population depends on quantity harvested; for this
we propose to define a bio-economic model that merges a model of competi-
tion and a model of prey-predator of three fish populations. More specifically,
we assume that on the one hand, the evolution of the first and second fish
population is described by a density dependent model taking into account the
competition between fish populations which compete with each other for space
or food; on the other hand, the evolution of the second and third fish popula-
tion is described by a Lotka-Volterra model. The objective of this work is to
maximize the income of the fishing fleet that exploits the three fish popula-
tions, but we have to respect two constraints, the first one is the sustainable
management of the resources and the second one is the preservation of the
biodiversity. The existence of the steady states and its stability are studied
using eigenvalue analysis. The problem of determining the equilibrium point
that maximizes the income is then solved by using the linear complementarity
problem. Finally, some numerical simulations are discussed.
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1 Introduction

In recent years the bio-economic modelling of the exploitation of biological
resources such as fisheries has gained importance, we cite for example in the
work of P. Auger et al.[1] with which the authors have given a mathemati-
cal model of artificial pelagic multisite fisheries; the model is a stock–effort
dynamical model of a fishery subdivided into artificial fishing sites such as
fish-aggregating devices (FADs) or artificial habitats (AHs); the objective of
their work is to investigate the effects of the number of sites on the global
activity of the fishery.

An other example is also that R. Mchich et al.[21] who in their work have
presented a stock-effort dynamical model of a fishery subdivided on several
fishing zones; the stock corresponds to a fish population moving between dif-
ferent zones, on which they are harvested by fishing fleets.

Many mathematical models have been developed to describe the dynamics
of fisheries, we can refer for example to S. Charles et al.[2], M. Haddon[18] and
T. J. Quinn et al.[19], and many other works included economic factors (see
the books by C.W. Clark[7] and Y. Cohen[9] and the works of F. H. Clarke
and G. R. Munro[8] and N. Räıssi[24]).

In this context, Y. Elfoutayeni et al.[12] who in their work have defined
a bio-economic equilibrium model for several fishermen who catch two fish
species; in this work, the authors have showed that the existence of the steady
states and its stability are studied using eigenvalue analysis; the problem of
determining the equilibrium point that maximizes the profit of each fisherman
is solved by using linear complementarity problem and finally the authors have
given some numerical simulations to illustrate the results.

An other important example in this context is also that Y. Elfoutayeni et
al.[13] who in their work have defined a bio-economic equilibrium model for ’n’
fishermen who catch three species, these species compete with each other for
space or food; the natural growth of each species is modeled using a logistic
law; the objective of their work is to calculate the fishing effort that maximizes
the profit of each fisherman at biological equilibrium by using the generalized
Nash equilibrium problem.

An other important example in this context is also that Y. Elfoutayeni et
al.[14] who in their work have presented a bio-economic model for several fish
populations taking into consideration the fact that the prices of fish popula-
tions vary according to the quantity harvested. These fish populations compete
with each other for space or food. The natural growth of each one is mod-
eled using a logistic law. The objective of this work is multiple, it consists in
defining the mathematical model; studying the existence and stability of the
equilibrium point; calculating the fishing effort that maximizes the income of
the fishing fleet exploiting all fish populations.

K. S. Chaudhuri ([3],[4]) has studied the combined harvesting of two com-
peting species from the standpoint of bio-economic harvesting and has dis-
cussed dynamic optimization of the harvest policy. K. S. Chaudhuri et al.[5]
have studied combined harvesting of a prey-predator community with some
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Figure 1: The model with three fish populations: the first and second one are in

competition, the second and third one are prey-predator.

prey hiding in refuges.

All of the bio-economic models mentioned above consider that the prices
of fish populations are constants.

In the present paper, we propose to define a bio-economic model that
merges a model of competition and a model of prey-predator of three fish
populations. Specifically, we assume that on the one hand, the evolution of
the first and second fish population is described by a density dependent model
taking into account the competition between fish populations which compete
with each other for space or food (see P. F. Verhulst[25]); on the other hand,
the evolution of the second and third fish population is described by a Lotka-
Volterra model (see figure 1).

Most bio-economic models do not take into account the variational of the
price of fish population. Usually, the existing models consider that the prices
of the fish populations are constants. In this work, we will take that the
price of fish population depends on quantity harvested; specifically we assumed
that the price of the fish population increases with decreasing harvest and the
price of the fish population decreases with the increase of the harvest, but the
minimum price is equal to a fixed positive constant. More precisely we take
that pi(Hi) = ai

Hi
+ p0i where ai and p0i are positive parameters given for all

i = 1, 2, 3.

The objective of the fishing fleet is to maximize its income at biological
equilibrium, but we have to respect two constraints, the first one is the sus-
tainable management of the resources, the second one is the preservation of
the biodiversity. With all these considerations, our problem leads to a convex
quadratic problem.

The paper is organized as follows. In the next section, we present the
mathematical model which consist in a system of three ordinary differential
equations, the first equation describes the natural growth of the first fish popu-
lation and competition between the first and second fish population; the second
equation describes the natural growth of the second fish population, competi-
tion with the first fish population and a prey of the third fish population; the
third equation describes the natural growth of the third fish population as a
predator of the second fish population. The existence of the steady states of
this system and its stability are studied using eigenvalue analysis and we define
a bio-economic equilibrium model for the three fish populations exploited by
a fishing fleet. In section 3 we prove that the resolution of bio-economic equi-
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librium model of the three fish populations is equivalent to solving a convex
quadratic problem and then we show that the latter problem has a unique so-
lution. In section 4 we give a numerical simulation of the mathematical model
and discussion of the results; finally we give a conclusion and some potential
perspectives in section 5.

2 A dynamic model of fish populations

In this work we consider three fish populations. Let Bi(t) be the fish density
of fish population i = 1, 2, 3 at time t. In this model, it is assumed that

the first fish population grows according to a logistic equation with growth
rate r1 and carrying capacity K1, this fish population competes with the second
one as follows (see G. F. Gause[16])

Ḃ1 = r1B1(1−
B1

K1

)− c12B1B2 (1)

where c12 is the coefficient of competition between the first and second fish
population.

The second fish population grows according to a logistic equation with
growth rate r2 and carrying capacity K2, this fish population competes with
the first one and it is a prey of the third one as follows

Ḃ2 = r2B2(1−
B2

K2

)− c21B1B2 − αB2B3 (2)

where c21 is the coefficient of competition between the second and first fish
population and α is the predation rate coefficient.

The third fish population is the predator of the second one as follows

Ḃ3 = −B3(β − γB2) (3)

where β is the predator mortality rate and γ is the reproduction rate of preda-
tor (see Figure 1).

In order to ensure the existence and stability of the locally asymptotically
stable of the three fish populations we assume that

r1 − c12K1 > 0
r2 − c21K2 > 0

1− c12
r1

β
γ
> 0

r1r2K2γ − r1r2β − c21r1K1K2γ + c12c21K1K2β > 0

(4)

Under these assumptions, the evolution of the biomass of the three fish popu-
lations is modelled by the following equations

Ḃ1 = r1B1(1− B1

K1
)− c12B1B2

Ḃ2 = r2B2(1− B2

K2
)− c21B1B2 − αB2B3

Ḃ3 = −B3(β − γB2)

(5)
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Figure 2: Figure illustrates the evolution of the fish populations in the case r1 =
2.5; r2 = 2.7; K1 = 6; K2 = 20; c12 = 0.01; c21 = 0.001; α = 0.3; β =
3and γ = 0.5. The initial conditions are 6, 2and 10of the first, second and third

population respectively. The three fish populations converge to their steady states

B∗ = (5.86; 6.00; 6.28)in finite time.

The steady states of the system of equations (5) are obtained by solving the
equations 

B1[r1(1− B1

K1
)− c12B2] = 0

B2[r2(1− B2

K2
)− c21B1 − αB3] = 0

−B3(β − γB2) = 0

(6)

The system (6) has six equilibria, only one of them can give coexistence of the
three fish populations, in this case the bio-masses are positive; this solution is
the point P (B∗

1 , B
∗
2 , B

∗
3) where

B∗
1 = K1(1− c12

r1

β
γ
)

B∗
2 = β

γ

B∗
3 = r1r2K2γ−r1r2β−c21r1K1K2γ+c21c12K1K2β

αr1K2γ

(7)

Now we will prove a result which gives the stability of the point P (B∗
1 , B

∗
2 , B

∗
3)

given by (7), exactly, the steady state P (B∗
1 , B

∗
2 , B

∗
3) is locally asymptotically

stable (see figure 2).

Proposition 1 Under the conditions (4) the steady state P (B∗
1 , B

∗
2 , B

∗
3) is lo-

cally asymptotically stable.

Proof. The variational matrix of the system (5) at P (B∗
1 , B

∗
2 , B

∗
3) is

J =

 −r1
B∗

1

K1
−c12B∗

1 0

−c21B∗
2 −r2B

∗
2

K2
−αB∗

2

0 γB∗
3 0


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The characteristic polynomial is given by

P (λ) = a0λ
3 + a1λ

2 + a2λ+ a3

where 
a0 = 1 > 0

a1 = r2
B∗

2

K2
+ r1

B∗
1

K1
> 0

a2 = αγB∗
2B

∗
3 +

B∗
1B

∗
2

K1K2
(r1r2 − c21c12K1K2) > 0

a3 = r1
B∗

1

K1
αγB∗

2B
∗
3 > 0

Moreover

a1a2 − a0a3 = (r2
B∗

2

K2

+ r1
B∗

1

K1

)[αγB∗
2B

∗
3 +

B∗
1B

∗
2

K1K2

(r1r2 − c21c12K1K2)]

− r1
B∗

1

K1

αγB∗
2B

∗
3

= r2
B∗

2

K2

a2 + r1
B∗

1

K1

αγB∗
2B

∗
3 + r1

B∗
1

K1

B∗
1B

∗
2

K1K2

(r1r2 − c21c12K1K2)

− r1
B∗

1

K1

αγB∗
2B

∗
3

= r2
B∗

2

K2

a2 + r1
B∗

1

K1

B∗
1B

∗
2

K1K2

(r1r2 − c21c12K1K2)

Using the fact that by (4) we have a1a2 − a0a3 > 0 and therefore by Routh-
Hurwitz Stability Criterion we have P (B∗

1 , B
∗
2 , B

∗
3) is locally asymptotically

stable.
Now let xi be the harvesting effort used to harvest fish population i and

let qi be the catchability coefficient of fish population i (defined as the fraction
of the population fished by an effort unit (see A. Laurec et al.[20])). The
evolution of the biomass changes through time can be expressed as

Ḃ1 = r1B1(1− B1

K1
)− c12B1B2 −H1

Ḃ2 = r2B2(1− B2

K2
)− c21B1B2 − αB2B3 −H2

Ḃ3 = −B3(β − γB2)−H3

(8)

where Hi = qixiBi (see M. B. Schaefer[23]) is the harvest of fish population i.
The biomasses at biological equilibrium are the solutions of the system

r1(1− B1

K1
)− c12B2 − q1x1 = 0

r2(1− B2

K2
)− c21B1 − αB3 − q2x2 = 0

−(β − γB2)− q3x3 = 0

(9)

The solution of this system is given by B = −Ax+B∗ where

A =

 K1
q1
r1

0 K1
c12q3
r1γ

0 0 − q3
γ

− c21K1q1
αr1

q2
α

r2q3r1−c21K1K2c12q3
αK2γr1


Expression of the total effort cost: Let ci be the constant cost per unit

of harvesting effort of fish population i. We shall assume that (TC) = xTCx,
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Figure 3: Price of the fish population increases with decreasing harvest p(H) =
a
H

+ p0. The first figure illustrates the price with parameters as follows a = 1and

p0 = 0.5. The second figure illustrates the price with parameters as follows a =
20and p0 = 0.5. The first figure illustrates the price with parameters as follows

a = 1and p0 = 1.

where (TC) is the total effort cost; the superscript T denotes the transpose
and C is the 3 × 3 diagonal matrix with Cii = ci for all i and Cij = 0 for all
i 6= j.

Expression of the total revenue: We shall assume, in keeping with
many standard fisheries models (e.g., the model of H. S. Gordon[17], and W.
C. Clark et al.[6]), that the total revenue (TR) of fishing fleet from harvest
the three fish populations is defined as (TR) = p1H1 + p2H2 + p3H3, where pi
is the price of fish population i.

In this work we assumed that the price of the fish population increases
with decreasing harvest and the price of the fish population decreases with
the increase of the harvest but the minimum price is equal to a fixed positive
constant. More precisely we take pi(Hi) = ai

Hi
+ pmin i where ai and pmin i are

positive parameters given (see figure 3). Under these more realistic assump-
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tions we have

(TR) = p1H1 + p2H2 + p3H3

= (
a1
H1

+ p01)H1 + (
a2
H2

+ p02)H2 + (
a3
H3

+ p03)H3

= p01H1 + p02H2 + p03H3 + a

= p01q1x1B1 + p02q2x2B2 + p03q3x3B3 + a

= p01q1x1(−a11x1 − a12x2 − a13x3 +B∗
1)

+ p02q2x2(−a21x1 − a22x2 − a23x3 +B∗
2)

+ p03q3x3(−a31x1 − a32x2 − a33x3 +B∗
3) + a

= −xT (p0qAx) + xT (p0qB
∗) + a

where a = a1 + a2 + a3 and

p0qA =

 p01q1a11 p01q1a12 p01q1a13
p02q2a21 p02q2a22 p02q2a23
p03q3a31 p03q3a32 p03q3a33

 .
We note that in this work the product of two vectors x ∈ IRn and y ∈ IRn is
the vector xy ∈ IRn defined by xy := (x1y1, ..., xnyn)T .

Expression of the profit: The profit for the fishing fleet is equal to total
revenue (TR) minus total cost (TC), in other words, this profit is represented
by the following function

π(x) = −xT (p0qA+ C)x+ xT (p0qB
∗) + a. (10)

The objective is to maximize fishing fleet’s income but we must respect two
constraints, the first one is the preservation of the biodiversity of fish popu-
lations B = −Ax + B∗ ≥ B0 where B0 is a positive constant given (in the
numerical simulations we will take B0 = 10%B∗); the second one is the posi-
tivity of the fishing effort x ≥ 0. With all these considerations, our problem
leads to the following problem

maxπ(x) = −xT (p0qA+ C)x+ xT (p0qB
∗) + a

subject to Ax ≤ B∗ −B0

x ≥ 0
(11)

3 Resolution of the mathematical model

It is clear that the matrix Q = p0qA + C associated with the optimization
problem obtained is not symmetric positive definite to say that this problem
has a unique solution; by cons we can show that this matrix is a P −matrix
(Recall that a matrix M is called P −matrix if all of its principal minors are
positive).

Theorem 2 The problem
maxπ(x) = −xTQx+ xT (p0qB

∗) + a
subject to Ax ≤ B∗ −B0

x ≥ 0
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has a unique solution.

Proof. To prove this result it suffices to show that the matrix Q

Q =

 p01q1K1
q1
r1

+ c1 0 p01q1K1
c12q3
r1γ

0 c2 −p02q2 q3γ
−p03q3 c21K1q1

αr1
p03q3

q2
α

p03q3
r2q3r1−c21K1K2c12q3

αK2γr1
+ c3


is P −matrix.

Now if we note by (Qi)i=1,2,3 the submatrix of Q, we obtain
det(Q1) = p01q1K1

q1
r1

+ c1 > 0;
det(Q2) = (p01q1K1

q1
r1

+ c1)c2 > 0 and

det(Q3) = (p01q1K1
q1
r1

+ c1)[c2(p03q
2
3
r1r2−c12c21K1K2

αK2γr1
+ c3) + p03q3

q2
α
p02q2

q3
γ

]

−p03q3 c21K1q1
αr1

(−c2p01q1K1
c12q3
r1γ

) > 0.

So the matrix Q is P −matrix and therefore the problem (11) admits one
and only one solution (see Y. Elfoutayeni[15]).

The theorem proves that the existence and uniqueness x∗ that maximizes
the profit π(x) = −xT (p0qA+ C)x+ xT (p0qB

∗) + a.
We note that the problem (11) is equivalent to (see Y. Elfoutayeni[15])

what is called a Linear Complementarity Problem LCP (M, q̃) (we recall that
the linear complementarity problem LCP (M, q̃) is to find a vector z in IRn

satisfying zT (Mz + q̃) = 0, Mz + q̃ > 0, z > 0, where M = (mij) ∈ IRn×n and
q̃ ∈ IRn are given).

In this cas

M =

[
2p0qA+ 2C AT

−A 0

]
and

q̃ =

(
c− p0qB∗

B∗ −B0

)
For solving the linear complementarity problem LCP (M, q̃) we can demon-
strate that the matrix M is P −matrix and we will use the following result:

A linear complementarity problem LCP (M, q̃) has a unique solution for
every q̃ if and only if M is a P −matrix (For demonstration we can see K. G.
Murty[22]).

Note that each matrix symmetric positive definite is P −matrix, but the
reverse is not always true.

To calculate x∗ solution of (11) we can use the methods of Y. Elfoutayeni
and M. Khaladi([10],[11]) because of their speed of convergence.

4 Numerical simulations and the discussion of

the results

In this section, we assign numerical values to the parameters of the system (5)
and compute some simulations using those values.
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Figure 4: The evolution of the three fish populations with the increasing time.

In order to ensure the existence and stability of the locally asymptotically
stable of the three fish populations let us consider the parameters of the model
system (5) as r1 = 0.25; r2 = 2.7; K1 = 6; K2 = 20; c12 = 0.01; c21 = 0.001;
α = 2.5; β = 12 and γ = 2.7.

Then in this case the steady states is B∗ = (4.93; 4.44; 0.84).

The initial conditions are 6, 5 and 4 of the first, second and third fish
population respectively. Then it is observed from the figure 4 and 5 that
P (B∗

1 , B
∗
2 , B

∗
3) is locally asymptotically stable and the three fish populations

converge to their steady states in finite time.

Now let us consider the economic parameters such as a1 = 0.1; a2 = 0.2;
a3 = 0.3; p01 = 0.15; p02 = 2; p03 = 1; q1 = 0.4; q2 = 0.2; q3 = 0.3; c1 = 0.01;
c2 = 0.2; c3 = 0.3 and B0 = 10%B∗ = (0.49; 0.44; 0.08). In this case the fishing
effort which maximizes the profit of fishing fleet is x∗ = (0.25; 4.47; 0.57) and
the profit is π∗ = 4, 69.

Now we’ll see how changes in the minimum price of each fish population
can affect the profit of fishing fleet: as well as an increase in minimum price
leads to an increase in profit of the fishing fleet as shown in the following table.

pmin 1 00.15 00.65 01.15 01.65 02.15 02.65 03.15 03.65
pmin 2 02.00 02.50 03.00 03.50 04.00 04.50 05.00 05.50
pmin 3 01.00 01.50 02.00 02.50 03.00 03.50 04.00 04.50
Profit 04, 69 07.13 10.10 13.60 17.61 22.03 26.49 30.96
Table 1: An increase in minimum price leads to an increase in fishing fleet.
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Figure 5: Phase space trajectories of the three fish populations.

5 Conclusion and perspectives

In this paper we have developed a bio-economic model that combines a model
of competition and a model of prey-predator of three fish populations. In this
model we have assumed that on the one hand, the evolution of the first and
second fish population is described by a density dependent model taking into
account the competition between fish populations which compete with each
other for space or food; on the other hand, the evolution of the second and
third fish population is described by a Lotka-Volterra model. In this work we
have calculated the fishing effort which maximizes the income of the fishing
fleet that exploits the three fish populations subject to two constraints, the first
one is the sustainable management of the resources and the second one is the
preservation of the biodiversity of the fish populations. The existence of the
steady states and its stability are studied using eigenvalue analysis. Finally,
some numerical simulations are given to illustrate the results obtained. We
note that to get the numerical simulations, we used Matlab.

As a perspective we intend to generalize the results obtained by consid-
ering a bio-economic model that combines several fish populations between
competition model and prey-predator model and the price of each population
is variable.
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