ON SMARANDACHE ts CURVES OF BIHARMONIC \mathcal{S}-CURVES ACCORDING TO SABBAN FRAME IN HEISENBERG GROUP HEIS ${ }^{3}$

ESSIN TURHAN AND TALAT KÖRPINAR

Abstract

In this paper, we study Smarandache ts curves according to Sabban frame in the Heisenberg group Heis ${ }^{3}$. Finally, we find explicit parametric equations of Smarandache ts curves according to Sabban Frame.

1. Introduction

A smooth map $\phi: N \longrightarrow M$ is said to be biharmonic if it is a critical point of the bienergy functional:

$$
E_{2}(\phi)=\int_{N} \frac{1}{2}|\mathcal{T}(\phi)|^{2} d v_{h},
$$

where $\mathcal{T}(\phi):=\operatorname{tr} \nabla^{\phi} d \phi$ is the tension field of ϕ.
The Euler-Lagrange equation of the bienergy is given by $\mathcal{T}_{2}(\phi)=0$. Here the section $\mathcal{T}_{2}(\phi)$ is defined by

$$
\begin{equation*}
\mathcal{T}_{2}(\phi)=-\Delta_{\phi} \mathcal{T}(\phi)+\operatorname{tr} R(\mathcal{T}(\phi), d \phi) d \phi, \tag{1.1}
\end{equation*}
$$

and called the bitension field of ϕ. Non-harmonic biharmonic maps are called proper biharmonic maps.

This study is organised as follows: Firstly, we study Smarandache ts curves according to Sabban frame in the Heisenberg group Heis ${ }^{3}$. Finally, we find explicit parametric equations of Smarandache ts curves according to Sabban Frame.

2. The Heisenberg Group Heis ${ }^{3}$

Heisenberg group Heis ${ }^{3}$ can be seen as the space \mathbb{R}^{3} endowed with the following multipilcation:

$$
\begin{equation*}
(\bar{x}, \bar{y}, \bar{z})(x, y, z)=\left(\bar{x}+x, \bar{y}+y, \bar{z}+z-\frac{1}{2} \bar{x} y+\frac{1}{2} x \bar{y}\right) \tag{2.1}
\end{equation*}
$$

Heis^{3} is a three-dimensional, connected, simply connected and 2 -step nilpotent Lie group.

Date: January 31, 2012.
2000 Mathematics Subject Classification. Primary 53A04; Secondary 53A10.
Key words and phrases. Biharmonic curve, Heisenberg group, Smarandache ts curves.

[^0]The Riemannian metric g is given by

$$
g=d x^{2}+d y^{2}+(d z-x d y)^{2}
$$

The Lie algebra of Heis^{3} has an orthonormal basis

$$
\begin{equation*}
\mathbf{e}_{1}=\frac{\partial}{\partial x}, \quad \mathbf{e}_{2}=\frac{\partial}{\partial y}+x \frac{\partial}{\partial z}, \quad \mathbf{e}_{3}=\frac{\partial}{\partial z}, \tag{2.2}
\end{equation*}
$$

for which we have the Lie products

$$
\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]=\mathbf{e}_{3}, \quad\left[\mathbf{e}_{2}, \mathbf{e}_{3}\right]=\left[\mathbf{e}_{3}, \mathbf{e}_{1}\right]=0
$$

with

$$
g\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=g\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=g\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=1
$$

We obtain

$$
\begin{align*}
& \nabla_{\mathbf{e}_{1}} \mathbf{e}_{1}=\nabla_{\mathbf{e}_{2}} \mathbf{e}_{2}=\nabla_{\mathbf{e}_{3}} \mathbf{e}_{3}=0 \\
& \nabla_{\mathbf{e}_{1}} \mathbf{e}_{2}=-\nabla_{\mathbf{e}_{2}} \mathbf{e}_{1}=\frac{1}{2} \mathbf{e}_{3} \tag{2.3}\\
& \nabla_{\mathbf{e}_{1}} \mathbf{e}_{3}=\nabla_{\mathbf{e}_{3}} \mathbf{e}_{1}=-\frac{1}{2} \mathbf{e}_{2} \\
& \nabla_{\mathbf{e}_{2}} \mathbf{e}_{3}=\nabla_{\mathbf{e}_{3}} \mathbf{e}_{2}=\frac{1}{2} \mathbf{e}_{1}
\end{align*}
$$

The components $\left\{R_{i j k l}\right\}$ of R relative to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ are defined by

$$
R_{i j k}=R\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right) \mathbf{e}_{k}, \quad R_{i j k l}=R\left(\mathbf{e}_{i}, \mathbf{e}_{j}, \mathbf{e}_{k}, \mathbf{e}_{l}\right)=g\left(R\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right) \mathbf{e}_{l}, \mathbf{e}_{k}\right)
$$

The non vanishing components of the above tensor fields are

$$
\begin{gathered}
R_{121}=\frac{3}{4} \mathbf{e}_{2}, \quad R_{131}=-\frac{1}{4} \mathbf{e}_{3}, \quad R_{122}=-\frac{3}{4} \mathbf{e}_{1} \\
R_{232}=-\frac{1}{4} \mathbf{e}_{3}, \quad R_{133}=\frac{1}{4} \mathbf{e}_{1}, \quad R_{233}=\frac{1}{4} \mathbf{e}_{2}
\end{gathered}
$$

and

$$
R_{1212}=-\frac{3}{4}, \quad R_{1313}=R_{2323}=\frac{1}{4} .
$$

3. Biharmonic \mathcal{S}-Helices According To Sabban Frame In The Heisenberg Group Heis ${ }^{3}$

Let $\gamma: I \longrightarrow$ Heis 3 be a non geodesic curve on the Heisenberg group Heis ${ }^{3}$ parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the Heisenberg group Heis ${ }^{3}$ along γ defined as follows:
\mathbf{T} is the unit vector field γ^{\prime} tangent to γ, N is the unit vector field in the direction of $\nabla_{\mathbf{T}} \mathbf{T}$ (normal to γ), and \mathbf{B} is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$
\begin{align*}
\nabla_{\mathbf{T}} \mathbf{T} & =\kappa \mathbf{N} \\
\nabla_{\mathbf{T}} \mathbf{N} & =-\kappa \mathbf{T}+\tau \mathbf{B} \tag{3.1}\\
\nabla_{\mathbf{T}} \mathbf{B} & =-\tau \mathbf{N}
\end{align*}
$$

where κ is the curvature of γ and τ is its torsion,

$$
\begin{aligned}
g(\mathbf{T}, \mathbf{T}) & =1, g(\mathbf{N}, \mathbf{N})=1, g(\mathbf{B}, \mathbf{B})=1, \\
g(\mathbf{T}, \mathbf{N}) & =g(\mathbf{T}, \mathbf{B})=g(\mathbf{N}, \mathbf{B})=0 .
\end{aligned}
$$

In the rest of the paper, we suppose everywhere

$$
\kappa \neq 0 \text { and } \tau \neq 0
$$

Now we give a new frame different from Frenet frame. Let $\alpha: I \longrightarrow \mathbb{S}_{\text {Heis }}{ }^{3}$ be unit speed spherical curve. We denote σ as the arc-length parameter of α. Let us denote $\mathbf{t}(\sigma)=\alpha^{\prime}(\sigma)$, and we call $\mathbf{t}(\sigma)$ a unit tangent vector of α. We now set a vector $\mathbf{s}(\sigma)=\alpha(\sigma) \times \mathbf{t}(\sigma)$ along α. This frame is called the Sabban frame of α on the Heisenberg group Heis ${ }^{3}$. Then we have the following spherical Frenet-Serret formulae of α :

$$
\begin{align*}
\nabla_{\mathbf{t}} \alpha & =\mathbf{t} \\
\nabla_{\mathbf{t}} \mathbf{t} & =-\alpha+\kappa_{g} \mathbf{s} \tag{3.2}\\
\nabla_{\mathbf{t}} \mathbf{s} & =-\kappa_{g} \mathbf{t}
\end{align*}
$$

where κ_{g} is the geodesic curvature of the curve α on the $\mathbb{S}_{\text {Heis }}{ }^{2}$ and

$$
\begin{aligned}
g(\mathbf{t}, \mathbf{t}) & =1, g(\alpha, \alpha)=1, g(\mathbf{s}, \mathbf{s})=1 \\
g(\mathbf{t}, \alpha) & =g(\mathbf{t}, \mathbf{s})=g(\alpha, \mathbf{s})=0
\end{aligned}
$$

With respect to the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, we can write

$$
\begin{align*}
\alpha & =\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}, \\
\mathbf{t} & =t_{1} \mathbf{e}_{1}+t_{2} \mathbf{e}_{2}+t_{3} \mathbf{e}_{3}, \tag{3.3}\\
\mathbf{s} & =s_{1} \mathbf{e}_{1}+s_{2} \mathbf{e}_{2}+s_{3} \mathbf{e}_{3}
\end{align*}
$$

To separate a biharmonic curve according to Sabban frame from that of FrenetSerret frame, in the rest of the paper, we shall use notation for the curve defined above as biharmonic \mathcal{S}-curve.

Lemma 3.1. $\alpha: I \longrightarrow \mathbb{S}_{\text {Heis }^{3}}^{2}$ is a biharmonic \mathcal{S}-curve if and only if

$$
\begin{align*}
\kappa_{g} & =\text { constant } \neq 0 \\
1+\kappa_{g}^{2} & =-\left[\frac{1}{4}-s_{3}^{2}\right]+\kappa_{g}\left[-\alpha_{3} s_{3}\right] \tag{3.4}\\
\kappa_{g}^{3} & =-\alpha_{3} s_{3}-\kappa_{g}\left[\frac{1}{4}-\alpha_{3}^{2}\right]
\end{align*}
$$

Then the following result holds.

Theorem 3.2. ([9]) All of biharmonic \mathcal{S}-curves in $\mathbb{S}_{\text {Heis }}{ }^{3}$ are helices.

Theorem 3.3. ([9]) Let $\alpha: I \longrightarrow \mathbb{S}_{\text {Heis }^{3}}^{2}$ be a unit speed non-geodesic biharmonic \mathcal{S}-curve. Then, the position vector of α is

$$
\begin{aligned}
\alpha(\sigma) & =\left[-\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{2}\right] \mathbf{e}_{1}+\left[\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{3}\right] \mathbf{e}_{2} \\
& +\left[\cos \mathcal{E} \sigma-\frac{\mathcal{V} \sigma+\mathcal{M}_{1}}{2 \mathcal{V}^{2}} \sin ^{4} \mathcal{E}-\frac{\sin 2\left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]}{4 \mathcal{V}^{2}} \sin ^{4} \mathcal{E}\right. \\
& -\left[\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{3}\right]\left[-\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{2}\right] \\
& \left.+\frac{\mathcal{M}_{2}}{\mathcal{V}} \sin ^{3} \mathcal{E} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{4}\right] \mathbf{e}_{3},
\end{aligned}
$$

where $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}, \mathcal{M}_{4}$ are constants of integration and

$$
\mathcal{M}=\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \mathcal{E}}-\cos \mathcal{E}\right) \text { and } \mathcal{V}=\sqrt{1+\kappa_{g}^{2}}-\frac{1}{2} \sin 2 \mathcal{E}
$$

4. Smarandache ts Curves Of Biharmonic S-Curves According To Sabban Frame In The Heisenberg Group Heis ${ }^{3}$

Definition 4.1. Let $\alpha: I \longrightarrow \mathbb{S}_{H_{\text {eis }}}^{2}$ be a unit speed regular curve in the Heisenberg group Heis ${ }^{3}$ and $\{\alpha, \mathbf{t}, \mathbf{s}\}$ be its moving Bishop frame. Smarandache ts curves are defined by

$$
\begin{equation*}
\gamma_{\mathbf{t s}}=\frac{1}{\sqrt{1+2 \kappa_{g}^{2}}}(\mathbf{t}+\mathbf{s}) \tag{4.1}
\end{equation*}
$$

Theorem 4.2. Let $\alpha: I \longrightarrow \mathbb{S}_{\text {Heis }^{3}}^{2}$ be a unit speed non-geodesic biharmonic \mathcal{S}-curve $\gamma_{\mathbf{t s}}$ its Smarandache ts curve. Then, the position vector of Smarandache ts curve is
$\gamma_{\mathbf{t s}}(\sigma)=\frac{1}{\sqrt{1+2 \kappa_{g}^{2}}}\left[\sin \mathcal{E} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\frac{1}{\kappa_{g}}\left[\sin \mathcal{E} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right](\mathcal{M}+\cos \mathcal{E})\right.\right.$

$$
\begin{align*}
& \left.\left.-\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{2}\right]\right] \mathbf{e}_{1}+\frac{1}{\sqrt{1+2 \kappa_{g}^{2}}}\left[\sin \mathcal{E} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]\right. \tag{4.2}\\
& \left.+\frac{1}{\kappa_{g}}\left[-\sin \mathcal{E} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right](\mathcal{M}+\cos \mathcal{E})+\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{3}\right]\right] \mathbf{e}_{2} \\
& +\frac{1}{\sqrt{1+2 \kappa_{g}^{2}}}\left[\cos \mathcal{E}+\frac{1}{\kappa_{g}}\left[\cos \mathcal{E} \sigma-\frac{\mathcal{V} \sigma+\mathcal{M}_{1}}{2 \mathcal{V}^{2}} \sin ^{4} \mathcal{E}-\frac{\sin 2\left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]}{4 \mathcal{V}^{2}} \sin ^{4} \mathcal{E}\right.\right. \\
& -\left[\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{3}\right]\left[-\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{2}\right] \\
& \left.+\frac{\mathcal{M}_{2}}{\mathcal{V}} \sin ^{3} \mathcal{E} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{4}\right] \mathbf{e}_{3},
\end{align*}
$$

where $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}, \mathcal{M}_{4}$ are constants of integration and

$$
\begin{equation*}
\mathcal{M}=\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \mathcal{E}}-\cos \mathcal{E}\right) \text { and } \mathcal{V}=\sqrt{1+\kappa_{g}^{2}}-\frac{1}{2} \sin 2 \mathcal{E} \tag{4.3}
\end{equation*}
$$

Proof. From definition of \mathcal{S}-helix, we obviously obtain

$$
\begin{equation*}
\mathbf{t}=\sin \mathcal{E} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right] \mathbf{e}_{1}+\sin \mathcal{E} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right] \mathbf{e}_{2}+\cos \mathcal{E} \mathbf{e}_{3} \tag{4.4}
\end{equation*}
$$

We can easily verify that

$$
\begin{equation*}
\nabla_{\mathbf{t}} \mathbf{t}=\left(t_{1}^{\prime}+t_{2} t_{3}\right) \mathbf{e}_{1}+\left(t_{2}^{\prime}-t_{1} t_{3}\right) \mathbf{e}_{2}+t_{3}^{\prime} \mathbf{e}_{3} \tag{4.5}
\end{equation*}
$$

Since, we immediately arrive at

$$
\begin{aligned}
\nabla_{\mathbf{t}} \mathbf{t} & =\sin \mathcal{E} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right](\mathcal{M}+\cos \mathcal{E}) \mathbf{e}_{1} \\
& -\sin \mathcal{E} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right](\mathcal{M}+\cos \mathcal{E}) \mathbf{e}_{2}
\end{aligned}
$$

Obviously, we also obtain

$$
\begin{align*}
\mathbf{s}(\sigma) & =\frac{1}{\kappa_{g}}\left[\sin \mathcal{E} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right](\mathcal{M}+\cos \mathcal{E})-\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{2}\right] \mathbf{e}_{1} \\
& +\frac{1}{\kappa_{g}}\left[-\sin \mathcal{E} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right](\mathcal{M}+\cos \mathcal{E})+\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{3}\right] \mathbf{e}_{2} \\
4.6) & +\frac{1}{\kappa_{g}}\left[\cos \mathcal{E} \sigma-\frac{\mathcal{V} \sigma+\mathcal{M}_{1}}{2 \mathcal{V}^{2}} \sin ^{4} \mathcal{E}-\frac{\sin 2\left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]}{4 \mathcal{V}^{2}} \sin ^{4} \mathcal{E}\right. \tag{4.6}\\
& -\left[\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{3}\right]\left[-\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{2}\right] \\
& \left.+\frac{\mathcal{M}_{2}}{\mathcal{V}} \sin ^{3} \mathcal{E} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{4}\right] \mathbf{e}_{3}
\end{align*}
$$

where

$$
\mathcal{M}=\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \mathcal{E}}-\cos \mathcal{E}\right) \text { and } \mathcal{V}=\sqrt{1+\kappa_{g}^{2}}-\frac{1}{2} \sin 2 \mathcal{E}
$$

Substituting (4.4) and (4.6) in (4.1) we have (4.3), which completes the proof.

Corollary 4.3. Let $\alpha: I \longrightarrow \mathbb{S}_{H^{2}}^{2}{ }^{3}$ be a unit speed non-geodesic biharmonic \mathcal{S}-curve $\gamma_{\mathbf{t s}}$ its Smarandache ts curve. Then, the parametric equations of

Smarandache ts curve are

$$
\begin{aligned}
x_{\mathbf{t s}}(\sigma) & =\frac{1}{\sqrt{1+2 \kappa_{g}^{2}}}\left[\sin \mathcal{E} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\frac{1}{\kappa_{g}}\left[\sin \mathcal{E} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right](\mathcal{M}+\cos \mathcal{E})\right.\right. \\
& \left.\left.-\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{2}\right]\right]
\end{aligned}
$$

$$
\begin{align*}
y_{\mathbf{t s}}(\sigma) & =\frac{1}{\sqrt{1+2 \kappa_{g}^{2}}}\left[\sin \mathcal{E} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\frac{1}{\kappa_{g}}\left[-\sin \mathcal{E} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right](\mathcal{M}+\cos \mathcal{E})\right.\right. \tag{4.7}\\
& \left.\left.+\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{3}\right]\right] \\
z_{\mathbf{t s}}(\sigma) & =\frac{1}{\sqrt{1+2 \kappa_{g}^{2}}}\left[\cos \mathcal{E}+\frac{1}{\kappa_{g}}\left[\cos \mathcal{E} \sigma-\frac{\mathcal{V} \sigma+\mathcal{M}_{1}}{2 \mathcal{V}^{2}} \sin ^{4} \mathcal{E}-\frac{\sin 2\left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]}{4 \mathcal{V}^{2}} \sin ^{4} \mathcal{E}\right.\right. \\
& -\left[\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{3}\right]\left[-\frac{\sin ^{2} \mathcal{E}}{\mathcal{V}} \cos \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{2}\right] \\
& \left.+\frac{\mathcal{M}_{2}}{\mathcal{V}} \sin ^{3} \mathcal{E} \sin \left[\mathcal{M} \sigma+\mathcal{M}_{1}\right]+\mathcal{M}_{4}\right]
\end{align*}
$$

where $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}, \mathcal{M}_{4}$ are constants of integration and

$$
\mathcal{M}=\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\sin \mathcal{E}}-\cos \mathcal{E}\right) \text { and } \mathcal{V}=\sqrt{1+\kappa_{g}^{2}}-\frac{1}{2} \sin 2 \mathcal{E}
$$

Proof. Substituting (2.1) to (4.2), we have (4.7) as desired.
If we use Mathematica both unit speed non-geodesic biharmonic \mathcal{S}-curve and its Smarandache ts curve, we have

References

[1] M. Babaarslan and Y. Yayli: The characterizations of constant slope surfaces and Bertrand curves, International Journal of the Physical Sciences 6(8) (2011), 1868-1875.
[2] R. Caddeo and S. Montaldo: Biharmonic submanifolds of \mathbb{S}^{3}, Internat. J. Math. 12(8) (2001), 867-876.
[3] J. Eells and J. H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
[4] A. Gray: Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, 1998.
[5] S. Izumiya and N. Takeuchi: Special Curves and Ruled Surfaces, Contributions to Algebra and Geometry 44 (2003), 203-212.
[6] G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2) (1986), 130-144.
[7] G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2) (1986), 130-144.
[8] T. Körpınar and E. Turhan: On characterization of B-canal surfaces in terms of biharmonic B-slant helices according to Bishop frame in Heisenberg group Heis ${ }^{3}$, J. Math. Anal. Appl. 382 (2011), 57-65.
[9] T. Körpınar and E. Turhan: Biharmonic S-Curves According to Sabban Frame in Heisenberg Group Heis ${ }^{3}$, Bol. Soc. Paran. Mat. 31 (1) (2013), 205-211.
[10] DY. Kwon, FC. Park, DP Chi: Inextensible flows of curves and developable surfaces, Appl. Math. Lett. 18 (2005), 1156-1162.
[11] Y. Ou and Z. Wang: Linear Biharmonic Maps into Sol, Nil and Heisenberg Spaces, Mediterr. j. math. 5 (2008), 379-394.
[12] S. Rahmani: Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302.
[13] E. Turhan and T. Körpınar, On spacelike biharmonic new type b-slant helices with timelike m2 according to Bishop frame in Lorentzian Heisenberg group H^{3}, Advanced Modeling and Optimization, 14 (1) (2012), 297-302.
[14] E. Turhan and T. Körpınar: On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis ${ }^{3}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences 65a (2010), 641-648.
[15] E. Turhan and T. Körpınar: Horizontal geodesics in Lorentzian Heisenberg group Heis ${ }^{3}$, Advanced Modeling and Optimization, 14 (1) (2012), 311-319.
[16] M. Turgut and S. Yilmaz: Smarandache Curves in Minkowski Space-time, International Journal of Mathematical Combinatorics 3 (2008), 51-55.

Firat University, Department of Mathematics,23119, Elaziğ, Turkey
E-mail address: essin.turhan@gmail.com, talatkorpinar@gmail.com

[^0]: *AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

