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CHARACTERIZATION OF SMARANDACHE M1M2 CURVES OF
SPACELIKE BIHARMONIC B�SLANT HELICES ACCORDING

TO BISHOP FRAME IN E(1; 1)

TALAT KÖRPINAR AND ESSIN TURHAN

Abstract. In this paper, we �nd parametric equations of SmarandacheM1M2

curves of spacelike biharmonic B�slant helices according to Bishop frame in
terms of Bishop curvatures in the Lorentzian group of rigid motions E(1; 1).
Finally, we construct Bishop equations of SmarandacheM1M2 curves of space-
like biharmonic B�slant helices in E(1; 1).

1. Introduction

A curve of constant slope or general helix is de�ned by the property that the
tangent lines make a constant angle with a �xed direction. A necessary and su¢ -
cient condition that a curve to be general helix is that ratio of curvature to torsion
be constant. Indeed, a helix is a special case of the gerenal helix. If both curvature
and torsion are non-zero constants, it is called a helix or only a W-curve.
On the other hand, the Bishop frame or parallel transport frame is an alternative

approach to de�ning a moving frame that is well de�ned even when the curve has
vanishing second derivative. We can parallel transport an orthonormal frame along
a curve simply by parallel transporting each component of the frame.
In this paper, we �nd parametric equations of Smarandache M1M2 curves of

spacelike biharmonic B�slant helices according to Bishop frame in terms of Bishop
curvatures in the Lorentzian group of rigid motions E(1; 1). Finally, we construct
Bishop equations of Smarandache M1M2 curves of spacelike biharmonic B�slant
helices in E(1; 1).

2. Preliminaries

Let E(1; 1) be the group of rigid motions of Euclidean 2-space. This consists of
all matrices of the form 0@ coshx sinhx y

sinhx coshx z
0 0 1
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Topologically, E(1; 1) is di¤eomorphic to R3 under the map

E(1; 1) �! R3 :

0@ coshx sinhx y
sinhx coshx z
0 0 1

1A �! (x; y; z) ;

It�s Lie algebra has a basis consisting of

X1 =
@

@x
; X2 = coshx

@

@y
+ sinhx

@

@z
; X3 = sinhx

@

@y
+ coshx

@

@z
;

for which
[X1;X2] = X3; [X2;X3] = 0; [X1;X3] = X2:

Put

x1 = x; x2 =
1

2
(y + z) ; x3 =

1

2
(y � z) :

Then, we get
(2.1)

X1 =
@

@x1
; X2 =

1

2

�
ex

1 @

@x2
+ e�x

1 @

@x3

�
; X3 =

1

2

�
ex

1 @

@x2
� e�x

1 @

@x3

�
:

The bracket relations are

[X1;X2] = X3; [X2;X3] = 0; [X1;X3] = X2:

We consider left-invariant Lorentzian metrics which has a pseudo-orthonormal
basis fX1;X2;X3g : We consider left-invariant Lorentzian metric [12], given by

g = �
�
dx1

�2
+
�
e�x

1

dx2 + ex
1

dx3
�2
+
�
e�x

1

dx2 � ex
1

dx3
�2
;

where
g (X1;X1) = �1; g (X2;X2) = g (X3;X3) = 1:

Let coframe of our frame be de�ned by

�1 = dx1; �2 = e�x
1

dx2 + ex
1

dx3; �3 = e�x
1

dx2 � ex
1

dx3:

3. Smarandache M1M2 Curves of Spacelike Biharmonic B-Slant
Helices in the Lorentzian Group of Rigid Motions E(1; 1)

Let  : I �! E(1; 1) be a non geodesic spacelike curve on the E(1; 1) parame-
trized by arc length. Let fT;N;Bg be the Frenet frame �elds tangent to the E(1; 1)
along  de�ned as follows:
T is the unit vector �eld 0 tangent to ,N is the unit vector �eld in the direction

of rTT (normal to ), and B is chosen so that fT;N;Bg is a positively oriented
orthonormal basis. Then, we have the following Frenet formulas:

rTT = �N;

rTN = �T+ �B;(3.1)

rTB = �N;

where � is the curvature of  and � is its torsion and

g (T;T) = 1; g (N;N) = �1; g (B;B) = 1;
g (T;N) = g (T;B) = g (N;B) = 0:
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The Bishop frame or parallel transport frame is an alternative approach to de�n-
ing a moving frame that is well de�ned even when the curve has vanishing second
derivative. The Bishop frame is expressed as

rTT = k1M1 � k2M2;

rTM1 = k1T;(3.2)

rTM2 = k2T;

where

g (T;T) = 1; g (M1;M1) = �1; g (M2;M2) = 1;

g (T;M1) = g (T;M2) = g (M1;M2) = 0:

Here, we shall call the set fT;M1;M2g as Bishop trihedra, k1 and k2 as Bishop
curvatures and �(s) =  0 (s), �(s) =

p
jk22 � k21j: Thus, Bishop curvatures are

de�ned by

k1 = �(s) sinh (s) ;

k2 = �(s) cosh (s) :

With respect to the orthonormal basis fe1; e2; e3g we can write

T = T 1e1 + T
2e2 + T

3e3;

M1 =M1
1 e1 +M

2
1 e2 +M

3
1 e3;(3.3)

M2 =M1
2 e1 +M

2
2 e2 +M

3
2 e3:

De�nition 3.1. Let  : I �! E(1; 1) be a unit speed regular curve in the
Lorentzian group of rigid motions E(1; 1): and fT;M1;M2g be its moving Bishop
frame. Smarandache M1M2 curves are de�ned by

(3.4) M1M2
=

1

jk1 + k2j
(M1 +M2) :

De�nition 3.2. [7], A regular spacelike curve  : I �! E(1; 1) is called a
B�slant helix provided the timelike unit vector M1 of the curve  has constant
angle � with some �xed timelike unit vector u; that is

g (M1 (s) ; u) = cosh} for all s 2 I:

Lemma 3.3. [7], Let  : I �! E(1; 1) be a unit speed spacelike curve with
non-zero natural curvatures. Then  is a B�slant helix if and only if

(3.5)
k1
k2
= tanh}.

Theorem 3.4. Let  : I �! E(1; 1) is a non geodesic spacelike biharmonic
B�slant helix in the Lorentzian group of rigid motions E(1; 1): Then, the parametric
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equations of Smarandache M1M2 curves of spacelike biharmonic slant helix are

M1M2
(s) = C(cosh})X1

+C(sinh} cos [D1s+D2]� sin [D1s+D2])X2(3.6)

+C(sinh} sin [D1s+D2] + cos [D1s+D2])X3;

where D1; D2 are constants of integration and

C =
1

jk1 + k2j
:

Proof. Assume that  is a non geodesic spacelike biharmonic B�slant helix
according to Bishop frame.
Hence, from De�nition 3.2, we obtain

(3.7) M1 = cosh}X1 + sinh} cos [D1s+D2]X2 + sinh} sin [D1s+D2]X3:

Using (2.1) in (3.7), we may be written as

(3.8) M2 = � sin [D1s+D2]X2 + cos [D1s+D2]X3:

Substituting (3.7) and (3.8) in (3.4) we have (3.6), which completes the proof.

Then, we obtain the following corollary.

Corollary 3.5. Let  : I �! E(1; 1) is a non geodesic spacelike biharmonic
B�slant helix in the Lorentzian group of rigid motions E(1; 1): Then, the parametric
equations of Smarandache M1M2 curves of spacelike biharmonic slant helix are

x1M1M2
(s) = C(cosh});

x2M1M2
(s) =

C

2
e

cosh}
jk1+k2j ((sinh}) cos [D1s+D2]� sin [D1s+D2])

+
C

2
e

cosh}
jk1+k2j ((sinh}) sin [D1s+D2] + cos [D1s+D2]);(3.9)

x3M1M2
(s) =

C

2
e
� cosh}
jk1+k2j ((sinh}) cos [D1s+D2]� sin [D1s+D2])

� C
2
e
� cosh}
jk1+k2j ((sinh}) sin [D1s+D2] + cos [D1s+D2]);

where D1; D2 are constants of integration and

C =
1

jk1 + k2j
:

Proof. Substituting (2.1) to (3.6), we have (3.9) as desired.
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We may use Mathematica in Corollary 3.5, yields

Figure 1.

4. Bishop Equations of Smarandache M1M2 Curves of Spacelike
Biharmonic B�Slant Helices in the E(1; 1)

In this section, we shall call the set fTP;MP
1 ;M

P
2 g as Bishop trihedra, k

P
1 and

kP2 as Bishop curvatures of Smarandache M1M2 curve.

We can now state the main result of the paper.

Theorem 4.1. Let  : I �! E(1; 1) is a non geodesic spacelike biharmonic
B�slant helix in the Lorentzian group of rigid motions E(1; 1): Then, the Bishop
equations of Smarandache M1M2 curves of spacelike biharmonic B�slant helix are

rTPTP = C([(k1 + k2) k1 cosh}]X1

+ C[(k1 + k2) k1 sinh} cos [D1s+D2]� (k1 + k2) k2 sin [D1s+D2]]X2

+ C[(k1 + k2) k1 sinh} sin [D1s+D2] + (k1 + k2) k2 cos [D1s+D2]]X3;

rTPMP
1 = kP1 C([� (k1 + k2) sinh}]X1(4.1)

+ kP1 C[� (k1 + k2) cosh} cos [D1s+D2]]X2

+ kP1 C[� (k1 + k2) cosh} sin [D1s+D2]]X3;

rTPMP
2 = kP2 C([� (k1 + k2) sinh}]X1

+ kP2 C[� (k1 + k2) cosh} cos [D1s+D2]]X2

+ kP2 C[� (k1 + k2) cosh} sin [D1s+D2]]X3;
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where kP1 ; k
P
2 are Bishop curvatures of M1M2

; D1; D2 are constants of integration
and

C =
1

jk1 + k2j
:

Proof. Assume that  is a non geodesic spacelike biharmonic B�slant helix and
its Smarandache M1M2 curve is M1M2

.
From (3.4), we have

(4.2) TP = C ((k1 + k2)T) ;

where C = 1
jk1+k2j :

On the other hand, a straightforward computation gives

TP = C([� (k1 + k2) sinh}]X1

+ C[� (k1 + k2) cosh} cos [D1s+D2]]X2(4.3)

+ C[� (k1 + k2) cosh} sin [D1s+D2]]X3:

From (2.1), we have

rTPTP = C([(k1 + k2) k1 cosh}]X1

+ C[(k1 + k2) k1 sinh} cos [D1s+D2]� (k1 + k2) k2 sin [D1s+D2]]X2

+ C[(k1 + k2) k1 sinh} sin [D1s+D2] + (k1 + k2) k2 cos [D1s+D2]]X3:

Considering Eqs.(3.2) and (3.3), we obtain the theorem. This concludes the
proof of theorem.
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