TIMELIKE \mathcal{B}^{f}-HELICES ACCORDING TO FLAT METRIC AND BISHOP FRAME IN LORENTZIAN HEISENBERG GROUP HEIS ${ }^{3}$

TALAT KÖRPINAR AND ESSIN TURHAN

Abstract

In this paper, we study timelike $\mathcal{B}^{\mathcal{f}}$-helices according to flat metric and Bishop frame in the Lorentzian Heisenberg group Heis ${ }^{3}$. We characterize timelike $\mathcal{B}^{\boldsymbol{f}}$-helices in terms of their curvature and torsion.

1. Introduction

A curve of constant slope or general helix in Euclidean 3 -space \mathbb{E}^{3}, is defined by the property that the tangent makes a constant angle with a fixed straight line (the axis of the general helix). A classical result stated by Lancret in 1802 and first proved by de Saint Venant in 1845 (see [10]) is: A necessary and sufficient condition that a curve be a general helix is that the ratio of curvature to torsion be constant.

In this paper, we study timelike $\mathcal{B}^{\mathfrak{f}}$ helices according to flat metric and Bishop frame in the Lorentzian Heisenberg group Heis ${ }^{3}$. We characterize timelike $\mathcal{B}^{\mathfrak{f}}$ helices in terms of their curvature and torsion.

2. The Lorentzian Heisenberg Group Heis ${ }^{3}$

The Heisenberg group Heis ${ }^{3}$ is a Lie group which is diffeomorphic to \mathbb{R}^{3} and the group operation is defined as

$$
(x, y, z) *(\bar{x}, \bar{y}, \bar{z})=(x+\bar{x}, y+\bar{y}, z+\bar{z}-\bar{x} y+x \bar{y})
$$

The identity of the group is $(0,0,0)$ and the inverse of (x, y, z) is given by $(-x,-y,-z)$. The left-invariant Lorentz metric on Heis ${ }^{3}$ is

$$
g=d x^{2}+(x d y+d z)^{2}-((1-x) d y-d z)^{2}
$$

The following set of left-invariant vector fields forms an orthonormal basis for the corresponding Lie algebra:

$$
\begin{equation*}
\left\{\mathbf{e}_{1}=\frac{\partial}{\partial x}, \mathbf{e}_{2}=\frac{\partial}{\partial y}+(1-x) \frac{\partial}{\partial z}, \mathbf{e}_{3}=\frac{\partial}{\partial y}-x \frac{\partial}{\partial z}\right\} \tag{2.1}
\end{equation*}
$$

Date: Jan. 19, 2012.
2000 Mathematics Subject Classification. Primary 53A04; Secondary 53A10.
Key words and phrases. Bienergy, Bishop frame, Lorentzian Heisenberg group.

[^0]The characterising properties of this algebra are the following commutation relations:

$$
\left[\mathbf{e}_{2}, \mathbf{e}_{3}\right]=0, \quad\left[\mathbf{e}_{3}, \mathbf{e}_{1}\right]=\mathbf{e}_{2}-\mathbf{e}_{3}, \quad\left[\mathbf{e}_{2}, \mathbf{e}_{1}\right]=\mathbf{e}_{2}-\mathbf{e}_{3},
$$

with

$$
\begin{equation*}
g\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=g\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=1, \quad g\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=-1 \tag{2.2}
\end{equation*}
$$

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric g, defined above the following is true:

$$
\nabla=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{2.3}\\
\mathbf{e}_{2}-\mathbf{e}_{3} & -\mathbf{e}_{1} & -\mathbf{e}_{1} \\
\mathbf{e}_{2}-\mathbf{e}_{3} & -\mathbf{e}_{1} & -\mathbf{e}_{1}
\end{array}\right)
$$

where the (i, j)-element in the table above equals $\nabla_{\mathbf{e}_{i}} \mathbf{e}_{j}$ for our basis

$$
\left\{\mathbf{e}_{k}, k=1,2,3\right\}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\} .
$$

So we obtain that

$$
\begin{equation*}
R\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)=R\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=R\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right)=0 \tag{2.4}
\end{equation*}
$$

Then, the Lorentz metric g is flat.

3. Timelike \mathcal{B}^{\dagger}-Helices According to Flat Metric in the Lorentzian Heisenberg Group Heis ${ }^{3}$

Let $\gamma: I \longrightarrow$ Heis 3 be a non geodesic timelike curve on the Lorentzian Heisenberg group Heis ${ }^{3}$ parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the Lorentzian Heisenberg group Heis ${ }^{3}$ along γ defined as follows:
\mathbf{T} is the unit vector field γ^{\prime} tangent to γ, \mathbf{N} is the unit vector field in the direction of $\nabla_{\mathbf{T}} \mathbf{T}$ (normal to γ), and \mathbf{B} is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$
\begin{align*}
& \nabla_{\mathbf{T}} \mathbf{T}=\kappa \mathbf{N} \\
& \nabla_{\mathbf{T}} \mathbf{N}=\kappa \mathbf{T}+\tau \mathbf{B} \tag{3.1}\\
& \nabla_{\mathbf{T}} \mathbf{B}=-\tau \mathbf{N}
\end{align*}
$$

where κ is the curvature of γ and τ is its torsion and

$$
\begin{align*}
& g(\mathbf{T}, \mathbf{T})=-1, g(\mathbf{N}, \mathbf{N})=1, g(\mathbf{B}, \mathbf{B})=1 \tag{3.2}\\
& g(\mathbf{T}, \mathbf{N})=g(\mathbf{T}, \mathbf{B})=g(\mathbf{N}, \mathbf{B})=0 .
\end{align*}
$$

In the rest of the paper, we suppose everywhere $\kappa \neq 0$ and $\tau \neq 0$.
The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. The Bishop frame is expressed as

$$
\begin{align*}
\nabla_{\mathbf{T}} \mathbf{T} & =k_{1} \mathbf{M}_{1}+k_{2} \mathbf{M}_{2} \\
\nabla_{\mathbf{T}} \mathbf{M}_{1} & =k_{1} \mathbf{T} \tag{3.3}\\
\nabla_{\mathbf{T}} \mathbf{M}_{2} & =k_{2} \mathbf{T}
\end{align*}
$$

where

$$
\begin{align*}
g(\mathbf{T}, \mathbf{T}) & =-1, g\left(\mathbf{M}_{1}, \mathbf{M}_{1}\right)=1, g\left(\mathbf{M}_{2}, \mathbf{M}_{2}\right)=1 \tag{3.4}\\
g\left(\mathbf{T}, \mathbf{M}_{1}\right) & =g\left(\mathbf{T}, \mathbf{M}_{2}\right)=g\left(\mathbf{M}_{1}, \mathbf{M}_{2}\right)=0
\end{align*}
$$

Here, we shall call the set $\left\{\mathbf{T}, \mathbf{M}_{1}, \mathbf{M}_{1}\right\}$ as Bishop trihedra, k_{1} and k_{2} as Bishop curvatures. Thus, Bishop curvatures are defined by

$$
\begin{align*}
k_{1} & =\kappa(s) \cos \theta(s) \tag{3.5}\\
k_{2} & =\kappa(s) \sin \theta(s)
\end{align*}
$$

where $\theta(s)=\arctan \frac{k_{2}}{k_{1}}, \tau(s)=\theta^{\prime}(s)$ and $\kappa(s)=\sqrt{k_{1}^{2}+k_{2}^{2}}$.
With respect to the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ we can write

$$
\begin{align*}
\mathbf{T} & =T^{1} \mathbf{e}_{1}+T^{2} \mathbf{e}_{2}+T^{3} \mathbf{e}_{3} \\
\mathbf{M}_{1} & =M_{1}^{1} \mathbf{e}_{1}+M_{1}^{2} \mathbf{e}_{2}+M_{1}^{3} \mathbf{e}_{3} \tag{3.6}\\
\mathbf{M}_{2} & =M_{2}^{1} \mathbf{e}_{1}+M_{2}^{2} \mathbf{e}_{2}+M_{2}^{3} \mathbf{e}_{3}
\end{align*}
$$

To separate a helix according to Bishop frame from that of Frenet- Serret frame, in the rest of the paper, we shall use notation for the helix defined above as $\mathcal{B}^{\boldsymbol{f}}$-helix.

Theorem 3.1. Let $\gamma: I \longrightarrow$ Heis 3 is a unit speed timelike $\mathcal{B}^{\mathfrak{f}}$-helix according to flat metric. Then, the parametric equations of γ are

$$
\begin{aligned}
x(s) & =\sinh \mathfrak{A} s+\mathfrak{W}_{1}, \\
y(s) & =\frac{1}{\mathfrak{W}} \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\frac{1}{\mathfrak{W}} \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\mathfrak{W}_{2}, \\
z(s) & =\frac{1}{\mathfrak{W}} \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right] \\
& -\frac{1}{\mathfrak{W}}\left(\sinh \mathfrak{A} s+\mathfrak{W}_{1}\right) \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right] \\
& +\frac{1}{\mathfrak{W}^{2}} \sinh \mathfrak{A} \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right] \\
& -\frac{1}{\mathfrak{W}^{\prime}}\left(\sinh \mathfrak{A} s+\mathfrak{W}_{1}\right) \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right] \\
& +\frac{1}{\mathfrak{W}^{2}} \sinh \mathfrak{A} \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\mathfrak{W}_{3},
\end{aligned}
$$

where $\mathfrak{W}, \mathfrak{W}_{0}, \mathfrak{W}_{1}, \mathfrak{W}_{2}, \mathfrak{W}_{3}$ are constants of integration.

Proof. Since γ is \mathcal{B}^{\dagger}-helix according to flat metric without loss of generality, we take the axis of γ is parallel to the spacelike vector \mathbf{e}_{1}. Then,

$$
g\left(\mathbf{T}, \mathbf{e}_{1}\right)=T_{1}=\sinh \mathfrak{A}
$$

where \mathfrak{A} is constant angle.
The tangent vector can be written in the following form
(3.8) $\mathbf{T}=\sinh \mathfrak{A} \mathbf{e}_{1}+\cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right] \mathbf{e}_{2}+\cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right] \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right] \mathbf{e}_{3}$,
where $\mathfrak{W J}, \mathfrak{W}_{0}$ are constants of integration.

Using Eq.(2.1) in Eq.(3.8), we obtain

$$
\begin{gather*}
\mathbf{T}=\left(\sinh \mathfrak{A}, \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]\right. \tag{3.9}\\
\left.(1-x) \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]-x \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]\right) .
\end{gather*}
$$

Also, from above Eq.(3.9), we get

$$
\begin{equation*}
\mathbf{T}=\left(\sinh \mathfrak{A}, \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]\right. \tag{3.10}
\end{equation*}
$$

$$
\left.\left(1-\left(\sinh \mathfrak{A} s+\mathfrak{W}_{1}\right)\right) \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]-\left(\sinh \mathfrak{A} s+\mathfrak{W}_{1}\right) \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]\right) .
$$

If we take integrate above system we have Eq.(3.7). The proof is completed.

Theorem 3.2. Let $\gamma: I \longrightarrow$ Heis 3 be a unit speed timelike \mathcal{B}^{\dagger}-helix according to flat metric. Then the position vector of γ is
$\gamma(s)=\left(\sinh \mathfrak{A} s+\mathfrak{W}_{1}\right) \mathbf{e}_{1}+\left[\left(\sinh \mathfrak{A} s+\mathfrak{W}_{1}\right)\left(\frac{1}{\mathfrak{W}} \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]\right.\right.$

$$
\begin{align*}
& \left.+\frac{1}{\mathfrak{W}} \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\mathfrak{W}_{2}\right)+\frac{1}{\mathfrak{W}} \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right] \tag{3.11}\\
& -\frac{1}{\mathfrak{W}}\left(\sinh \mathfrak{A} s+\mathfrak{W}_{1}\right) \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\frac{1}{\mathfrak{W}^{2}} \sinh \mathfrak{A} \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right] \\
& \left.-\frac{1}{\mathfrak{W}}\left(\sinh \mathfrak{A} s+\mathfrak{W}_{1}\right) \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\frac{1}{\mathfrak{W}^{2}} \sinh \mathfrak{A} \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\mathfrak{W}_{3}\right] \mathbf{e}_{2} \\
& {\left[\left(1-\sinh \mathfrak{A} s-\mathfrak{W}_{1}\right)\left(\frac{1}{\mathfrak{W}} \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\frac{1}{\mathfrak{W}} \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\mathfrak{W}_{2}\right)\right.} \\
& -\frac{1}{\mathfrak{W}^{2}} \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\frac{1}{\mathfrak{W}}\left(\sinh \mathfrak{A} s+\mathfrak{W}_{1}\right) \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right] \\
& -\frac{1}{\mathfrak{W}^{2}} \sinh \mathfrak{A} \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]+\frac{1}{\mathfrak{W}}\left(\sinh \mathfrak{A} s+\mathfrak{W}_{1}\right) \cosh \mathfrak{A} \sinh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right] \\
& \left.-\frac{1}{\mathfrak{W}^{2}} \sinh \mathfrak{A} \cosh \mathfrak{A} \cosh \left[\mathfrak{W} s+\mathfrak{W}_{0}\right]-\mathfrak{W}_{3}\right] \mathbf{e}_{3},
\end{align*}
$$

where $\mathfrak{W}, \mathfrak{W}_{0}, \mathfrak{W}_{1}, \mathfrak{W}_{2}, \mathfrak{W}_{3}$ are constants of integration.

Proof. Assume that γ be a unit speed timelike $\mathcal{B}^{\mathfrak{f}}$-helix according to flat metric. Using Eq.(2.1) we have

$$
\begin{align*}
\frac{\partial}{\partial x} & =\mathbf{e}_{1} \\
\frac{\partial}{\partial y} & =x \mathbf{e}_{2}+(1-x) \mathbf{e}_{3} \tag{3.12}\\
\frac{\partial}{\partial z} & =\mathbf{e}_{2}-\mathbf{e}_{3}
\end{align*}
$$

Substituting Eq.(3.12) to Eq.(3.7), we have Eq.(3.11). This concludes the proof of theorem.

We can use Mathematica in Theorem 3.1, we obtain following figure:

References

[1] L. R. Bishop: There is More Than One Way to Frame a Curve, Amer. Math. Monthly 82 (3) (1975) 246-251.
[2] M.do Carmo: Differential Geometry of Curves and Surfaces, Prentice Hall, New Jersey 1976.
[3] J. Eells and J. H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
[4] R. Caddeo, S. Montaldo, P. Piu, Biharmonic curves on a surface, Rend. Mat. Appl. 21 (2001), 143-157.
[5] A. Gray: Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, 1998.
[6] G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2) (1986), 130-144.
[7] G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A $7(2)(1986), 130-144$.
[8] T. Körpınar, E. Turhan: On characterization of B-canal surfaces in terms of biharmonic B-slant helices according to Bishop frame in Heisenberg group Heis ${ }^{3}$, J. Math. Anal. Appl. 382 (2011), 57-65.
[9] T. Korpinar, E. Turhan, One parameter family of $b-m_{2}$ developable surfaces of biharmonic new type b - slant helices in Sol ${ }^{3}$, Advanced Modeling and Optimization, 14 (1) (2012), 285-292.
[10] M. A. Lancret: Memoire sur les courbes 'a double courbure, Memoires presentes alInstitut 1 (1806), 416-454.
[11] Y. Ou and Z. Wang: Linear Biharmonic Maps into Sol, Nil and Heisenberg Spaces, Mediterr. j. math. 5 (2008), 379-394.
[12] S. Rahmani: Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302.
[13] E. Turhan, T. Körpınar, On spacelike biharmonic new type b-slant helices with timelike m2 according to Bishop frame in Lorentzian Heisenberg group H^{3}, Advanced Modeling and Optimization, 14 (1) (2012), 297-302.
[14] E. Turhan and T. Körpınar: On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis ${ }^{3}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences 65a (2010), 641-648.
[15] E. Turhan and T. Körpınar: Parametric equations of general helices in the sol space $\mathfrak{S o l}^{3}$, Bol. Soc. Paran. Mat. 31 (1) (2013), 99-104.

Firat University, Department of Mathematics, 23119, Elaziğ, Turkey
E-mail address: talatkorpinar@gmail.com, essin.turhan@gmail.com

[^0]: *AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

