HORIZONTAL GEODESICS IN LORENTZIAN HEISENBERG GROUP HEIS ${ }^{3}$

ESSIN TURHAN AND TALAT KÖRPINAR

Abstract

In this paper, we study different geodesic lines on the Lorentzian Heis ${ }^{3}$. We consider the Lorentzian left invariant metric and use some results of Levi-Civita connection and curvature tensor to present solution of equations for geodesic lines in Lorentzian Heis ${ }^{3}$. Furthermore it is obtained equations of geodesic lines with respect to the left invariant Lorentzian metric of the Heis ${ }^{3}$. We characterize horizontal geodesic curves in Lorentzian Heis ${ }^{3}$ and prove that there exist no null horizontal geodesic curves in Lorentzian Heis ${ }^{3}$..

1. Introduction

Rahmani (see [4]) described one motivation for our study that there are three classes of left invariant Lorentzian metrics on the Heis ${ }^{3}$.

In (see [2]) V. Marenich used Heisenberg left invariant metric and obtained geodesic lines in Heis^{3}.

Returning to geometry, we note that the Heis^{3} serves also as a contact manifold. This is the odd dimension analog for a symplectic structure. The 1-form $\omega^{1}=$ $d t+x d y$, which anihilates e_{1} and e_{2} is a contact form, i.e. $\omega^{1} \wedge d \omega^{1}$ never vanishes. The 2 -form $\Omega=d \omega^{1}=d x \wedge d y$ is a symplectic form on the distribution generated by e_{1} and e_{2}. It can be considered also as a magnetic field. Then the Maxwell's equation can be written as $d \Omega=0$.

In this paper, we study different geodesic lines on the Lorentzian Heis ${ }^{3}$. We consider the Lorentzian left invariant metric and use some results of Levi-Civita connection and curvature tensor to present solution of equations for geodesic lines in Lorentzian Heis ${ }^{3}$. Furthermore it is obtained equations of geodesic lines with respect to the left invariant Lorentzian metric of the Heis ${ }^{3}$. We characterize horizontal geodesic curves in Lorentzian Heis^{3} and prove that there exist no null horizontal geodesic curves in Lorentzian Heis ${ }^{3}$.

[^0][^1]
2. Lorentzian Heisenberg Group HeIs^{3}

This group is formed by all matrices of the form

$$
H e i s^{3}=\left\{\left(\begin{array}{ccc}
1 & x & t \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, t \in \mathbb{R}\right\}
$$

with the group multiplication induced by the standard matrix product.
The Lorentzian Heis ${ }^{3}$ can be seen as the space \mathbb{R}^{3} endowed with multiplication

$$
(\bar{x}, \bar{y}, \bar{t})(x, y, t)=(\bar{x}+x, \bar{y}+y, \bar{t}+t-\bar{x} y+x \bar{y})
$$

The orthonormal basis

$$
E_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

of tangent space at the identity, determines on Heis^{3} a left invariant Lorentzian metric

$$
\begin{equation*}
d s^{2}=\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2}-\left(\omega^{3}\right)^{2} \tag{2.1}
\end{equation*}
$$

where

$$
\omega^{1}=d t+x d y, \quad \omega^{2}=d y, \quad \omega^{3}=d x
$$

is the left invariant orthonormal coframe associated with the orthonormal left invariant frame,

$$
\begin{equation*}
e_{1}=\frac{\partial}{\partial t}, \quad e_{2}=\frac{\partial}{\partial y}-x \frac{\partial}{\partial t}, \quad e_{3}=\frac{\partial}{\partial x} \tag{2.2}
\end{equation*}
$$

Now let $C_{i j}^{k}$ be the structure's constants of the Lie algebra g of G (see [5]), that is

$$
\left[e_{i}, e_{j}\right]=C_{i j}^{k} e_{k}
$$

The corresponding Lie brackets are

$$
\left[e_{2}, e_{3}\right]=2 e_{1}, \quad\left[e_{1}, e_{3}\right]=\left[e_{1}, e_{2}\right]=0
$$

The Coshul formula for the Levi-Civita connection is:

$$
2 g\left(\nabla_{e_{i}} e_{j}, e_{k}\right)=C_{i j}^{k}-C_{j k}^{i}+C_{k i}^{j}:=L_{i j}^{k}
$$

where the non zero $L_{i j}^{k}$'s are

$$
\begin{equation*}
L_{12}^{3}=2, \quad L_{21}^{3}=2, \quad L_{13}^{2}=2, \quad L_{31}^{2}=2, \quad L_{23}^{1}=2, \quad L_{32}^{1}=-2 \tag{2.3}
\end{equation*}
$$

The element zero $0=(0,0,0)$ is the unit of this group strucure and the inverse element for (z, t) is $(z, t)^{-1}=(-z,-t)$. Let $a=(z, t), b=(w, s)$. The commutator of the elements $a, b \in H e i s^{3}$ is equal to

$$
\begin{aligned}
{[a, b] } & =a b a^{-1} b^{-1} \\
& =(z, t)(w, s)(-z,-t)(-w,-s) \\
& =(z+w-z+w, t+s-t-s+\alpha)=(0, \alpha)
\end{aligned}
$$

where $\alpha \neq 0$ in general. Which shows that Heis ${ }^{3}$ is not abelian. On the other hand for any $a, b, c \in \mathrm{Heis}^{3}$, their double commutator is

$$
[[a, b], c]=(0,0)
$$

Heisenberg group plays an important role in many branches of mathematics such as representation theory, harmonic analysis, PDEs or even quantum mechanic. Heis^{3} has a rich geometric structure. In fact its group of isometries is of dimension 4, which is the maximal possible dimension for a non-constant curvature metric on a 3-manifold. Also, from the algebraic point of view, Heis ${ }^{3}$ is a 2 -step nilpotent Lie group, i.e. "almost Abelian".

3. Horizontal Geodesics in the Lorentzian HEIS ${ }^{3}$

Consider a nonintegrable 2-dimensional distribution $x \longrightarrow \mathcal{H}_{x}$ defined as $\mathcal{H}=$ $\operatorname{ker} \omega$, where ω is a 1 -form on Heis ${ }^{3}$. The distribution \mathcal{H} is called the horizontal distribution. A curve $s \longrightarrow c(s)=(x(s), y(s), t(s))$ is called horizontal curve if $c^{\prime}(s)$ $\in \mathcal{H}_{c(s)}$, for every $s($ see [6]).

Theorem 3.1. Spacelike geodesic lines issuing from 0 in the Lorentzian Heis ${ }^{3}$ is solution following differential equation system:

$$
\begin{align*}
& x^{\prime}(s)=\sqrt{1-\xi^{2}} \sinh (2 \xi s+\phi) \\
& y^{\prime}(s)=\sqrt{1-\xi^{2}} \cosh (2 \xi s+\phi) \tag{3.1}\\
& t^{\prime}(s)=\xi-x(s) \sqrt{1-\xi^{2}} \cosh (2 \xi s+\phi)
\end{align*}
$$

Proof. Let $c(s)$ be such a geodesics with a natural parameters s and its vector of velocity given by

$$
\begin{equation*}
c^{\prime}(s)=\xi(s) e_{1}+\eta(s) e_{2}+\rho(s) e_{3} . \tag{3.2}
\end{equation*}
$$

Then the equation of a geodesic $\nabla_{c^{\prime}(s)} c^{\prime}(s) \equiv 0$ and our table of covariant derivatives (3.2) give

$$
\begin{equation*}
\xi^{\prime}(s) e_{1}+\left(\eta^{\prime}(s)+2 \xi(s) \rho(s)\right) e_{2}+\left(\rho^{\prime}(s)-2 \xi(s) \eta(s)\right) e_{3}=0 \tag{3.3}
\end{equation*}
$$

Thus we easily obtain the following equations for coordinates of the velocity of the geodesic $c(s)$ in our left-invariant moving frame

$$
\begin{align*}
& \xi^{\prime}(s)=0 \\
& \eta^{\prime}(s)+2 \xi(s) \rho(s)=0 \tag{3.4}\\
& \rho^{\prime}(s)-2 \xi(s) \eta(s)=0
\end{align*}
$$

or

$$
\begin{align*}
& (\eta(s)+\rho(s))^{\prime}+2 \xi(s)(\rho(s)-\eta(s))=0 \tag{3.5}\\
& (\eta(s)-\rho(s))^{\prime}+2 \xi(\rho(s)+\eta(s))=0
\end{align*}
$$

Since $c: I \longrightarrow H e i s^{3}$ is spacelike curve, we have

$$
\begin{equation*}
\xi^{2}(s)+\eta^{2}(s)-\rho^{2}(s)=1 \tag{3.6}
\end{equation*}
$$

and from (3.4) we could take

$$
\xi=\text { const } .
$$

where $|\xi| \leq 1$. From (3.6) we could find that,

$$
\begin{align*}
& \xi=\text { const. } \\
& \eta(s)=r \cosh (2 \xi s+\phi) \tag{3.7}\\
& \rho(s)=r \sinh (2 \xi s+\phi)
\end{align*}
$$

where $r=\sqrt{\eta^{2}(s)-\rho^{2}(s)}$.
To find equations for geodesic $c(s)=(x(s), y(s), z(s))$ issuing from 0 , we note that if

$$
\begin{equation*}
c^{\prime}(s)=\xi(s) e_{1}+\eta(s) e_{2}+\rho(s) e_{3} \tag{3.8}
\end{equation*}
$$

and our left-invariant vector fields are

$$
e_{1}=\frac{\partial}{\partial z}, \quad e_{2}=\frac{\partial}{\partial y}-x \frac{\partial}{\partial z}, \quad e_{3}=\frac{\partial}{\partial x}
$$

Then we easily have (3.1).

Corollary 3.2. Let $\gamma: I \longrightarrow H e i s^{3}$ be a unit speed spacelike geodesic curve. Then, the parametric equation of spacelike geodesic are

$$
\begin{align*}
& x(s)=\frac{\sqrt{1-\xi^{2}}}{2 \xi} \cosh (2 \xi s+\phi)+c_{1} \\
& y(s)=\frac{\sqrt{1-\xi^{2}}}{2 \xi} \sinh (2 \xi s+\phi)+c_{2} \tag{3.9}\\
& t(s)=\left(\xi-\frac{1-\xi^{2}}{4 \xi}\right) s-\frac{1-\xi^{2}}{8 \xi^{2}} \sinh 2(2 \xi s+\phi) \\
& -\frac{c_{1} \sqrt{1-\xi^{2}}}{2 \xi} \sinh (2 \xi s+\phi),
\end{align*}
$$

where c_{1}, c_{2}, c_{3} are constants of integration.

Next, we apply Corollary 3.2.

Example 3.3. Let us consider parametric equation of spacelike geodesic lines with $\xi=\frac{1}{2}, \phi=0$ and $c_{1}=c_{2}=c_{3}=1$. Then, we can draw spacelike geodesic
lines with helping the programme of Mathematica as follow

Theorem 3.4. If $c: I \longrightarrow$ Heis 3 spacelike horizontal geodesic lines issuing from zero 0, then satisfy to the following equations:

$$
\begin{align*}
& x(s)=s \sinh \phi+a \\
& y(s)=s \cosh \phi+b \tag{3.10}\\
& t(s)=\frac{s^{2}}{2} \sinh \phi \cosh \phi+a \cosh \phi s+c
\end{align*}
$$

where a, b, c are constants of integration.
Proof. Let $c(s)$ be a horizontal geodesics. From horizontal curve equation, we get

$$
\begin{equation*}
w\left(c^{\prime}(s)\right)=\xi=0 \tag{3.11}
\end{equation*}
$$

If we use (3.11) in (3.7) and some calculations, we have

$$
\begin{align*}
& \xi=0 \\
& \eta(s)=\cosh \phi \tag{3.12}\\
& \rho(s)=\sinh \phi
\end{align*}
$$

and (3.12) in (3.8) we obtain

$$
\begin{aligned}
x^{\prime}(s) & =\sinh \phi \\
y^{\prime}(s) & =\cosh \phi \\
t^{\prime}(s) & =x(s) \cosh \phi
\end{aligned}
$$

The integration is immediate and yelds (3.10).
Next, we apply Theorem 3.4.

Example 3.5. Let us consider parametric equation of spacelike horizontal geodesic lines with $a=b=c=1$. Then, we can draw spacelike horizontal geodesic with helping the programme of Mathematica as follow

Lemma 3.6. Timelike geodesic lines issuing from 0 in the Lorentzian Heis ${ }^{3}$ is solution following differential equation system;

$$
\begin{align*}
& x^{\prime}(s)=\sqrt{1+\xi^{2}} \cosh (2 \xi s+\phi) \\
& y^{\prime}(s)=\sqrt{1+\xi^{2}} \sinh (2 \xi s+\phi) \tag{3.13}\\
& t^{\prime}(s)=\xi-x(s) \sqrt{1+\xi^{2}} \sinh (2 \xi s+\phi) .
\end{align*}
$$

Corollary 3.7. Let $\gamma: I \longrightarrow H e i s^{3}$ be a unit speed geodesic curve. Then, the parametric equation of spacelike geodesic are

$$
\begin{align*}
& x(s)=\frac{\sqrt{1+\xi^{2}}}{2 \xi} \sinh (2 \xi s+\phi)+c_{1}, \\
& y(s)=\frac{\sqrt{1+\xi^{2}}}{2 \xi} \cosh (2 \xi s+\phi)+c_{2}, \tag{3.14}\\
& t(s)=\left(\xi-\frac{1+\xi^{2}}{4 \xi}\right) s-\frac{1+\xi^{2}}{8 \xi^{2}} \sinh 2(2 \xi s+\phi) \\
& -\frac{c_{1} \sqrt{1+\xi^{2}}}{2 \xi} \cosh (2 \xi s+\phi),
\end{align*}
$$

where c_{1}, c_{2}, c_{3} are constants of integration.

Next, we apply Corollary 3.7.

Example 3.8. Let us consider parametric equation of spacelike geodesic lines with $\xi=1, \phi=0$ and $c_{1}=c_{2}=c_{3}=1$. Then, we can draw spacelike geodesic lines with helping the programme of Mathematica as follow

Corollary 3.9. If $c: I \longrightarrow$ Heis 3 timelike horizontal geodesic lines issuing from zero 0, then satisfy to the following equations:

$$
\begin{align*}
& x(s)=s \cosh \phi+a \tag{3.13}\\
& y(s)=s \sinh \phi+b \\
& t(s)=\frac{s^{2}}{2} \sinh \phi \cosh \phi+a \sinh \phi s+c
\end{align*}
$$

where a, b, c are constants of integration.

Next, we apply Corollary 3.9.

Example 3.10. Let us consider parametric equation of timelike geodesic lines with $a=b=c=1$. Then, we can draw timelike horizontal geodesic lines with
helping the programme of Mathematica as follow

Theorem 3.11. There exists no null horizontal geodesic in Lorentzian Heis ${ }^{3}$.
Proof. We prove that by contradiction. Let us assume that $c: I \longrightarrow$ Heis 3 is null horizontal geodesic curve parametrized by arc length. Then, null geodesic lines issuing from 0 in the Lorentzian Heis 3 is solution following differential equation system;

$$
\begin{align*}
x^{\prime}(s) & =|\xi| \sinh (2 \xi s+\phi) \tag{3.14}\\
y^{\prime}(s) & =|\xi| \cosh (2 \xi s+\phi) \\
t^{\prime}(s) & =\xi-x(s)|\xi| \cosh (2 \xi s+\phi) .
\end{align*}
$$

Substitute equations (3.11) into (3.16) we have

$$
\begin{equation*}
\eta(s)=0, \rho(s)=0 . \tag{3.15}
\end{equation*}
$$

From (3.8) we get $c^{\prime}(s)=0$. This contradiction proves the claim.

References

[1] T. Korpinar and E. Turhan, One parameter family of b-m2 developable surfaces of biharmonic new type b-slant helices in Sol^{3}, Advanced Modeling and Optimization, 12 (1) (2012), 285-292.
[2] V. Marenich, Geodesics in Heisenberg Group, Geometriae Dedicata 66 (2) (1997), 175-185.
[3] J. Milnor, Curvatures of Left-Invariant Metrics on Lie Groups, Advances in Mathematics 21 (1976), 293-329.
[4] N. Rahmani, S. Rahmani, Lorentzian Geometry of the Heisenberg Group, Geometriae Dedicata 118 (1) (2006), 133-140.
[5] W. Schempp, Sub-Riemannian Geometry and Clinical Magnetic Resonance Tomography, Math. Meth. Appl. Sci. 22 (1999), 867-922.
[6] R. Strichartz, Subriemannian Geometry, J. Diff. Geometry 24 (1986), 221-263.
[7] E. Turhan, Completeness of Lorentz Metric on 3-Dimensional Heisenberg Group, International Mathematical Forum 13 (3) (2008), 639-644.
[8] E. Turhan and T. Körpınar, Characterize on the Heisenberg Group with left invariant Lorentzian metric, Demonstratio Mathematica 42 (2) (2009), 423-428
[9] E. Turhan and T. Körpınar: On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis ${ }^{3}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences 65a (2010), 641-648.
[10] E. Turhan and T. Körpınar: On spacelike biharmonic new type b-slant helices with timelike m2 according to Bishop frame in Lorentzian Heisenberg group H^{3}, Advanced Modeling and Optimization, 14 (1) (2012), 297-302.

Firat University, Department of Mathematics,23119, Elaziğ, Turkey
E-mail address: essin.turhan@gmail.com, talatkorpinar@gmail.com

[^0]: Date: Jan. 1, 2012.
 2000 Mathematics Subject Classification. Primary 53A04; Secondary 53A10.
 Key words and phrases. Heisenberg group, geodesic line, horizontal curve.

[^1]: *AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

