CHARACTERIZATION OF RICCI TENSOR IN THE LORENTZIAN HEISENBERG GROUP HEIS ${ }^{3}$

MAHMUT ERGÜT, ESSIN TURHAN AND TALAT KÖRPINAR

Abstract

In this paper, we consider the Lorentzian Heisenberg left-invariant metric and use some results on Levi-Civita connection. We characterize the components of the Ricci tensor.

1. Introduction

Heisenberg group and their subelliptic Laplacians are at the cross-roads of many domains of analysis and geometry: Nilpotent Lie group theory, hypoelliptic second order partial differential equations, strictly pseudoconvex domains in complex analysis, probability theory of degenerate diffusion processes, sub-Riemannian geometry, control theory and semiclassical analysis of quantum mechanics, [2,3,11].

On the other hand, Heisenberg group has a rich geometric structure. In fact its group of isometries is of dimension 4 , which is the maximal possible dimension for a non-constant curvature metric on a 3-manifold. Also, from the algebraic point of view, Heis 3 is a 2 -step nilpotent Lie group, i.e. "almost Abelian".

In this paper, we consider the Lorentzian Heisenberg left-invariant metric and use some results on Levi-Civita connection. We characterize the components of the Ricci tensor.

2. Ricci Tensor in the Lorentzian Heisenberg Group Heis ${ }^{3}$

Heisenberg group plays an important role in many branches of mathematics such as representation theory, harmonic analysis, PDE's or even quantum mechanic. Heis^{3} has a rich geometric structure. In fact its group of isometries is of dimension 4, which is the maximal possible dimension for a non-constant curvature metric on a 3 -manifold. Also, from the algebraic point of view, Heis^{3} is a 2 -step nilpotent Lie group, i.e. "almost Abelian".

This group is formed by all matrices of the form

$$
\text { Heis }^{3}=\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\}
$$

Date: January 21, 2012.
2000 Mathematics Subject Classification. Primary 53A04; Secondary 53A10.
Key words and phrases. Ricci tensor, Lorentzian Heisenberg group.

[^0]with the group multiplication induced by the standard matrix product.
The Lorentzian Heisenberg group Heis ${ }^{3}$ can be seen as the space \mathbb{R}^{3} endowed with multiplication
$$
(\bar{x}, \bar{y}, \bar{z})(x, y, z)=(\bar{x}+x, \bar{y}+y, \bar{z}+z-\bar{x} y+x \bar{y}) .
$$

The orthonormal basis

$$
\mathbf{E}_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \mathbf{E}_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad \mathbf{E}_{3}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

of tangent space at the identity, determines on Heis^{3} a left-invariant Lorentzian metric

$$
\begin{equation*}
d s^{2}=\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2}-\left(\omega^{3}\right)^{2} \tag{2.1}
\end{equation*}
$$

where

$$
\omega^{1}=d z+x d y, \quad \omega^{2}=d y, \quad \omega^{3}=d x
$$

is the left-invariant orthonormal coframe associated with the orthonormal leftinvariant frame,

$$
\begin{equation*}
\mathbf{e}_{1}=\frac{\partial}{\partial z}, \quad \mathbf{e}_{2}=\frac{\partial}{\partial y}-x \frac{\partial}{\partial z}, \quad \mathbf{e}_{3}=\frac{\partial}{\partial x} \tag{2.2}
\end{equation*}
$$

The corresponding Lie brackets are

$$
\left[\mathbf{e}_{2}, \mathbf{e}_{3}\right]=2 \mathbf{e}_{1}, \quad\left[\mathbf{e}_{1}, \mathbf{e}_{3}\right]=\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]=0
$$

Now let $C_{i j}^{k}$ be the structure's constants of the Lie algebra g of $G[14]$ that is,

$$
\left[\mathbf{e}_{i}, \mathbf{e}_{j}\right]=C_{i j}^{k} \mathbf{e}_{k}
$$

The Coshul formula for the Levi-Civita connection is:

$$
2 g\left(\nabla_{\mathbf{e}_{i}} \mathbf{e}_{j}, \mathbf{e}_{k}\right)=C_{i j}^{k}-C_{j k}^{i}+C_{k i}^{j}:=L_{i j}^{k},
$$

where the non zero $L_{i j}^{k}$'s are

$$
\begin{equation*}
L_{12}^{3}=1, \quad L_{21}^{3}=1, \quad L_{13}^{2}=1, \quad L_{31}^{2}=1, \quad L_{23}^{1}=1, \quad L_{32}^{1}=-1 \tag{2.3}
\end{equation*}
$$

The vector fields (2.2) define a unique Riemannian metric g such that

$$
g\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=\lambda, \quad g\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=1, \quad g\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=-1, \quad \lambda>0 .
$$

The coefficients are given by

$$
g_{i j}^{(\lambda)}=\left(\begin{array}{ccc}
-1 & 0 & 0 \tag{2.4}\\
0 & 1+\lambda x^{2} & \lambda x \\
0 & \lambda x & \lambda
\end{array}\right)
$$

To avoid confusion we shall denote the above metric by $g^{(\lambda)}$.
Theorem 2.1. If $R_{i j}^{(\lambda)}$ are the components of the Ricci tensor with respect to the metric $g_{i j}^{(\lambda)}$ on Heis ${ }^{3}$, then

$$
R_{11}=-2 \lambda, \quad R_{22}=2 \lambda, \quad R_{33}=-2 \lambda^{2}
$$

Proof. A computation shows that the non-zero components of the 4-covariant Riemann tensor of curvature are

$$
\begin{array}{ll}
R_{2323}=\lambda^{2}, & R_{1313}=-\lambda^{2} \\
R_{1213}=x \lambda^{2}, & R_{1212}=3 \lambda+x^{2} \lambda^{2}
\end{array}
$$

Using the contraction formula

$$
R_{i j}=\sum_{k, l} R_{i j k l}\left(g^{\lambda}\right)^{k l}
$$

where

$$
\left(g^{\lambda}\right)^{k l}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & -\lambda x \\
0 & -x & \frac{1}{\lambda}+x^{2}
\end{array}\right) .
$$

The non-zero components of the Ricci tensor are

$$
R_{11}=-2 \lambda, \quad R_{22}=2 \lambda, \quad R_{33}=-2 \lambda^{2}
$$

This proves the claim.
We start with the properties of the Levi-Civita connection on Heis ${ }^{3}$. For each metric g^{λ} one has a natural Levi-Civita connection ∇^{λ} defined by

$$
\begin{equation*}
\nabla_{\partial_{i}}^{\lambda} \partial_{j}=\Gamma_{i j}^{k}(\lambda) \partial_{k}, \tag{2.5}
\end{equation*}
$$

where the Christoffel symbols are defined by the metric (2.4). They depend linearly on λ and are given by

$$
\begin{array}{ccc}
\Gamma_{12}^{2}=\lambda x, & \Gamma_{12}^{3}=-\lambda x^{2}, & \Gamma_{13}^{2}=\lambda \\
\Gamma_{13}^{3}=-\lambda x & \Gamma_{23}^{1}=\lambda, & \Gamma_{22}^{1}=2 \lambda x \tag{2.6}
\end{array}
$$

Theorem 2.2. For every $\lambda>0$ we obtain

$$
\begin{gathered}
\nabla_{\partial_{1}}^{\lambda} \partial_{2}=\lambda x \mathbf{e}_{2}, \quad \nabla_{\partial_{2}}^{\lambda} \partial_{3}=\nabla_{\partial_{3}}^{\lambda} \partial_{2}=\lambda \mathbf{e}_{3} \\
\nabla_{\partial_{2}}^{\lambda} \partial_{1}=\mathbf{e}_{1}+\lambda x \mathbf{e}_{2}, \quad \nabla_{\partial_{1}}^{\lambda} \partial_{3}=\nabla_{\partial_{3}}^{\lambda} \partial_{1}=\lambda \mathbf{e}_{2} \\
\nabla_{\partial_{1}}^{\lambda} \partial_{1}=0, \quad \nabla_{\partial_{2}}^{\lambda} \partial_{2}=2 \lambda x \mathbf{e}_{3}, \quad \nabla_{\partial_{3}}^{\lambda} \partial_{3}=0
\end{gathered}
$$

Proof. Using (2.6), this proves the claim.

Corollary 2.3. The vector fields \mathbf{e}_{1} and \mathbf{e}_{3} are geodesic vector fields.
Proof. By Proposition 2.2, we have

$$
\nabla_{\mathbf{e}_{1}}^{\lambda} \mathbf{e}_{1}=0, \quad \nabla_{\mathbf{e}_{3}}^{\lambda} \mathbf{e}_{3}=0
$$

The corollary is proved.

References

[1] R. Beals, B. Gaveau, and P.C. Grainer, The Green function of model two step hypoelliptic operators and the analysis of certain tangential Cauchy-Riemann complexes, Adv. Math. 121 (1996) 288-345.
[2] R. Beals, B. Gaveau and P.C. Grainer, Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians, I, II, III, Bull. Sci. Math. 121 (1997) 1-36, 97-149, 195-259.
[3] R. Beals and P.C. Grainer, Calculus on Heisenberg Manifolds, Ann. Math. Studies, Vol. 119, Princeton Univ. Press, Princeton, 1988.
[4] A. Bellaiche and J.-J. Risler, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996.
[5] B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, available at arXiv: math.DG/0503500.
[6] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68.
[7] J. Eells and J.C. Wood, Restrictions on harmonic maps of surfaces, Topology 15 (1976), 263-266.
[8] E. Fukushima, NMR in Biomedicine: The Physical Basis: Key papers in Physics, Vol 2, American Institute of Physics, New York (1989).
[9] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), 95-153.
[10] M. Haskins, The geometric complexity of special Lagrangian \mathbb{T}^{2}-cones, available at arXiv: math.DG/0307129.
[11] W. Schempp, Sub-Riemannian Geometry and Clinical Magnetic Resonance Tomography, Math. Meth. Appl. Sci. 22 (1999), 867- 922.
[12] S. Rahmani: Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302.
[13] E. Turhan and T. Körpınar, On spacelike biharmonic new type b-slant helices with timelike m2 according to Bishop frame in Lorentzian Heisenberg group H^{3}, Advanced Modeling and Optimization, 14 (2) (2012), 297-302.
[14] E. Turhan and T. Körpınar: On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis ${ }^{3}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences 65a (2010), 641-648.
[15] E. Turhan and T. Körpınar: Horizontal geodesics in Lorentzian Heisenberg group Heis ${ }^{3}$, Advanced Modeling and Optimization, 14 (2) (2012), 311-319.

Firat University, Department of Mathematics,23119, Elaziğ, Turkey
E-mail address: essin.turhan@gmail.com, talatkorpinar@gmail.com

[^0]: *AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

