# TIMELIKE HORIZONTAL BIHARMONIC $\mathcal{S}$-CURVES ACCORDING TO SABBAN FRAME IN $\mathbb{H}$ 

TALAT KÖRPINAR AND ESSIN TURHAN


#### Abstract

In this paper, we study timelike horizontal biharmonic curves according to Sabban frame in the $\mathbb{H}$. We characterize the timelike horizontal biharmonic curves in terms of their geodesic curvature. Finally, we find out their explicit parametric equations according to Sabban Frame.


## 1. Introduction

The theory of biharmonic functions is an old and rich subject. Biharmonic functions have been studied since 1862 by Maxwell and Airy to describe a mathematical model of elasticity. The theory of polyharmonic functions was developed later on, for example, by E. Almansi, T. Levi-Civita and M. Nicolescu.

This study is organised as follows: Firstly, we study timelike horizontal biharmonic curves accordig to Sabban frame in the Heisenberg group Heis ${ }^{3}$. Secondly, we characterize the timelike horizontal biharmonic curves in terms of their geodesic curvature. Finally, we find out their explicit parametric equations according to Sabban Frame.

## 2. The Lorentzian Heisenberg Group $\mathbb{H}$

Heisenberg group $\mathbb{H}$ can be seen as the space $\mathbb{R}^{3}$ endowed with the following multipilcation:

$$
(\bar{x}, \bar{y}, \bar{z})(x, y, z)=\left(\bar{x}+x, \bar{y}+y, \bar{z}+z-\frac{1}{2} \bar{x} y+\frac{1}{2} x \bar{y}\right)
$$

Heis $^{3}$ is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The identity of the group is $(0,0,0)$ and the inverse of $(x, y, z)$ is given by $(-x,-y,-z)$. The left-invariant Lorentz metric on $\mathbb{H}$ is

$$
g=-d x^{2}+d y^{2}+(x d y+d z)^{2} .
$$

[^0][^1]The following set of left-invariant vector fields forms an orthonormal basis for the corresponding Lie algebra:

$$
\begin{equation*}
\left\{\mathbf{e}_{1}=\frac{\partial}{\partial z}, \mathbf{e}_{2}=\frac{\partial}{\partial y}-x \frac{\partial}{\partial z}, \mathbf{e}_{3}=\frac{\partial}{\partial x}\right\} \tag{2.1}
\end{equation*}
$$

The characterising properties of this algebra are the following commutation relations:

$$
g\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=g\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=1, \quad g\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=-1
$$

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric $g$, defined above the following is true:

$$
\nabla=\frac{1}{2}\left(\begin{array}{ccc}
0 & \mathbf{e}_{3} & \mathbf{e}_{2}  \tag{2.2}\\
\mathbf{e}_{3} & 0 & \mathbf{e}_{1} \\
\mathbf{e}_{2} & -\mathbf{e}_{1} & 0
\end{array}\right)
$$

where the $(i, j)$-element in the table above equals $\nabla_{\mathbf{e}_{i}} \mathbf{e}_{j}$ for our basis

$$
\left\{\mathbf{e}_{k}, k=1,2,3\right\}
$$

The unit pseudo-Heisenberg sphere (Lorentzian Heisenberg sphere) is defined by

$$
\left(\mathbb{S}_{1}^{2}\right)_{\mathbb{H}}=\{\beta \in \mathbb{H}: g(\beta, \beta)=1\} .
$$

## 3. Timelike Horizontal Biharmonic $\mathcal{S}$-Curves According To Sabban Frame In The $\left(\mathbb{S}_{1}^{2}\right)_{\mathbb{H}}$

Let $\gamma: I \longrightarrow \mathbb{H}$ be a timelike curve in the Lorentzian Heisenberg group $\mathbb{H}$ parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the Lorentzian Heisenberg group $\mathbb{H}$ along $\gamma$ defined as follows:
$\mathbf{T}$ is the unit vector field $\gamma^{\prime}$ tangent to $\gamma, \mathbf{N}$ is the unit vector field in the direction of $\nabla_{\mathbf{T}} \mathbf{T}$ (normal to $\gamma$ ), and $\mathbf{B}$ is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$
\begin{align*}
& \nabla_{\mathbf{T}} \mathbf{T}=\kappa \mathbf{N} \\
& \nabla_{\mathbf{T}} \mathbf{N}=\kappa \mathbf{T}+\tau \mathbf{B}  \tag{3.1}\\
& \nabla_{\mathbf{T}} \mathbf{B}=-\tau \mathbf{N}
\end{align*}
$$

where $\kappa$ is the curvature of $\gamma$ and $\tau$ is its torsion,

$$
\begin{aligned}
& g(\mathbf{T}, \mathbf{T})=-1, g(\mathbf{N}, \mathbf{N})=1, g(\mathbf{B}, \mathbf{B})=1 \\
& g(\mathbf{T}, \mathbf{N})=g(\mathbf{T}, \mathbf{B})=g(\mathbf{N}, \mathbf{B})=0
\end{aligned}
$$

Now we give a new frame different from Frenet frame. Let $\alpha: I \longrightarrow\left(\mathbb{S}_{1}^{2}\right)_{\mathbb{H}}$ be unit speed spherical timelike curve. We denote $\sigma$ as the arc-length parameter of $\alpha$ . Let us denote $\mathbf{t}(\sigma)=\alpha^{\prime}(\sigma)$, and we call $\mathbf{t}(\sigma)$ a unit tangent vector of $\alpha$. We now
set a vector $\mathbf{s}(\sigma)=\alpha(\sigma) \times \mathbf{t}(\sigma)$ along $\alpha$. This frame is called the Sabban frame of $\alpha$ on $\left(\mathbb{S}_{1}^{2}\right)_{\mathbb{H}}$. Then we have the following spherical Frenet-Serret formulae of $\alpha$ :

$$
\begin{align*}
\alpha^{\prime} & =\mathbf{t} \\
\mathbf{t}^{\prime} & =\alpha+\kappa_{g} \mathbf{s}  \tag{3.2}\\
\mathbf{s}^{\prime} & =\kappa_{g} \mathbf{t}
\end{align*}
$$

where $\kappa_{g}$ is the geodesic curvature of the timelike curve $\alpha$ on the $\left(\mathbb{S}_{1}^{2}\right)_{\mathbb{H}}$ and

$$
\begin{aligned}
g(\mathbf{t}, \mathbf{t}) & =-1, g(\alpha, \alpha)=1, g(\mathbf{s}, \mathbf{s})=1 \\
g(\mathbf{t}, \alpha) & =g(\mathbf{t}, \mathbf{s})=g(\alpha, \mathbf{s})=0
\end{aligned}
$$

With respect to the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, we can write

$$
\begin{align*}
\alpha & =\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}, \\
\mathbf{t} & =t_{1} \mathbf{e}_{1}+t_{2} \mathbf{e}_{2}+t_{3} \mathbf{e}_{3},  \tag{3.3}\\
\mathbf{s} & =s_{1} \mathbf{e}_{1}+s_{2} \mathbf{e}_{2}+s_{3} \mathbf{e}_{3}
\end{align*}
$$

To separate a biharmonic curve according to Sabban frame from that of FrenetSerret frame, in the rest of the paper, we shall use notation for the curve defined above as biharmonic $\mathcal{S}$-curve.

Theorem 3.1. $\alpha: I \longrightarrow\left(\mathbb{S}_{1}^{2}\right)_{\mathbb{H}}$ is a timelike biharmonic $\mathcal{S}$-curve if and only if

$$
\begin{aligned}
\kappa_{g} & =\text { constant } \neq 0 \\
1+\kappa_{g}^{2} & =\left[-\frac{1}{4}+\frac{1}{2} s_{1}^{2}\right]+\kappa_{g}\left[\alpha_{1} s_{1}\right] \\
\kappa_{g}^{3} & =\alpha_{3} s_{3}-\kappa_{g}\left[\frac{1}{4}-\frac{1}{2} \alpha_{1}^{2}\right]
\end{aligned}
$$

Proof. Using (2.1) and Sabban formulas (3.2), we have (3.4).
Corollary 3.2. All of timelike biharmonic $\mathcal{S}$-curves in $\left(\mathbb{S}_{1}^{2}\right)_{\mathbb{H}}$ are helices.
Consider a nonintegrable 2-dimensional distribution $(x, y) \longrightarrow \mathcal{H}_{(x, y)}$ in $\mathbb{H}$ defined as $\mathcal{H}=\operatorname{ker} \omega$, where $\omega=x d y+d z$ is a 1 -form on $\mathbb{H}$. The distribution $\mathcal{H}$ is called the horizontal distribution.

A curve $\alpha: I \longrightarrow \mathbb{H}$ is called horizontal curve if $\gamma^{\prime}(s) \in \mathcal{H}_{\gamma(s)}$, for every $s$.
Lemma 3.4. Let $\alpha$ be a horizontal curve. Then,

$$
\begin{equation*}
t_{1}(\sigma)=0 \tag{3.5}
\end{equation*}
$$

Proof. Using first equation of the system (3.3), we have

$$
\begin{equation*}
\omega\left(\alpha^{\prime}(\sigma)\right)=\omega\left(t_{1}(\sigma) \mathbf{e}_{1}+t_{2}(\sigma) \mathbf{e}_{2}+t_{3}(\sigma) \mathbf{e}_{3}\right) \tag{3.6}
\end{equation*}
$$

Thus, from (2.1) and (3.6), we obtain (3.5), which completes the proof.

Theorem 3.3. Let $\alpha$ be a unit speed non-geodesic timelike biharmonic $\mathcal{S}$-curve. Then, the parametric equations of $\alpha$ are

$$
\begin{align*}
x^{\mathcal{S}}(\sigma) & =\frac{1}{\sqrt{1+\kappa_{g}^{2}}} \sinh \left[\sqrt{1+\kappa_{g}^{2}} \sigma+\mathcal{B}_{1}\right]+\mathcal{B}_{2} \\
y^{\mathcal{S}}(\sigma) & =\frac{1}{\sqrt{1+\kappa_{g}^{2}}} \cosh \left[\sqrt{1+\kappa_{g}^{2}} \sigma+\mathcal{B}_{1}\right]+\mathcal{B}_{3}  \tag{3.7}\\
z^{\mathcal{S}}(\sigma) & =\frac{1}{2\left(1+\kappa_{g}^{2}\right)}\left[\sqrt{1+\kappa_{g}^{2}} \sigma+\mathcal{B}_{1}\right]-\frac{1}{4\left(1+\kappa_{g}^{2}\right)} \sinh 2\left[\sqrt{1+\kappa_{g}^{2}} \sigma+\mathcal{B}_{1}\right] \\
& -\frac{\mathcal{B}_{2}}{\sqrt{1+\kappa_{g}^{2}}} \cosh \left[\sqrt{1+\kappa_{g}^{2}} \sigma+\mathcal{B}_{1}\right]+\mathcal{B}_{4}
\end{align*}
$$

where $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \mathcal{B}_{4}$ are constants of integration.

Proof. From [9] and (3.5), we have

$$
\begin{equation*}
\mathbf{t}=\sinh \left[\sqrt{1+\kappa_{g}^{2}} \sigma+\mathcal{B}_{1}\right] \mathbf{e}_{2}+\cosh \left[\sqrt{1+\kappa_{g}^{2}} \sigma+\mathcal{B}_{1}\right] \mathbf{e}_{3} \tag{3.8}
\end{equation*}
$$

Using (2.1) in (3.8), we obtain

$$
\begin{aligned}
& \mathbf{t}=\left(\cosh \left[\sqrt{1+\kappa_{g}^{2}} \sigma+\mathcal{B}_{1}\right], \sinh \left[\sqrt{1+\kappa_{g}^{2}} \sigma+\mathcal{B}_{1}\right],\right. \\
& \\
& \left.\left(\frac{1}{\sqrt{1+\kappa_{g}^{2}}} \sinh \left[\sqrt{1+\kappa_{g}^{2}} \sigma+\mathcal{B}_{1}\right]+\mathcal{B}_{2}\right) \sinh \left[\sqrt{1+\kappa_{g}^{2}} \sigma+\mathcal{B}_{1}\right]\right),
\end{aligned}
$$

where $\mathcal{B}_{1}, \mathcal{B}_{2}$ are constants of integration.
Integrating both sides, we have (3.7). This proves our assertion. Thus, the proof of theorem is completed.

We can use Mathematica in above theorem, yields


## References

[1] M. Babaarslan and Y. Yayli: The characterizations of constant slope surfaces and Bertrand curves, International Journal of the Physical Sciences 6(8) (2011), 1868-1875.
[2] R. Caddeo and S. Montaldo: Biharmonic submanifolds of $\mathbb{S}^{3}$, Internat. J. Math. 12(8) (2001), 867-876.
[3] J. Eells and J. H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
[4] A. Gray: Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, 1998.
[5] S. Izumiya and N. Takeuchi: Special Curves and Ruled Surfaces, Contributions to Algebra and Geometry 44 (2003), 203-212.
[6] G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2) (1986), 130-144.
[7] G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2) (1986), 130-144.
[8] T. Körpınar and E. Turhan: On characterization of B-canal surfaces in terms of biharmonic $B$-slant helices according to Bishop frame in Heisenberg group Heis ${ }^{3}$, J. Math. Anal. Appl. 382 (2011), 57-65.
[9] T. Körpınar and E. Turhan: Timelike Biharmonic S-Curves According to Sabban Frame in Lorentzian Heisenberg Group Heis ${ }^{3}$, (in press)
[10] DY. Kwon, FC. Park, DP Chi: Inextensible flows of curves and developable surfaces, Appl. Math. Lett. 18 (2005), 1156-1162.
[11] Y. Ou and Z. Wang: Linear Biharmonic Maps into Sol, Nil and Heisenberg Spaces, Mediterr. j. math. 5 (2008), 379-394.
[12] S. Rahmani: Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302.
[13] E. Turhan and T. Körpınar, On spacelike biharmonic new type b-slant helices with timelike m2 according to Bishop frame in Lorentzian Heisenberg group $H^{3}$, Advanced Modeling and Optimization, 14 (2) (2012), 297-302.
[14] E. Turhan and T. Körpınar: On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis ${ }^{3}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences 65a (2010), 641-648.
[15] E. Turhan and T. Körpınar: Horizontal geodesics in Lorentzian Heisenberg group Heis ${ }^{3}$, Advanced Modeling and Optimization, 14 (2) (2012), 311-319.
[16] M. Turgut and S. Yilmaz: Smarandache Curves in Minkowski Space-time, International Journal of Mathematical Combinatorics 3 (2008), 51-55.

Firat University, Department of Mathematics,23119, Elaziğ, Turkey
E-mail address: talatkorpinar@gmail.com, essin.turhan@gmail.com


[^0]:    Date: January 31, 2012.
    2000 Mathematics Subject Classification. Primary 53A04; Secondary 53A10.
    Key words and phrases. Biharmonic curve, Heisenberg group, Sabban frame.

[^1]:    *AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

