
AMO | Advanced Modeling and Optimization, Volume 14, Number 2, 2012

TIMELIKE HORIZONTAL BIHARMONIC S-CURVES
ACCORDING TO SABBAN FRAME IN H

TALAT KÖRPINAR AND ESSIN TURHAN

Abstract. In this paper, we study timelike horizontal biharmonic curves ac-
cording to Sabban frame in the H. We characterize the timelike horizontal
biharmonic curves in terms of their geodesic curvature. Finally, we �nd out
their explicit parametric equations according to Sabban Frame.

1. Introduction

The theory of biharmonic functions is an old and rich subject. Biharmonic func-
tions have been studied since 1862 by Maxwell and Airy to describe a mathematical
model of elasticity. The theory of polyharmonic functions was developed later on,
for example, by E. Almansi, T. Levi-Civita and M. Nicolescu.
This study is organised as follows: Firstly, we study timelike horizontal bihar-

monic curves accordig to Sabban frame in the Heisenberg group Heis3. Secondly,
we characterize the timelike horizontal biharmonic curves in terms of their geodesic
curvature. Finally, we �nd out their explicit parametric equations according to
Sabban Frame.

2. The Lorentzian Heisenberg Group H

Heisenberg group H can be seen as the space R3 endowed with the following
multipilcation:

(x; y; z)(x; y; z) = (x+ x; y + y; z + z � 1
2
xy +

1

2
xy)

Heis3 is a three-dimensional, connected, simply connected and 2-step nilpotent Lie
group.
The identity of the group is (0; 0; 0) and the inverse of (x; y; z) is given by

(�x;�y;�z). The left-invariant Lorentz metric on H is

g = �dx2 + dy2 + (xdy + dz)2:
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The following set of left-invariant vector �elds forms an orthonormal basis for
the corresponding Lie algebra:

(2.1)
�
e1 =

@

@z
; e2 =

@

@y
� x @

@z
; e3 =

@

@x

�
:

The characterising properties of this algebra are the following commutation re-
lations:

g(e1; e1) = g(e2; e2) = 1; g(e3; e3) = �1:

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of
the left-invariant metric g, de�ned above the following is true:

(2.2) r = 1

2

0@ 0 e3 e2
e3 0 e1
e2 �e1 0

1A ;
where the (i; j)-element in the table above equals reiej for our basis

fek; k = 1; 2; 3g:

The unit pseudo-Heisenberg sphere (Lorentzian Heisenberg sphere) is de�ned by

�
S21
�
H = f� 2 H : g (�; �) = 1g :

3. Timelike Horizontal Biharmonic S-Curves According To Sabban
Frame In The

�
S21
�
H

Let  : I �! H be a timelike curve in the Lorentzian Heisenberg group H
parametrized by arc length. Let fT;N;Bg be the Frenet frame �elds tangent to
the Lorentzian Heisenberg group H along  de�ned as follows:
T is the unit vector �eld 0 tangent to ,N is the unit vector �eld in the direction

of rTT (normal to ), and B is chosen so that fT;N;Bg is a positively oriented
orthonormal basis. Then, we have the following Frenet formulas:

rTT = �N;
rTN = �T+ �B;(3.1)

rTB = ��N;

where � is the curvature of  and � is its torsion,

g (T;T) = �1; g (N;N) = 1; g (B;B) = 1;
g (T;N) = g (T;B) = g (N;B) = 0:

Now we give a new frame di¤erent from Frenet frame. Let � : I �!
�
S21
�
H be

unit speed spherical timelike curve. We denote � as the arc-length parameter of �
. Let us denote t (�) = �0 (�) ; and we call t (�) a unit tangent vector of �:We now
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set a vector s (�) = � (�)� t (�) along �: This frame is called the Sabban frame of
� on

�
S21
�
H : Then we have the following spherical Frenet-Serret formulae of � :

�0 = t;

t0 = �+ �gs;(3.2)

s0 = �gt;

where �g is the geodesic curvature of the timelike curve � on the
�
S21
�
H and

g (t; t) = �1; g (�; �) = 1; g (s; s) = 1;
g (t; �) = g (t; s) = g (�; s) = 0:

With respect to the orthonormal basis fe1; e2; e3g; we can write

� = �1e1 + �2e2 + �3e3;

t = t1e1 + t2e2 + t3e3;(3.3)

s = s1e1 + s2e2 + s3e3:

To separate a biharmonic curve according to Sabban frame from that of Frenet-
Serret frame, in the rest of the paper, we shall use notation for the curve de�ned
above as biharmonic S-curve.

Theorem 3.1. � : I �!
�
S21
�
H is a timelike biharmonic S-curve if and only if

�g = constant 6= 0;

1 + �2g = [�
1

4
+
1

2
s21] + �g[�1s1];(3.4)

�3g = �3s3 � �g[
1

4
� 1
2
�21]:

Proof. Using (2.1) and Sabban formulas (3.2), we have (3.4).

Corollary 3.2. All of timelike biharmonic S-curves in
�
S21
�
H are helices.

Consider a nonintegrable 2-dimensional distribution (x; y) �! H(x;y) in H de-
�ned as H = ker!, where ! = xdy + dz is a 1-form on H. The distribution H is
called the horizontal distribution.
A curve � : I �! H is called horizontal curve if 0(s) 2 H(s), for every s.

Lemma 3.4. Let � be a horizontal curve. Then,

(3.5) t1 (�) = 0:

Proof. Using �rst equation of the system (3.3), we have

(3.6) ! (�0(�)) = ! (t1 (�) e1 + t2 (�) e2 + t3 (�) e3) :

Thus, from (2.1) and (3.6), we obtain (3.5), which completes the proof.
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Theorem 3.3. Let � be a unit speed non-geodesic timelike biharmonic S-curve.
Then, the parametric equations of � are

xS (�) =
1q
1 + �2g

sinh[
q
1 + �2g� + B1] + B2;

yS (�) =
1q
1 + �2g

cosh[
q
1 + �2g� + B1] + B3;(3.7)

zS (�) =
1

2
�
1 + �2g

� [q1 + �2g� + B1]� 1

4
�
1 + �2g

� sinh 2[q1 + �2g� + B1]
� B2q

1 + �2g

cosh[
q
1 + �2g� + B1] + B4;

where B1;B2;B3;B4 are constants of integration.

Proof. From [9] and (3.5), we have

(3.8) t = sinh[
q
1 + �2g� + B1]e2 + cosh[

q
1 + �2g� + B1]e3:

Using (2.1) in (3.8), we obtain

t = (cosh[
q
1 + �2g� + B1]; sinh[

q
1 + �2g� + B1];

(
1q
1 + �2g

sinh[
q
1 + �2g� + B1] + B2) sinh[

q
1 + �2g� + B1]);

where B1;B2 are constants of integration.
Integrating both sides, we have (3.7). This proves our assertion. Thus, the proof

of theorem is completed.

We can use Mathematica in above theorem, yields
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