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BIHARMONIC CURVES IN THE S£;(R)
TALAT KORPINAR AND ESSIN TURHAN

ABSTRACT. In this paper, we study biharmonic curves in the SLo (R). We
characterize the biharmonic curves in terms of their curvature and torsion and
we prove that all of biharmonic curves are helices in the SL2 (R). Finally, we
find out their explicit parametric equations.

1. INTRODUCTION

Harmonic maps f : (M,g) — (N, h) between manifolds are the critical points
of the energy

(1) B =3 [ e,

where v, is the volume form on (M, g) and

e () (@) = 5 IF @3 rrog- 7

is the energy density of f at the point x € M.

Critical points of the energy functional are called harmonic maps.

The first variational formula of the energy gives the following characterization of
harmonic maps: the map f is harmonic if and only if its tension field 7 (f) vanishes
identically, where the tension field is given by

(1.2) 7 (f) = traceVdf.

As suggested by Eells and Sampson in [3], we can define the bienergy of a map
[ by
1

(13) B2(f) =5 [ I (DI v,

and say that is biharmonic if it is a critical point of the bienergy.
Jiang derived the first and the second variation formula for the bienergy in [6,7],
showing that the Euler-Lagrange equation associated to Fs is

(1.4) 7 (f) = =T (7 (f)) = —A7 (f) — traceRY (df, 7 (f)) df
=0,
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where J7 is the Jacobi operator of f . The equation 75 (f) = 0 is called the bihar-
monic equation. Since J7 is linear, any harmonic map is biharmonic. Therefore, we
are interested in proper biharmonic maps, that is non-harmonic biharmonic maps.

In this paper, we study biharmonic helices in the S£s (R). We characterize the
biharmonic curves in terms of their curvature and torsion and we prove that all

of biharmonic curves are helices in the S£5 (R). Finally, we find out their explicit
parametric equations.

—_~—

2. SL5 (R)

—_~—

We identify SLo (R) with
R} = {(z,y,2) eR®: 2 > 0}
endowed with the metric
dy .o
F
The following set of left-invariant vector fields forms an orthonormal basis for

—_~—

SL (R)

dy? + dz>
TR B

g =ds*> = (dz + 5

0 0 0 0
5 €2 = 25—

(21) e = 8:[/ —%,63:2:&.

The characterising properties of g defined by
g(ei,e1) =g (ez,e2) = g(es,e3) =1,
g(e1,e) =g(ez,e3) =g(e1,e3) =0.
The Riemannian connection V of the metric g is given by
29(VxY, Z)=Xg(Y,2)+Yg(Z,X) - Zg(X,Y)
—9(X,[Y,2]) =g (YV,[X, Z]) + 9 (Z,[X,Y]),

which is known as Koszul’s formula.
Using the Koszul’s formula, we obtain

1 1
Ve, €1 =0, Ve, €2 = ~e3, Ve, €3 = —-€2,
2 2
1
(2.2) Ve,€1 = €3 Ve,€2 = €3, Vg,€3 = —5€1 " ez
1 1
v9361 = 7562, Ve362 = 561, Veseg =0.

Moreover we put
Riji = R(ei,ej)er, Riju = R(e;,e; e e),
where the indices 4, j, k and [ take the values 1,2 and 3

1 7

2.3 R =R =~ R ———
(2.3) 1212 1313 = 7, F23zs 1



—

BIHARMONIC CURVES IN THE SZs (R) ...

—_~—

3. BIHARMONIC CURVES IN SL3 (R)

Biharmonic equation for the curve v reduces to

(3.1) V3T — R(T,VtT) T =0,

that is, v is called a biharmonic curve if it is a solution of the equation (3.1).

377

Let us consider biharmonicity of curves in S£5 (R). Let {T, N, B} be the Frenet
frame field along . Then, the Frenet frame satisfies the following Frenet—Serret

equations:
VT = kN,
(3.2) VN =—-kT + 7B,
VB = —7N,
where k = |7 (y)| = |VxT| is the curvature of v and 7 its torsion and

9(T,T)=1, g(N,N) =1, ¢(B,B) =1,
9(T,N) =g(T,B) =g(N,B) =0.
With respect to the orthonormal basis {e1, e,, e5}, we can write
T =Te; + Tres + Tzes,
(3.3) N = Nje; + Naes + Nzes,
B =T x N = Bye; + Bses + Bses.
Theorem 3.1. v: [ — S/E—Q\(/R) is a biharmonic curve if and only if

K = constant # 0,

1 15
(34) /432 + T2 = *Z + ZB%,
7'/ = 2NlBl.

Proof. Using (3.1) and Frenet formulas (3.2), we have (3.4).

—~—

Theorem 3.2. All of biharmonic curves in SLs (R) are helices.

—_~—

Theorem 3.3. Let v : I — SLs (R) be a unit speed non-geodesic curve. Then,

the parametric equations of ~ are

1 1
(35) x(s)= N sin psin [Rs + C] + R sin ¢ cos [Rs + C] + p2,

y(s)

~ N2 + cos? ®

cos s
)

z(s) = pre

where @1, po are constants of integration.

sin 1% ?° (=N cos [Ns + C] + cos ¢ sin [Rs + C)),
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Proof. Since v is biharmonic, v is a helix. So, without loss of generality, we
take the axis of v is parallel to the vector e3. Then,

(3.6) 9(T,e3) =Ts = cos,

where ¢ is constant angle.
The tangent vector can be written in the following form

(37) T = T1e1 + T262 + T3e3.

On the other hand the tangent vector T is a unit vector, so the following condi-
tion is satisfied

(3.8) T? 4+ T3 =1 — cos® .
Noting that cos? ¢ + sin? ¢ = 1, we have
(3.9) T2 + T3 =sin? .

The general solution of (3.9) can be written in the following form
(3.10) T = sin g cos p,
T5 = sin psin p,
where p is an arbitrary function of s.

So, substituting the components T7, To and T3 in the equation (3.7), we have
the following equation

(3.11) T = sin ¢ cos pe; + sin @ sin pes + cos pes.
Also, without loss of generality, we take
(3.12) 1=Rs+C,
where X, C € R.
Thus (3.11) and (3.12), imply
(3.13) T = sin g cos [Rs + C e; + sin psin [Rs + C] ez + cos pes.

Using (2.1) in (3.13), we obtain
(3.14) T = (sinpcos[Rs + C] —sinpsin [Rs + C], zsin ¢ sin [Rs + C], z cos ¢).

By direct calculations we have

d

d—x = sin p cos [Rs + C] — sin psin [Ns + C],
s

d

d—z = zsinpsin [Rs 4+ (],

e _ Z Cos

ds 4

Firstly, we have
2(5) = 1%,
where @7 is constant of integration.

1 1
x(s) = R sin g sin [Ns + C] + R sin ¢ cos [Rs + C] + pa,
where - is constant of integration.
Moreover, above equations, imply

y(s) sin 1€ ?* (=N cos [Ns + C] + cos ¢sin [Rs + C)),

~ N2 + cos? ®
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which proves our assertion.
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We can use Mathematica in above theorem, yields
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