BIHARMONIC CURVES IN THE $\widetilde{\mathcal{S}_{2}(\mathbb{R})}$

TALAT KÖRPINAR AND ESSIN TURHAN

Abstract

In this paper, we study biharmonic curves in the $\widehat{\mathcal{S L}_{2}(\mathbb{R})}$. We characterize the biharmonic curves in terms of their curvature and torsion and we prove that all of biharmonic curves are helices in the $\widehat{\mathcal{S} \mathcal{L}_{2}(\mathbb{R})}$. Finally, we find out their explicit parametric equations.

1. Introduction

Harmonic maps $f:(M, g) \longrightarrow(N, h)$ between manifolds are the critical points of the energy

$$
\begin{equation*}
E(f)=\frac{1}{2} \int_{M} e(f) v_{g} \tag{1.1}
\end{equation*}
$$

where v_{g} is the volume form on (M, g) and

$$
e(f)(x):=\frac{1}{2}\|d f(x)\|_{T^{*} M \otimes f^{-1} T N}^{2}
$$

is the energy density of f at the point $x \in M$.
Critical points of the energy functional are called harmonic maps.
The first variational formula of the energy gives the following characterization of harmonic maps: the map f is harmonic if and only if its tension field $\tau(f)$ vanishes identically, where the tension field is given by

$$
\begin{equation*}
\tau(f)=\operatorname{trace} \nabla d f \tag{1.2}
\end{equation*}
$$

As suggested by Eells and Sampson in [3], we can define the bienergy of a map f by

$$
\begin{equation*}
E_{2}(f)=\frac{1}{2} \int_{M}\|\tau(f)\|^{2} v_{g} \tag{1.3}
\end{equation*}
$$

and say that is biharmonic if it is a critical point of the bienergy.
Jiang derived the first and the second variation formula for the bienergy in $[6,7]$, showing that the Euler-Lagrange equation associated to E_{2} is

$$
\begin{align*}
\tau_{2}(f) & =-\mathcal{J}^{f}(\tau(f))=-\Delta \tau(f)-\operatorname{trace} R^{N}(d f, \tau(f)) d f \tag{1.4}\\
& =0
\end{align*}
$$

Date: January 1, 2012.
2000 Mathematics Subject Classification. Primary 53A04; Secondary 53A10.
Key words and phrases. Biharmonic curve, $\widetilde{\mathcal{S L}_{2}(\mathbb{R})}$.

[^0]where \mathcal{J}^{f} is the Jacobi operator of f. The equation $\tau_{2}(f)=0$ is called the biharmonic equation. Since \mathcal{J}^{f} is linear, any harmonic map is biharmonic. Therefore, we are interested in proper biharmonic maps, that is non-harmonic biharmonic maps.

In this paper, we study biharmonic helices in the $\widetilde{\mathcal{S} \mathcal{L}_{2}(\mathbb{R})}$. We characterize the biharmonic curves in terms of their curvature and torsion and we prove that all of biharmonic curves are helices in the $\widetilde{\mathcal{S} \mathcal{L}_{2}(\mathbb{R})}$. Finally, we find out their explicit parametric equations.

$$
\text { 2. } \widetilde{\mathcal{S} \mathcal{L}_{2}(\mathbb{R})}
$$

We identify $\widetilde{\mathcal{L}_{2}(\mathbb{R})}$ with

$$
\mathbb{R}_{+}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: z>0\right\}
$$

endowed with the metric

$$
g=d s^{2}=\left(d x+\frac{d y}{z}\right)^{2}+\frac{d y^{2}+d z^{2}}{z^{2}}
$$

The following set of left-invariant vector fields forms an orthonormal basis for $\widehat{\mathcal{S} \mathcal{\mathcal { L } _ { 2 }}(\mathbb{R})}$

$$
\begin{equation*}
\mathbf{e}_{1}=\frac{\partial}{\partial x}, \mathbf{e}_{2}=z \frac{\partial}{\partial y}-\frac{\partial}{\partial x}, \mathbf{e}_{3}=z \frac{\partial}{\partial z} \tag{2.1}
\end{equation*}
$$

The characterising properties of g defined by

$$
\begin{aligned}
& g\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=g\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=g\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=1 \\
& g\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=g\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right)=g\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)=0
\end{aligned}
$$

The Riemannian connection ∇ of the metric g is given by

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right) & =X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
\end{aligned}
$$

which is known as Koszul's formula.
Using the Koszul's formula, we obtain

$$
\begin{array}{ll}
\nabla_{\mathbf{e}_{1}} \mathbf{e}_{1}=0, & \nabla_{\mathbf{e}_{1}} \mathbf{e}_{2}=\frac{1}{2} \mathbf{e}_{3}, \\
\nabla_{\mathbf{e}_{2}} \mathbf{e}_{1}=\frac{1}{2} \mathbf{e}_{3}, & \nabla_{\mathbf{e}_{1}} \mathbf{e}_{3}=-\frac{1}{2} \mathbf{e}_{2}=\mathbf{e}_{3}, \tag{2.2}\\
\nabla_{\mathbf{e}_{3}} \mathbf{e}_{1}=-\frac{1}{2} \mathbf{e}_{2}, & \nabla_{\mathbf{e}_{3}} \mathbf{e}_{3}=-\frac{1}{2} \mathbf{e}_{2}=\frac{1}{2}-\mathbf{e}_{2}, \\
\nabla_{\mathbf{e}_{3}} \mathbf{e}_{3}=0
\end{array}
$$

Moreover we put

$$
R_{i j k}=R\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right) \mathbf{e}_{k}, \quad R_{i j k l}=R\left(\mathbf{e}_{i}, \mathbf{e}_{j}, \mathbf{e}_{k}, \mathbf{e}_{l}\right)
$$

where the indices i, j, k and l take the values 1,2 and 3

$$
\begin{equation*}
R_{1212}=R_{1313}=\frac{1}{4}, \quad R_{2323}=-\frac{7}{4} \tag{2.3}
\end{equation*}
$$

3. Biharmonic Curves in $\widetilde{\mathcal{S}\left(\mathbb{\mathcal { L } _ { 2 }}(\mathbb{R})\right.}$

Biharmonic equation for the curve γ reduces to

$$
\begin{equation*}
\nabla_{\mathbf{T}}^{3} \mathbf{T}-R\left(\mathbf{T}, \nabla_{\mathbf{T}} \mathbf{T}\right) \mathbf{T}=0 \tag{3.1}
\end{equation*}
$$

that is, γ is called a biharmonic curve if it is a solution of the equation (3.1).
Let us consider biharmonicity of curves in $\widehat{\mathcal{S} \mathcal{L}_{2}(\mathbb{R})}$. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame field along γ. Then, the Frenet frame satisfies the following Frenet-Serret equations:

$$
\begin{align*}
\nabla_{\mathbf{T}} \mathbf{T} & =\kappa \mathbf{N}, \\
\nabla_{\mathbf{T}} \mathbf{N} & =-\kappa \mathbf{T}+\tau \mathbf{B}, \tag{3.2}\\
\nabla_{\mathbf{T}} \mathbf{B} & =-\tau \mathbf{N},
\end{align*}
$$

where $\kappa=|\mathcal{T}(\gamma)|=\left|\nabla_{\mathbf{T}} \mathbf{T}\right|$ is the curvature of γ and τ its torsion and

$$
\begin{aligned}
& g(\mathbf{T}, \mathbf{T})=1, g(\mathbf{N}, \mathbf{N})=1, g(\mathbf{B}, \mathbf{B})=1 \\
& g(\mathbf{T}, \mathbf{N})=g(\mathbf{T}, \mathbf{B})=g(\mathbf{N}, \mathbf{B})=0
\end{aligned}
$$

With respect to the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, we can write

$$
\begin{align*}
\mathbf{T} & =T_{1} \mathbf{e}_{1}+T_{2} \mathbf{e}_{2}+T_{3} \mathbf{e}_{3} \\
\mathbf{N} & =N_{1} \mathbf{e}_{1}+N_{2} \mathbf{e}_{2}+N_{3} \mathbf{e}_{3} \tag{3.3}\\
\mathbf{B} & =\mathbf{T} \times \mathbf{N}=B_{1} \mathbf{e}_{1}+B_{2} \mathbf{e}_{2}+B_{3} \mathbf{e}_{3}
\end{align*}
$$

Theorem 3.1. $\gamma: I \longrightarrow \widehat{\mathcal{S} \mathcal{L}_{2}(\mathbb{R})}$ is a biharmonic curve if and only if

$$
\begin{align*}
\kappa & =\text { constant } \neq 0 \\
\kappa^{2}+\tau^{2} & =-\frac{1}{4}+\frac{15}{4} B_{1}^{2} \tag{3.4}\\
\tau^{\prime} & =2 N_{1} B_{1}
\end{align*}
$$

Proof. Using (3.1) and Frenet formulas (3.2), we have (3.4).
Theorem 3.2. All of biharmonic curves in $\widehat{\mathcal{S L}_{2}(\mathbb{R})}$ are helices.

Theorem 3.3. Let $\gamma: I \longrightarrow \widetilde{\mathcal{S} \mathcal{L}_{2}(\mathbb{R})}$ be a unit speed non-geodesic curve. Then, the parametric equations of γ are

$$
\begin{align*}
& x(s)=\frac{1}{\aleph} \sin \varphi \sin [\aleph s+C]+\frac{1}{\aleph} \sin \varphi \cos [\aleph s+C]+\wp_{2} \tag{3.5}\\
& y(s)=\frac{1}{\aleph^{2}+\cos ^{2} \varphi} \sin \varphi \wp_{1} e^{\cos \varphi s}(-\aleph \cos [\aleph s+C]+\cos \varphi \sin [\aleph s+C]), \\
& z(s)=\wp_{1} e^{\cos \varphi s}
\end{align*}
$$

where \wp_{1}, \wp_{2} are constants of integration.

Proof. Since γ is biharmonic, γ is a helix. So, without loss of generality, we take the axis of γ is parallel to the vector \mathbf{e}_{3}. Then,

$$
\begin{equation*}
g\left(\mathbf{T}, \mathbf{e}_{3}\right)=T_{3}=\cos \varphi, \tag{3.6}
\end{equation*}
$$

where φ is constant angle.
The tangent vector can be written in the following form

$$
\begin{equation*}
\mathbf{T}=T_{1} \mathbf{e}_{1}+T_{2} \mathbf{e}_{2}+T_{3} \mathbf{e}_{3} \tag{3.7}
\end{equation*}
$$

On the other hand the tangent vector \mathbf{T} is a unit vector, so the following condition is satisfied

$$
\begin{equation*}
T_{1}^{2}+T_{2}^{2}=1-\cos ^{2} \varphi \tag{3.8}
\end{equation*}
$$

Noting that $\cos ^{2} \varphi+\sin ^{2} \varphi=1$, we have

$$
\begin{equation*}
T_{1}^{2}+T_{2}^{2}=\sin ^{2} \varphi \tag{3.9}
\end{equation*}
$$

The general solution of (3.9) can be written in the following form

$$
\begin{align*}
& T_{1}=\sin \varphi \cos \mu \tag{3.10}\\
& T_{2}=\sin \varphi \sin \mu
\end{align*}
$$

where μ is an arbitrary function of s.
So, substituting the components T_{1}, T_{2} and T_{3} in the equation (3.7), we have the following equation

$$
\begin{equation*}
\mathbf{T}=\sin \varphi \cos \mu \mathbf{e}_{1}+\sin \varphi \sin \mu \mathbf{e}_{2}+\cos \varphi \mathbf{e}_{3} \tag{3.11}
\end{equation*}
$$

Also, without loss of generality, we take

$$
\begin{equation*}
\mu=\aleph s+C \tag{3.12}
\end{equation*}
$$

where $\aleph, C \in \mathbb{R}$.
Thus (3.11) and (3.12), imply

$$
\begin{equation*}
\mathbf{T}=\sin \varphi \cos [\aleph s+C] \mathbf{e}_{1}+\sin \varphi \sin [\aleph s+C] \mathbf{e}_{2}+\cos \varphi \mathbf{e}_{3} . \tag{3.13}
\end{equation*}
$$

Using (2.1) in (3.13), we obtain
(3.14) $\mathbf{T}=(\sin \varphi \cos [\aleph s+C]-\sin \varphi \sin [\aleph s+C], z \sin \varphi \sin [\aleph s+C], z \cos \varphi)$.

By direct calculations we have

$$
\begin{aligned}
& \frac{d x}{d s}=\sin \varphi \cos [\aleph s+C]-\sin \varphi \sin [\aleph s+C] \\
& \frac{d y}{d s}=z \sin \varphi \sin [\aleph s+C] \\
& \frac{d z}{d s}=z \cos \varphi
\end{aligned}
$$

Firstly, we have

$$
z(s)=\wp_{1} e^{\cos \varphi s},
$$

where \wp_{1} is constant of integration.

$$
x(s)=\frac{1}{\aleph} \sin \varphi \sin [\aleph s+C]+\frac{1}{\aleph} \sin \varphi \cos [\aleph s+C]+\wp_{2},
$$

where \wp_{2} is constant of integration.
Moreover, above equations, imply

$$
y(s)=\frac{1}{\aleph^{2}+\cos ^{2} \varphi} \sin \varphi \wp_{1} e^{\cos \varphi s}(-\aleph \cos [\aleph s+C]+\cos \varphi \sin [\aleph s+C])
$$

which proves our assertion.

We can use Mathematica in above theorem, yields

References

[1] D. E. Blair: Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag 509, Berlin-New York, 1976.
[2] R. Caddeo and S. Montaldo: Biharmonic submanifolds of \mathbb{S}^{3}, Internat. J. Math. 12(8) (2001), 867-876.
[3] J. Eells and J. H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
[4] A. Gray: Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, 1998.
[5] S. Izumiya and N. Takeuchi: Special Curves and Ruled Surfaces, Contributions to Algebra and Geometry 44 (2003), 203-212.
[6] G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A $7(2)(1986), 130-144$.
[7] G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A $7(2)(1986), 130-144$.
[8] T. Körpınar and E. Turhan: On Spacelike Biharmonic Slant Helices According to Bishop Frame in the Lorentzian Group of Rigid Motions $\mathbb{E}(1,1)$, Bol. Soc. Paran. Mat. 30 (2) (2012), 91-100.
[9] T. Körpınar, E. Turhan: On Horizontal Biharmonic Curves In The Heisenberg Group Heis ${ }^{3}$, Arab. J. Sci. Eng. Sect. A Sci. 35 (1) (2010), 79-85.
[10] T. Körpınar and E. Turhan: On characterization of B-canal surfaces in terms of biharmonic B-slant helices according to Bishop frame in Heisenberg group Heis ${ }^{3}$, J. Math. Anal. Appl. 382 (2011), 57-65.
[11] E. Loubeau and S. Montaldo: Biminimal immersions in space forms, preprint, 2004, math.DG/0405320 v1.
[12] S. Rahmani: Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302.
[13] E. Turhan and T. Körpınar, On spacelike biharmonic new type b-slant helices with timelike m2 according to Bishop frame in Lorentzian Heisenberg group H^{3}, Advanced Modeling and Optimization, 14 (2) (2012), 297-302.
[14] E. Turhan and T. Körpınar: On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis ${ }^{3}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences 65a (2010), 641-648.
[15] E. Turhan and T. Körpınar: Horizontal geodesics in Lorentzian Heisenberg group Heis ${ }^{3}$, Advanced Modeling and Optimization, 14 (2) (2012), 311-319.
[16] M. Turgut and S. Yilmaz: Smarandache Curves in Minkowski Space-time, International Journal of Mathematical Combinatorics 3 (2008), 51-55.

Firat University, Department of Mathematics,23119, Elaziğ, Turkey
E-mail address: talatkorpinar@gmail.com, essin.turhan@gmail.com

[^0]: *AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

