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DARBOUX VECTORS OF GENERAL HELICES IN THE SOL
SPACE

TALAT KÖRPINAR AND ESSIN TURHAN

Abstract. In this paper, we study Darboux rotation axis for general helices
in the Sol space. We obtain equation of Darboux vectors of general helices in
the Sol space.

1. Introduction

The object moves along the curve, let its intrinsic coordinate system keep itself
aligned with the curve�s Frenet frame. As it does so, the object�s motion will be
described by two vectors: a translation vector, and a rotation vector !, which is an
areal velocity vector: the Darboux vector.
Note that this rotation is kinematic, rather than physical, because usually when

a rigid object moves freely in space its rotation is independent of its translation.
The exception would be if the object�s rotation is physically constrained to align
itself with the object�s translation, as is the case with the cart of a roller coaster.
In this paper, we study Darboux rotation axis for general helices in the Sol space.

We obtain equation of Darboux vector of general helices in the Sol space.

2. Riemannian Structure of Sol Space Sol3

Sol space, one of Thurston�s eight 3-dimensional geometries, can be viewed as
R3 provided with Riemannian metric

(2.1) gSol3 = e
2zdx2 + e�2zdy2 + dz2;

where (x; y; z) are the standard coordinates in R3.
Note that the Sol metric can also be written as:

(2.2) gSol3 =
3X
i=1

!i 
 !i;

where

(2.3) !1 = ezdx; !2 = e�zdy; !3 = dz;
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and the orthonormal basis dual to the 1-forms is

(2.4) e1 = e
�z @

@x
; e2 = e

z @

@y
; e3 =

@

@z
:

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of
the left-invariant metric gSol3 , de�ned above the following is true:

(2.5) r =

0@ �e3 0 e1
0 e3 �e2
0 0 0

1A ;
where the (i; j)-element in the table above equals reiej for our basis

fek; k = 1; 2; 3g = fe1; e2; e3g:

Lie brackets can be easily computed as:

[e1; e2] = 0; [e2; e3] = �e2; [e1; e3] = e1:

The isometry group of Sol3 has dimension 3. The connected component of the
identity is generated by the following three families of isometries:

(x; y; z)! (x+ c; y; z) ;

(x; y; z)! (x; y + c; z) ;

(x; y; z)!
�
e�cx; ecy; z + c

�
:

3. General Helices in Sol Space Sol3

Assume that fT;N;Bg be the Frenet frame �eld along . Then, the Frenet
frame satis�es the following Frenet�Serret equations:

rTT = �N;
rTN = ��T+ �B;(3.1)

rTB = ��N;

where � is the curvature of  and � its torsion and

gSol3 (T;T) = 1; gSol3 (N;N) = 1; gSol3 (B;B) = 1;(3.2)

gSol3 (T;N) = gSol3 (T;B) = gSol3 (N;B) = 0:

With respect to the orthonormal basis fe1; e2; e3g; we can write

T = T1e1 + T2e2 + T3e3;

N = N1e1 +N2e2 +N3e3;(3.3)

B = T�N = B1e1 +B2e2 +B3e3:
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Theorem 3.1. ([15]) Let  : I �! Sol3 be a unit speed non-geodesic general
helix. Then, the parametric equations of  are

x (s) =
sinPe� cosPs�C3

C21 + cos
2P

[� cosP cos [C1s+ C2] + C1 sin [C1s+ C2]] + C4;

y (s) =
sinPecosPs+C3

C21 + cos
2P

[�C1 cos [C1s+ C2] + cosP sin [C1s+ C2]] + C5;(3.4)

z (s) = cosPs+ C3;

where C1;C2;C3;C4;C5 are constants of integration:

The obtained parametric equations for Eq. (3.4) is illustrated in Fig. 1:

We can use Mathematica in Theorem 3.1, yields

4. Darboux Rotation Axis of General Helices in Sol Space Sol3

Using Frenet equations form a rotation motion with Darboux vector,

(4.1) D = �T+ �B:

From above equation, momentum rotation vector is expressed as follows:

rTT = D�T;
rTN = D�N;
rTB = D�B:

Darboux rotation of Frenet frame can be separated into two rotation motions:
T tangent vector rotates with a � angular speed round B binormal vector, that is

rTT = (�B)�T
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and B binormal vector rotates with a � angular speed round T tangent vector, that
is

rTB = (�T)�B:

Lemma 4.1. D vector rotates with zero angular speed round N principal normal
for general helix in the Sol space:

Proof. We assume that D vector rotates round N principal normal of :
So, by di¤erentiating of the formula (4.1), we get

rTD = � 0T+ �0B:

Hence we put
~D =

D

jg (D;D)j
1
2

Since Theorem 3.2, we immediately arrive at

rT ~D = 0:

In terms of above equation, we may give:

g
�
rT ~D;rT ~D

�
= 0:

This concludes the proof of Lemma.

Hence, we have the following theorem.

Theorem 4.2. Let  : I �! Sol3 is a non geodesic biharmonic helix in the Sol
space: Then, Darboux vector of  is constant vector.

Proof. Using Lemma 4.1, we immediately arrive at ~D is constant vector.

Theorem 4.3. Let  : I �! Sol3 is a non geodesic general helix in the Sol
space: Then, the equation of Darboux vector of  is

D=[� sinP cos [C1s+ C2] + sinP sin [C1s+ C2] [sin
2P sin2 [C1s+ C2]� sin2P cos2 [C1s+ C2]

� cosP[ 1
C1
sinP cos [C1s+ C2]� cosP sinP sin [C1s+ C2]]]e1

� [� sinP sin [C1s+ C2] + sinP cos [C1s+ C2] [sin2P sin2 [C1s+ C2]� sin2P cos2 [C1s+ C2]

� cosP[� 1

C1
sinP sin [C1s+ C2] + cosP sinP cos [C1s+ C2]]]e2

(4.4)

+ [� cosP+sinP cos [C1s+ C2] [
1

C1
sinP cos [C1s+ C2]� cosP sinP sin [C1s+ C2]

� sinP sin [C1s+ C2] [�
1

C1
sinP sin [C1s+ C2] + cosP sinP cos [C1s+ C2]]]e3;

Proof. Using Theorem 3.1, the tangent vector of  can be written in the
following form:

T = sinP cos [C1s+ C2] e1 + sinP sin [C1s+ C2] e2 + cosPe3:

Using �rst equation of Eq.(3.3), we have

rTT = (T 01 + T1T3) e1 + (T 02 � T2T3) e2 +
�
T 03 � T 21 + T 22

�
e3:
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By the use of Frenet formulas and above equation, we get

N =
1

�
[� 1

C1
sinP sin [C1s+ C2] + cosP sinP cos [C1s+ C2]]e1

+
1

�
[
1

C1
sinP cos [C1s+ C2]� cosP sinP sin [C1s+ C2]]e2(4.3)

+
1

�
[sin2P sin2 [C1s+ C2]� sin2P cos2 [C1s+ C2]]e3:

On the other hand, we immediately arrive at

B=[
1

�
sinP sin [C1s+ C2] [sin

2P sin2 [C1s+ C2]� sin2P cos2 [C1s+ C2]

� 1

�
cosP[

1

C1
sinP cos [C1s+ C2]� cosP sinP sin [C1s+ C2]]]e1

� [ 1
�
sinP cos [C1s+ C2] [sin

2P sin2 [C1s+ C2]� sin2P cos2 [C1s+ C2]

� 1

�
cosP[� 1

C1
sinP sin [C1s+ C2] + cosP sinP cos [C1s+ C2]]]e2

(4.4)

+ [
1

�
sinP cos [C1s+ C2] [

1

C1
sinP cos [C1s+ C2]� cosP sinP sin [C1s+ C2]

� 1

�
sinP sin [C1s+ C2] [�

1

C1
sinP sin [C1s+ C2] + cosP sinP cos [C1s+ C2]]]e3:

If we substitute the equations (4.3) and (4.4) in the equation (4.1), we have (4.2),
which it completes the proof.

We put

E =
D

kDk :

Corollary 4.4. Let  : I �! Sol3 is a non geodesic general helix in the Sol
space: Then, E is constant vector.

According to the second Frenet formula, we have

rTN = jg (D;D)j
1
2 (E�N) :

Furthermore, we put
U = E�N:

On the other hand, from above corollary we have

rTU = jg (D;D)j
1
2 N

Since,

rTE=0;

rTN = jg (D;D)j
1
2 (E�N) ;

rTU= jg (D;D)j
1
2 N:
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Thus, the vectors N, E�N, E de�ne a rotation motion together the rotation
vector,

D1 = jg (D;D)j
1
2 E:

Corollary 4.5. Let  : I �! Sol3 is a non geodesic general helix in the Sol
space:Then, momentum rotation vector is expressed as follows:

rTN = D1�N;
rTU=D1�U:
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