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NEW TYPE OF INEXTENSIBLE FLOWS OF TIMELIKE
CURVES IN MINKOWSKI SPACE-TIME E41

SELÇUK BAŞ, TALAT KÖRPINAR AND ESSIN TURHAN

Abstract. In this paper, we study inextensible �ows of timelike curves in E41:
Necessary and su¢ cient conditions for an inextensible �ow are expressed as a
partial di¤erential equation involving the curvature.

1. Introduction

Construction of �uid �ows constitutes an active research �eld with a high indus-
trial impact. Corresponding real-world measurements in concrete scenarios com-
plement numerical results from direct simulations of the Navier-Stokes equation,
particularly in the case of turbulent �ows, and for the understanding of the com-
plex spatio-temporal evolution of instationary �ow phenomena. More and more
advanced imaging devices (lasers, highspeed cameras, control logic, etc.) are cur-
rently developed that allow to record fully timeresolved image sequences of �uid
�ows at high resolutions. As a consequence, there is a need for advanced algorithms
for the analysis of such data, to provide the basis for a subsequent pattern analysis,
and with abundant applications across various areas.
In this paper, we study inextensible �ows of timelike curves in E41: We research

necessary and su¢ cient conditions for an inelastic curve �ow are expressed as a
partial di¤erential equation involving the curvature.

2. Preliminaries

To meet the requirements in the next sections, the basic elements of the theory
of curves in Minkowski space-time E41 are brie�y presented in this section.
Minkowski space-time E41 is a usual vector space provided with the standart

metric given by

(2.1) h; i = �dx21 + dx22 + dx23 + dx24;
where (x1; x2; x3; x4) is a rectangular coordinate system in E41:
Since h; i is an inde�nite metric, recall that a v 2 E41 can have one of the three

causal characters; it can be spacelike if hv; vi > 0 or v = 0; timelike if hv; vi < 0;
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and null (ligthlike) if hv; vi = 0 and v 6= 0: Similarly, an arbitrary curve  = (t) in
E41 can locally be spacelike, timelike, or null (lightlike) if all of its velocity vectors
0(t) are, respectively, spacelike, timelike, or null. The norm of v 2 E41 is given by
kvk =

p
jhv; vij: If k0(s)k =

p
jh0(s); 0(t)ij 6= 0 for all t 2 I; then  is a regular

curve in E41: A timelike (spacelike) regular curve  is parameterized by arc-length
parameter s which is given by  : I ! E41; then the tangent vector 0(s) along 
has unit length, that is, h0(s); 0(s)i = �1; (h0(s); 0(s)i = 1) for all s 2 I:
Hereafter, curves considered are timelike and regular C1 curves in E41: Let

T(s) = 0(s) for all s 2 I; then the vector �eld T(s) is timelike and it is called
timelike unit tangent vector �eld on :
The timelike curve  is called special timelike Frenet curve if there exist three

smooth functions k1; k2; k3 on  and smooth non null frame �eld fT;N;B1;B2g
along the curve : Also, the functions k1; k2 and k3 are called the �rst, the second,
and the third curvature function on , respectively. For the C1 special timelike
Frenet curve , the following Frenet formula is

(2.2)

2664
T0

N0

B01
B02

3775 =
2664
0 k1 0 0
k1 0 k2 0
0 �k2 0 k3
0 0 �k3 0

3775
2664
T
N
B1
B2

3775 ;
see [2,13].
Here, due to characters of Frenet vectors of the timelike curve, T;N;B1 and B2

are mutually orthogonal vector �elds satisfying equations

(2.3) hT;Ti = �1; hN;Ni = hB1;B1i = hB2;B2i = 1:

For s 2 I, the nonnull frame �eld fT;N;B1;B2g and curvature functions k1; k2
and k3 are determined as follows:

1st step T(s) = c0(s);

2nd step k1(s) = kT(s)k > 0;

N(s) =
1

k1(s)
T0(s);

3rd step k1(s) = kN0(s)� k1(s)T(s)k > 0;(2.4)

B1(s) =
1

k2(s)
(N0(s)� k1(s)T(s));

4th step B2(s) = �
1

kB01(s) + k2(s)N(s)k
(B01(s) + k2(s)N(s));

where � is determined by the fact that orthonormal frame �eld fT(s);N(s);B1(s);B2(s)g
is of positive orientation. The function k3 is determined by

(2.5) k3(t) = hB01(s);B2(s)i 6= 0:

So, the function k3 never vanishes.
In order to make sure that the curve  is a special timelike Frenet curve, above

steps must be checked, from 1st step to 4th step, for t 2 I.
Let fT;N;B1;B2g be the moving Frenet frame along a unit speed timelike curve

 in E41, consisting of the tangent, the principal normal, the �rst binormal, and the
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second binormalvector �eld, respectively. Since  is a timelike curve, its Frenet
frame contains only nonnull vector �elds.

3. Inextensible Flows of Timelike Curves in E41

Throughout this article, we assume that  : [0; l] � [0; !] ! E41 is a one
parameter family of smooth timelike curves in Minkowski space E41, where l is
the arclength of the initial curve. Let u be the curve parametrization variable,
0 � u � l:
The arclength of  is given by

(3.1) s(u) =

uZ
0

����@@u
���� du;

where

(3.2)

����@@u
���� = �����@@u; @@u

�����
1

2
:

The operator
@

@s
is given in terms of u by

@

@s
=
1

�

@

@u
;

where v =

����@@u
���� : The arclength parameter is ds = vdu:

Any �ow of  can be represented as

(3.3)
@

@t
= f1T+ f2N+ f3B1 + f4B2:

Letting the arclength variation be

s(u; t) =

uZ
0

vdu:

In the Minkowski space the requirement that the curve not be subject to any
elongation or compression can be expressed by the condition

(3.4)
@

@t
s(u; t) =

uZ
0

@v

@t
du = 0;

for all u 2 [0; l] :

De�nition 3.1. A curve evolution (u; t) and its �ow
@

@t
in E41 are said to be

inextensible if
@

@t

����@@u
���� = 0:
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Lemma 3.2. Let
@

@t
= f1T+ f2N+ f3B1+ f4B2 be a smooth �ow of the timelike

curve  in E41: The �ow is inextensible if and only if

(3.5)
@v

@t
= �@f1

@u
� f2vk1:

Proof. Suppose that
@

@t
be a smooth �ow of the timelike curve : Using

de�nition of , we have

(3.6) v2 =

�
@

@u
;
@

@u

�
:

@

@u
and

@

@t
commute since and are independent coordinates. So, by di¤erentiat-

ing of the formula (3.6), we get

2v
@v

@t
=

@

@t

�
@

@u
;
@

@u

�
:

On the other hand, changing
@

@u
and

@

@t
; we have

v
@v

@t
=

�
@

@u
;
@

@u
(
@

@t
)

�
:

From (3.3), we obtain

v
@v

@t
=

�
@

@u
;
@

@u
(f1T+ f2N+ f3B1 + f4B2)

�
:

By the formula of the Frenet, we have

@v

@t
=< T; (

@f1
@u

+ f2vk1)T+ (f1vk1 +
@f2
@u

� f3vk2)N

+(f2vk2 +
@f3
@u

� f4k3)B1 + (f3vk3 +
@f4
@u
)B2 > :

Making necessary calculations from above equation, we have (3.5), which proves
the lemma.

Theorem 3.3. Let
@

@t
= f1T + f2N + f3B1 + f4B2 be a smooth �ow of the

timelike curve  in E41: The �ow is inextensible if and only if

(3.7)
@f1
@u

= �f2vk1:

Proof. Now let
@

@t
be extensible. From (3.4), we have

(3.8)
@

@t
s(u; t) =

uZ
0

@v

@t
du =

uZ
0

(
@f1
@u

+ f2vk1)du = 0:

Substituting (3.5) in (3.8) complete the proof of the theorem.
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We now restrict ourselves to arc length parametrized curves. That is, v = 1
and the local coordinate u corresponds to the curve arc length s. We require the
following lemma.

Lemma 3.4. Let
@

@t
= f1T+ f2N+ f3B1+ f4B2 be a smooth �ow of the timelike

curve  in E41: Then,

@T

@t
= (f1k1 +

@f2
@s

� f3k2)N+ (f2k2 +
@f3
@s

� f4k3)B1(3.9)

+ (f3k3 +
@f4
@s
)B2;

@N

@t
=

�
f1k1 +

@f2
@s

� f3k2
�
T+  1B1 +  2B2;(3.10)

@B1
@t

=

�
f2k2 +

@f3
@s

� f4k3
�
T� 1N+  3B2;(3.11)

@B2
@t

=

�
f3k3 +

@f4
@s

�
T� 2N� 3B1;(3.12)

where

 1 =

�
@N

@t
;B1

�
;  2 =

�
@N

@t
;B2

�
;  3 =

�
B2;

@B1
@t

�
:

Proof. Under the assumption, we have

@T

@t
=

@

@t

@

@s
=

@

@s
(f1T+ f2N+ f3B1 + f4B2):

Thus, it is seen that

@T

@t
= (

@f1
@s

+ f2k1)T+ (f1k1 +
@f2
@s

� f3k2)N(3.13)

+ (f2k2 +
@f3
@s

� f4k3)B1 + (f3k3 +
@f4
@s
)B2:

Substituting (3.7) in (3.13), we get

@T

@t
= (f1k1 +

@f2
@s

� f3k2)N+ (f2k2 +
@f3
@s

� f4k3)B1

+ (f3k3 +
@f4
@s
)B2:
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The di¤erentiation of the Frenet frame with respect to t is

0 =
@

@t
hT;Ni =

�
@T

@t
;N

�
+

�
T;
@N

@t

�
= f1k1 +

@f2
@s

� f3k2 +
�
T;

@N

@t

�
;

0 =
@

@t
hT;B1i =

�
@T

@t
;B1

�
+

�
T;

@B1
@t

�
= f2k2 +

@f3
@s

� f4k3 +
�
T;

@B1
@t

�
;

0 =
@

@t
hT;B2i =

�
@T

@t
;B2

�
+

�
T;

@B2
@t

�
= f3k3 +

@f4
@s

+

�
T;

@B2
@t

�
;

0 =
@

@t
hN;B1i =

�
@N

@t
;B1

�
+

�
N;

@B1
@t

�
=  1 +

�
N;

@B1
@t

�
;

0 =
@

@t
hN;B2i =

�
@N

@t
;B2

�
+

�
N;

@B2
@t

�
=  2 +

�
N;

@B2
@t

�
;

0 =
@

@t
hB1;B2i =

�
@B1
@t

;B2

�
+

�
B1;

@B2
@t

�
=  3 +

�
B2;

@B1
@t

�
:

From the above and using�
@N

@t
;N

�
=

�
@B1
@t

;B1

�
=

�
@B2
@t

;B2

�
= 0;

we obtain

@N

@t
=

�
f1k1 +

@f2
@s

� f3k2
�
T+  1B1 +  2B2;

@B1
@t

=

�
f2k2 +

@f3
@s

� f4k3
�
T�  1N+ 3B2;

@B2
@t

=

�
f3k3 +

@f4
@s

�
T� 2N� 3B1;

where

 1 =

�
@N

@t
;B1

�
;  2 =

�
@N

@t
;B2

�
;  3 =

�
B2;

@B1
@t

�
:

The following theorem states the conditions on the curvature and torsion for the
curve �ow (s; t) to be inextensible.
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Theorem 3.5. Let
@

@t
= f1T + f2N + f3B1 + f4B2 be a smooth �ow of the

timelike curve : Then, the following system of partial di¤erential equations holds:

@k1
@t

=
@

@s
(f1k1) +

@2f2
@s2

� @

@s
(f3k2)� f2k22 �

@f3
@s

k2 + f4k2k3:

Proof. From our assumption, we have

@

@s

@T

@t
=

�
@

@s
(f1k1) +

@2f2
@s2

� @

@s
(f3k2)

�
N+

�
f1k1 +

@f2
@s

� f3k2
�
(k1T+k2B1)

+

�
@

@s
(f2k2) +

@2f3
@s2

� @

@s
(f4k3)

�
B1 +

�
f2k2 +

@f3
@s

� f4k3
�
(�k2N+k3B2)

+

�
@

@s
(f3k3) +

@2f4
@s2

�
B2 +

�
f3k3 +

@f4
@s

�
(�k3B1):

Also, we get

@

@s

@T

@t
=

�
f1k

2
1 +

@f2
@s

k1 � f3k2k1
�
T

+

�
@

@s
(f1k1) +

@2f2
@s2

� @

@s
(f3k2)� f2k22 �

@f3
@s

k2 + f4k2k3

�
N

+

�
@

@s
(f2k2) +

@2f3
@s2

� @

@s
(f4k3) + f1k1k2 +

@f2
@s

k2 � f3k22 � f3k23 �
@f4
@s

k3

�
B1

(3.14)

+

�
@

@s
(f3k3) +

@2f4
@s2

+ f2k2k3 +
@f3
@s

k3 � f4k23
�
B2:

On the other hand, from Frenet frame we have

(3.15)
@

@t

@T

@s
=
@k1
@t
N+ k1

�
f1k1 +

@f2
@s

� f3k2
�
T+ k1 1B1 + k1 2B2:

Hence from (3.14) and (3.15), we get

@k1
@t

=
@

@s
(f1k1) +

@2f2
@s2

� @

@s
(f3k2)� f2k22 �

@f3
@s

k2 + f4k2k3:

Theorem 3.6. Let
@

@t
= f1T + f2N + f3B1 + f4B2 be a smooth �ow of the

timelike curve : Then, the following system of partial di¤erential equations holds:

@f2
@s

� @k2
@t

+
@2f3
@s2

� @f4
@s

k3 = �f1k1k2 + f3k22 + f3k23 �
@

@s
(f2k2)�

@

@s
(f4k3)� 1k1;

@k3
@t

=  2k2 +
@ 3
@s

;

@ 1
@s

� @k2
@t

= f2k1k2 +
@f3
@s

k1 � f4k1k3 +� 2k3;

where

 1 =

�
@N

@t
;B1

�
;  2 =

�
@N

@t
;B2

�
;  3 =

�
B2;

@B1
@t

�
:
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Proof. Similarly, we have

@

@s

@B1
@t

=
@

@s

��
f2k2 +

@f3
@s

� f4k3
�
T�  1N+ 3B2

�
From Frenet formulas, we have

@

@s

@B1
@t

=

�
@

@s
(f2k2) +

@2f3
@s2

+
@

@s
(f4k3)� 1k1

�
T

+

�
f2k1k2 + k1

@f3
@s

� f4k1k3 �
@ 1
@s

�
N(3.16)

+ (� 3k3 �  1k2)B1 +
@ 3
@s
B2:

Also,

@

@t

@B1
@s

=
@

@t
(�k2N+k3B2)

=

�
�@k2
@t

+ f1k1k2 +
@f2
@s

� f3k22 �
�
f3k

2
3 +

@f4
@s

k3

��
T(3.17)

� 2k3N+ (� 1k2� 3k3)B1 +
�
 2k2 +

@k3
@t

�
B2:

Hence from (3.16) and (3.17)

�@k2
@t

+
@f2
@s

+
@2f3
@s2

� @f4
@s

k3 = �f1k1k2 + f3k22 + f3k23 �
@

@s
(f2k2)�

@

@s
(f4k3)� 1k1:

Similarly, we have

@

@s

@B2
@t

=
@

@s

��
f3k3 +

@f4
@s

�
T� 2N� 3B1

�
;

which implies that

@

@s

@B2
@t

=

�
@

@s
(f3k3) +

@2f4
@s2

�  2k1
�
T+

�
f3k1k3 +

@f4
@s

k1 +  3k2 �
@ 2
@s

�
N

+ (� 2k2 �
@ 3
@s
)B1� 3k3B2:(3.18)

Also,

@

@t

@B2
@s

= � @

@t
(k3B1)

= �@k3
@t
B1 � k3

��
f2k2 +

@f3
@s

� f4k3
�
T�  1N+ 3B2

�
:

Combining this with (3.18) gives

@k3
@t

=  2k2 +
@ 3
@s

:

Similarly, we have

@

@s

@N

@t
=

@

@s

��
f1k1 +

@f2
@s

� f3k2
�
T+  1B1 +  2B2

�
;
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which implies that

@

@s

@N

@t
=

�
@

@s
(f1k1) +

@2f2
@s2

� @

@s
(f3k2)

�
T� ( 1k2)N

+

�
@ 1
@s

�  2k3
�
B1 +

�
@ 2
@s

+  1k3

�
B2:

Also,
@

@t

@N

@s
=

@

@t
(k1T+ k2B1)

=

�
@k1
@t

+ f2k
2
2 +

@f3
@s

k2 � f4k2k3
�
T+

�
f1k

2
1 +

@f2
@s

k1 � f3k1k2� 1k2
�
N

+

�
f2k1k2 +

@f3
@s

k1 � f4k1k3 +
@k2
@t

�
B1 + ( 3k2)B2:(3.19)

Combining this with (3.18) gives

@ 1
@s

� @k2
@t

= f2k1k2 +
@f3
@s

k1 � f4k1k3 +� 2k3:

In the light of Theorem 3.6, we express the following corollaries without proofs:

Corollary 3.7.
@ 2
@s

+  1 = f3k1k3 +
@f4
@s

k1 +  3k2;

where

 1 =

�
@N

@t
;B1

�
;  2 =

�
@N

@t
;B2

�
;  3 =

�
B2;

@B1
@t

�
:

Corollary 3.8.

� @

@s
(f3k3)�

@2f4
@s2

�  2k1 = f2k2k3 +
@f3
@s

k3 � f4k23;

where

 1 =

�
@N

@t
;B1

�
;  2 =

�
@N

@t
;B2

�
;  3 =

�
B2;

@B1
@t

�
:
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