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Abstract

In this paper, a new approach based on embedding method for finding an
approximate solution for a wide range of nonlinear optimal control problems
with delays in state and control variables subject to mixed-control state con-
straints is introduced. First, the problem is transformed to a new optimal
measure problem which is an infinite dimensional linear programming prob-
lem and then this new problem is approximated by a finite dimensional one.
The approximate values of the optimal control, optimal state and optimal
objective function are obtained by solving the corresponding finite dimen-
sional linear programming problem. The effectiveness and applicability of
the proposed idea is illustrated by several numerical examples.
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1 Introduction

The dynamics of many control systems may be expressed by time-delay differen-
tial equations. Delays often occur in the transmission of material or information
between different parts of the systems. Communication systems, power systems,
transmission systems, chemical processing systems and economics systems are ex-
amples of time delay systems. Time-delay systems are also used to model several
different mechanisms in the dynamics of epidemics. In recent decades, optimal
control problems with delays and obtaining their approximate solutions are very
important issues in control theory and have attracted much attention of many
researchers and investigators. Let us briefly review some papers concerning dif-
ferent classes of control problems.
Karatishvili [12] was first to provide a maximum principle for optimal control
problems with a constant state delay. In [13], he gave similar results for con-
trol problems with pure control delays. Bader [1] used collocation methods to
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solve the boundary value problem for the retarded state variable and advanced
adjoint variable. Dadebo and Luus [5] used the differential dynamic programming
method with a moderate number of stages. Chen et al. [4] used an iterative dy-
namic programming method for solving time-delayed optimal control problems.
Optimal control problems with constant delays in state and control variables and
mixed control-state inequality constraints (based on the use of Pontryagin-type
minimum(maximum) principle) were considered by Göllmann et al. [9].
Our aim is to propose a measure theoretical approach to solve optimal control
problems which are governed by a nonlinear time delay system with mixed control-
state constraints. This method which is on the basis of embedding process is an
extension of the work by Rubio [15] to a class of nonlinear time delay systems.
During last two decades, many methods based on Rubio’s work have been pro-
posed for designing optimal solution for various systems by Kamyad et al. [10,
11], Farahi et al. [8] and Effati et al. [6, 7].
This paper is organized as follows. Section 2 introduces the formulation of the
retarded optimal control problem (ROCP). The variational form of the problem
(ROCP) will be shown in Section 3. In Section 4 the new form of the problem
is transmitted to measure space and in Section 5 the problem in measure space
which is an infinite dimensional linear programming problem is approximated by
a finite dimensional one. Computing the admissible pair is done in Section 6. In
Section 7, three numerical examples are presented, demonstrating the proposed
method’s simplicity in solving time-delayed optimal control problems. Conclu-
sions are finally made in Section 8.

2 System Description

Consider the following retarded optimal control problem (ROCP) with mixed
control-state inequality constraints:

Minimize J(x(.), u(.)) = g(x(tf )) +
∫ tf

t0
L(t, x(t), x(t− r), u(t), u(t− s))dt (1)

subject to

ẋ(t) = f(t, x(t), x(t− r), u(t), u(t− s)), a.e. t ∈ [t0, tf ],
x(t) = φ(t), t ∈ [t0 − r, t0]
u(t) = θ(t), t ∈ [t0 − s, t0]
H(t, x(t), u(t)) ≤ 0, t ∈ [t0, tf ] (2)

such that the following conditions hold:

1. The set I = [t0, tf ] is a time interval, ∆t = tf − t0 is a rational number and
< is the set of all real numbers.

2. The set A is a closed and bounded subset in <n, x(.) : I −→ A ⊆ <n is the
state function of the system which is absolutely continuous on I. Also it is
assumed that

x(t) = [x1(t) x2(t) . . . xn(t)]T ,

104



Optimal control of constrained time delay systems

xj(t) ∈ [β1j , β2j ], j = 1, 2, . . . , n,

where β1j and β2j are appropriate known real numbers.

3. The set U is a closed and bounded subset in <m, u(.) : I −→ U ⊆ <m is the
control function of the system which is piecewise continuous and Lebesgue-
measurable on I. Also it is assumed that

u(t) = [u1(t) u2(t) . . . um(t)]T ,

ui(t) ∈ [α1i , α2i ], i = 1, 2, . . . ,m,

where α1i and α2i are appropriate known real numbers.

4. The boundary conditions x(t0) = x0 ∈ A ⊆ <n and x(tf ) = xf ∈ A ⊆ <n
which are the initial and final states, respectively, are satisfied where x(tf )
may be known or unknown.

5. The pair p = (x(.), u(.)) satisfies the system (2) almost everywhere on I0,
the interior set of I.

6. The numbers r and s are constant, known, positive and rational, φ(t) =
[φ1(t) φ2(t) . . . φn(t)]T and θ(t) = [θ1(t) θ2(t) . . . θm(t)]T are known piece-
wise continuous vector functions.

7. The function g : <n −→ < is assumed to be continuously differentiable and
known.

8. The function L : I × <n × <n × <m × <m −→ < is nonlinear, piecewise
continuous, measurable and known.

9. The vector functions f : I ×<n ×<n ×<m ×<m −→ <n and H : I ×<n ×
<m −→ <q are nonlinear and piecewise continuous.

Definition 2.1 A pair p = (x(.), u(.)) is called an admissible pair for the prob-
lem (ROCP), if the state x(.) and the control u(.) satisfy conditions 2-5.

We assume that the set of all admissible pairs is nonempty and denote it by W .

3 The Variational Formulation

Let

Ω = I ×
j=n∏
j=1

[β1j , β2j ]×
i=m∏
i=1

[α1i , α2i ] = I × A× U.

Select the auxiliary function

η(t) = [η1(t) η2(t) . . . ηn(t)]T ,
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where
ηj(t) ∈ C1[t0, tf ], j = 1, 2, . . . , n,

are arbitrary nonzero continuously differentiable functions.
Multiplying of the left and right sides of the differential equation (2) in ηT (t) and
adding η̇T (t)x(t) to the both sides of (2) and integrating of the both sides over
the time interval I = [t0, tf ] yields∫ tf

t0
ηT (t)f(t, x(t), x(t− r), u(t), u(t− s))dt+

∫ tf

t0
η̇T (t)x(t)dt = ∆η, (3)

where
∆η = ηT (tf )x(tf )− ηT (t0)x(t0).

Let I0 = (t0, tf ) and D(I0) be the space of all infinitely differentiable functions
with compact support in I0 = (t0, tf ). Select η(t) = ψ(t), where ψ ∈ D(I0) then
ψ has zero value at the initial point t0 and also at the terminal point tf , i. e.
ψ(t0) = ψ(tf ) = 0. So we have∫ tf

t0
ψT (t)f(t, x(t), x(t− r), u(t), u(t− s))dt+

∫ tf

t0
ψ̇T (t)x(t)dt = ∆ψ = 0. (4)

Also by choosing the functions which are dependent only on time, we have∫ tf

t0
β(t, x(t), u(t))dt = aβ, β ∈ C1(Ω), (5)

where C1(Ω) is the space of all functions in C(Ω) that depend only on time and
aβ is the integral of β on I.
We need to convert g(x(tf )) in (1) to an integral form. So by differentiation of
the function g we have

dg(x(t))

dt
= ∇g(x(t))ẋ(t), (6)

where

∇g(x(t)) = (
∂g(x(t))

∂x1

,
∂g(x(t))

∂x2

, . . . ,
∂g(x(t))

∂xn
),

dx

dt
≡ ẋ(t) = (ẋ1(t), ẋ2(t), . . . , ẋn(t)).

By integrating of (6) over the interval I = [t0, tf ], we have

g(x(tf ))− g(x(t0)) =
∫ tf

t0

dg(x(t))

dt
=

∫ tf

t0
∇g(x(t))ẋ(t)dt,

or

g(x(tf )) = g(x(t0)) +
∫ tf

t0
∇g(x(t))ẋ(t)dt, (7)

where g(x(t0)) is constant.
Furthermore we need to convert the inequality constraints H(t, x(t), u(t)) in (2)
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to an integral form. One can show that the inequality constraints in (2) are
equivalent to the following equalities (see [3]):∫ tf

t0
(Hi(t, x(t), u(t)) + |Hi(t, x(t), u(t))|)dt = 0, i = 1, 2, . . . , q, (8)

where Hi is the ith component of H. Now the problem (ROCP) is transformed
to the following form:

Minimize J(x(.), u(.)) =
∫ tf

t0
{∇g(x(t))f(t, x(t), x(t− r), u(t), u(t− s))

+L(t, x(t), x(t− r), u(t), u(t− s))}dt+ g(x(t0))

subject to∫ tf

t0
ηT (t)f(t, x(t), x(t− r), u(t), u(t− s))dt+

∫ tf

t0
η̇T (t)x(t)dt = ∆η, η ∈ C1(I)∫ tf

t0
ψT (t)f(t, x(t), x(t− r), u(t), u(t− s))dt+

∫ tf

t0
ψ̇T (t)x(t)dt = 0, ψ ∈ D(I0)∫ tf

t0
β(t, x(t), u(t))dt = aβ, β ∈ C1(Ω),∫ tf

t0
(Hi(t, x(t), u(t)) + |Hi(t, x(t), u(t))|)dt = 0, i = 1, 2, . . . , q. (9)

Now for each pair p = (x(.), u(.)) ∈ W , we define the mapping

Λp : F ∈ C(Ω) −→
∫ tf

t0
F (t, x(t), u(t))dt, (10)

where C(Ω) indicates the space of all continuous functions on Ω. The functional
Λp is well-defined, linear, nonnegative and continuous (for more details see [15]).
Now the problem (9) is as the following

Minimize J(p) = Λp(f0) + g(x(t0))

subject to

Λp(fη + xη̇) = ∆η, η ∈ C1(I)
Λp(fψ + xψ̇) = 0, ψ ∈ D(I0)
Λp(β) = aβ, β ∈ C1(Ω)
Λp(Hi + |Hi|) = 0, i = 1, 2, . . . , q, (11)

where

f0 = ∇g(x(t))f(t, x(t), x(t− r), u(t), u(t− s)) + L(t, x(t), x(t− r), u(t), u(t− s)),
fη = ηT (t)f(t, x(t), x(t− r), u(t), u(t− s)),
xη̇ = η̇T (t)x(t).

The optimization problem (11) is an infinite dimensional linear programming
problem. The problem (ROCP) is now to find an appropriate ΛP on the set
C(Ω) such that satisfies the constraints (11) and minimizes Λp(f0). The con-
tinuous mapping Λp is called a Radon measure. The problem (11) is called the
variational form of the problem (ROCP).
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4 Optimization in Measure Space

By the Riesz’s representation theorem, every Radon measure Λp can be corre-
sponding to a regular, finite and unique Borel measure. So there exists a Borel
measure µ on Ω such that

Λp(F ) =
∫

Ω
F (t, x, u)dµ = µ(F ), F ∈ C(Ω). (12)

For more details (12) see [15].
Suppose that M+(Ω) denotes the space of all positive Borel measures on Ω. Con-
sider the following functional

J : M+(Ω) −→ <,

J(µ) =
∫

Ω
f0(t, x, u)dµ+ g(x(t0)) = µ(f0) + g(x(t0)).

Now the problem (11) is equivalent to the following problem

Minimize J(µ) =
∫

Ω
f0(t, x, u)dµ+ g(x(t0)) = µ(f0) + g(x(t0))

subject to

µ(fη + xη̇) = ∆η, η ∈ C1(I)
µ(fψ + xψ̇) = 0, ψ ∈ D(I0)
µ(β) = aβ, β ∈ C1(Ω)
µ(Hi + |Hi|) = 0, i = 1, 2, . . . , q. (13)

Assume that Q ⊂ M+(Ω) is the set of all positive Borel measures which satisfy
infinite constraints (13). Now if we equip the space M+(Ω) with weak*-topology
then it can be proved that Q is compact and the functional J : Q −→ < is
continuous. Also the space M+(Ω) with weak*-topology is a Hausdorff space.
These conditions guarantee that there exists an optimal measure µ∗ in the set Q
in which µ∗(f0) ≤ µ(f0), for any µ ∈ Q (for more details and proofs see [15]).

5 Approximation

It is obvious that the problem (13) is an infinite dimensional linear programming
problem in the measure space in which all the functions in (13) are linear in the
variable µ. Now the linear programming problem (13) can be solved with different
approaches. One of these approaches is the use of approximation. This work is
done in two phases:

5.1 The First Approximation

Assume that the linear combinations of functions {ηi : i ∈ N}, {ψj : j ∈ N} and
{βs : s ∈ N} are uniformly dense in C1(I), D(I0) and C1(Ω) respectively, where
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N denotes the set of all natural numbers. So for the approximation of the infinite
constraints (13) to the finite ones we shall consider only a finite number of these
functions. Now for the first set of the constraints (13) we choose the functions
{ηi : i = 1, 2, . . . ,M1} as the following

ηi(t) = ti−1, t ∈ I, i = 1, 2, . . . ,M1.

For the second set of the constraints (13) we choose the functions {ψj : j =
1, 2, . . . ,M2} as the following

ψj(t) = sin
2πj(t− t0)

tf − t0
, t ∈ I, j = 1, 2, . . . ,M2,

or

ψj(t) = 1− cos
2πj(t− t0)

tf − t0
, t ∈ I, j = 1, 2, . . . ,M2.

Also for the third set of the constraints (13) we choose {βs : s = 1, 2, . . . , L} as
the following

βs(t) =

{
1,

0,

t ∈ Is
t /∈ Is

where

Is = [t0 +
(s− 1)(tf − t0)

L
, t0 +

s(tf − t0)

L
], s = 1, 2, . . . , L,

are the subintervals of I = [t0, tf ] (for more details see [15]).

5.2 The Second Approximation

Applying the second approximation, we get a finite dimensional linear program-
ming problem which its solution is an approximate solution for the problem
(ROCP). By Proposition III. 2 of [15] we obtain an approximation to the op-
timal measure µ∗ by a finite combination of atomic measures as the following
form

µ∗ =
M1+M2+L∑

k=1

α∗
kδ(z

∗
k), (14)

where z∗k ∈ Ω, the coefficients α∗
k ≥ 0, (k = 1, 2, . . . ,M1 +M2 + L) and δ(.) is the

unitary atomic measure which is defined as δ(z)(F ) = F (z) for each F ∈ C(Ω), z ∈
Ω. Using (14) one can conclude that the optimization problem (13) is equivalent
to a nonlinear optimization problem in which the unknown parameters are z∗k, α

∗
k,

(k = 1, 2, . . . ,M1 + M2 + L). We need to transform this nonlinear programming
problem to a linear form. For this reason we use a linear approximation. If ω is a
dense subset of Ω, N >> M1 + M2 + L and zk ∈ ω, (k = 1, 2, . . . , N) are known
then the corresponding nonlinear optimization problem can be approximated by
the following statement (see [15]):

Minimize
N∑
k=1

αkf0(zk) + g(x(t0))
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subject to

N∑
k=1

αk(fηi + xη̇i)(zk) = ∆ηi, i = 1, 2, . . . ,M1

N∑
k=1

αk(fψj
+ xψ̇j

)(zk) = 0, j = 1, 2, . . . ,M2

N∑
k=1

αk(βs)(zk) = aβs , s = 1, 2, . . . , L

N∑
k=1

αk(Hi + |Hi|)(zk) = 0, i = 1, 2, . . . , q.

αk ≥ 0, k = 1, 2, . . . , N, (15)

where

f0(zk) = ∇g(xk)f(tk, xk, x(tk − r), uk, u(tk − s))
+L(tk, xk, x(tk − r), uk, u(tk − s)),
fηi(zk) = ηTi (tk)f(tk, xk, x(tk − r), uk, u(tk − s)),
xη̇i(zk) = η̇i

T (tk)xk,

and zk = (tk, xk, uk) ∈ ω, (k = 1, 2, . . . , N) are constructed by dividing the sets
I, A, U into the number of equal subsets and aβs is the integral of βs on I.
Note that the states and controls which have delays are still unknown. So we have
the following Lemma.

Lemma 5.1 Let L = DI and n = Dx × Du where DI , Dx and Du are the
number of divisions of I, A and U respectively. For (p = 1, 2, . . . , L) select
t(p−1)n+1 = t(p−1)n+2 = . . . = tpn, then the problem (15) is converted to the fol-
lowing linear programming problem in which L is selected such that Lr

∆t
and Ls

∆t
be

natural numbers.

Minimize
n−1∑
i=0

L∑
p=1

αnp−if0(znp−i) + g(x(t0))

subject to

n−1∑
i=0

L∑
p=1

αnp−i(fηi + xη̇i)(znp−i) = ∆ηi, i = 1, 2, . . . ,M1

n−1∑
i=0

L∑
p=1

αnp−i(fψj
+ xψ̇j

)(znp−i) = 0, j = 1, 2, . . . ,M2

n−1∑
i=0

L∑
p=1

αnp−i(βs)(znp−i) = aβs , s = 1, 2, . . . , L

n−1∑
i=0

L∑
p=1

αnp−i(Hi + |Hi|)(znp−i) = 0, i = 1, 2, . . . , q.

αnp−i ≥ 0, p = 1, 2, . . . , L, i = 0, 1, . . . , n− 1, (16)
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where

f0(znp−i) = ∇g(xnp−i)f(tnp−i, xnp−i, xnp−i−nLr
∆t
, unp−i, unp−i−nLs

∆t
)

+L(tnp−i, xnp−i, xnp−i−nLr
∆t
, unp−i, unp−i−nLs

∆t
),

fηi(znp−i) = ηTi (tnp−i)f(tnp−i, xnp−i, xnp−i−nLr
∆t
, unp−i, unp−i−nLs

∆t
),

xη̇i(znp−i) = η̇i
T (tnp−i)xnp−i,

and

xnp−i−nLr
∆t

= φ(tnp−i − r), p = 1, 2, . . . ,
Lr

∆t
, i = 0, 1, . . . , n− 1,

unp−i−nLs
∆t

= θ(tnp−i − s), p = 1, 2, . . . ,
Ls

∆t
, i = 0, 1, . . . , n− 1.

Proof. See [2].

6 Computing the Admissible Pair

Solving the problem (16) the optimal coefficients α∗
k, (k = 1, 2, . . . , N) are at-

tained. We obtain the piecewise continuous control function from analysis Rubio
(see [15]) and finally from the differential equation (2), using the 4-step Runge
Kutta method, the state function x(.) is obtained.

7 Numerical Examples

Here, we use our approach to obtain approximate optimal solutions of the fol-
lowing three nonlinear time-delayed optimal control problems by solving linear
programming (LP) problem (16), via simplex method [14]. All the problems are
programmed in MATLAB 9.0 and run on a PC with Processor 2.40 GHz and 4
GB RAM.

Example 7.1 (Optimal control of a constrained problem). We consider the
following optimal control problem with the delay r = 1 in the state and s = 2 in
the control

Minimize
∫ 6

0
(x2(t) + u2(t))dt

subject to

ẋ(t) = x(t− 1)u(t− 2), t ∈ [0, 6]
x(t) = 1, t ∈ [−1, 0], x(6) = 0.21
u(t) = 0, t ∈ [−2, 0]

we impose the mixed control-state constraint:

u(t) + x(t) ≥ 0.3, t ∈ [0, 6].
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Figure 1: The almost optimal control action and the behaviour of the system state
of Example 7.1 using the proposed method.

Let the sets I = [0, 6], A = [0.2, 1] and U = [−0.8, 0.2] are divided into 24,
8 and 10 subintervals, respectively. So Ω = I × A × U is divided into N =
1920 subintervals. Now if M1 = 2, ηi(t) = ti−1 for i = 1, 2, M2 = 22, ψj(t) =

sin 2πj(t)
6

for j = 1, 2, . . . , 22 and L = 24, then by solving a linear programming
problem corresponding to (16), the optimal control and the state function are
obtained. The minimum value of the cost functional using the proposed method
is J∗ = 3.0969 with a CPU time of 7.694775 seconds while the minimum value
of the cost functional using the Euler discretization method described in [9] is
J∗ = 3.108259352 with a CPU time of 65.8 seconds. The graphs of the piecewise
continuous control function and the state function are shown in Figure 1.

Example 7.2 (Optimal control of a renewable resource). We discuss the opti-
mal control of a logistic growth process. A well-known example is optimal fishing,
where the fact that overfishing reduces the profit for the fishing industry in the
long run indicates the importance of developing of a long-time fishing strategy.
Let x(t) denote the biomass population and u(t) the harvesting effort. In the fol-
lowing control model with fixed final time tf > 0, only the state variable x(t) has
a delay r ≥ 0:

Maximize
∫ tf

0
e−dt(pu(t)− cEx(t)−1u(t)3)dt

subject to

ẋ(t) = ax(t)(1− x(t− r)
b

)− u(t)

x(t) ≡ x0, t ∈ [−r, 0]
x(t) ≥ x0, t ∈ [0, tf ]
u(t) ≥ 0, t ∈ [0, tf ].

The data are chosen as follows: market price p = 2, discount rate d = 0.05,
harvesting cost cE = 0.2, growth rates a = 3 and b = 5, initial value x0 = 2, final
time tf = 20 and time delay r = 0.5.
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Figure 2: The almost optimal control action and the behaviour of the system state
of Example 7.2 using the proposed method.

Let the sets I = [0, 20], A = [2, 4] and U = [0, 4] are divided into 40, 10 and 10
subintervals, respectively. So Ω = I×A×U is divided into N = 4000 subintervals.
Now if M1 = 2, ηi(t) = ti−1 for i = 1, 2, M2 = 5, ψj(t) = sin 2πj(t)

20
for j = 1, 2, . . . , 5

and L = 40, then by solving a linear programming problem corresponding to (16),
the optimal control and the state function are obtained. The minimum value of
the cost functional using the proposed method is J∗ = 57.2245 with a CPU time
of 32.166890 seconds while the minimum value of the cost functional using the
discretization method described in [9] is J∗ = 56.876896 with a CPU time of
2688.78 seconds. The graphs of the piecewise continuous control function and the
continuous state function are shown in Figure 2.

Example 7.3 (Harmonic oscillator with retarded damping). Consider the fol-
lowing time delayed system:

ẋ1(t) = x2(t)
ẋ2(t) = −x1(t)− x2(t− 1) + u(t)

with initial conditions

x1(0) = 10,
x2(t) = 0, −1 ≤ t ≤ 0.

The control action is bounded by

0 ≤ u ≤ 6.

The performance index to be minimized is given by

J = 5x2
1(tf ) +

1

2

∫ tf

0
u2(t)dt

where tf = 2. In addition, the path of x2(t) is confined by

x2(t) ≥ −6.
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Figure 3: The almost optimal control action and the behaviours of the system
states of Example 7.3 using the proposed method.

Let the sets I = [0, 2], A1 = [0.6, 10], A2 = [−6, 0] and U = [0, 6] are divided
into 20, 10, 3 and 2 subintervals, respectively. So Ω = I × A1 × A2 × U is
divided into N = 1200 subintervals. Now if M1 = 3, ηi(t) = ti−1 for i = 1, 2, 3,

M2 = 3, ψj(t) = sin 2πj(t)
2

for j = 1, 2, 3 and L = 20, then by solving a linear
programming problem corresponding to (16), the optimal control and the state
functions are obtained. The minimum value of the cost functional using the
proposed method is J∗ = 9.1470 with a CPU time of 5.894848 seconds while the
minimum value of the cost functional using the iterative dynamic programming
method described in [4] is J∗ = 9.043998. The graphs of the piecewise continuous
control function and the continuous state functions are shown in Figure 3.

8 Conclusions

In this paper, a numerical method based on embedding approach for solving a
class of retarded optimal control problems with mixed control-state constraints
has successfully been used. The presented approach in this paper is based on
some principles of measure theory, functional analysis and linear programming.
Our proposed method has some benefits. For example, this method is not iterative
and it is self-starting. Furthermore in this approach, the nonlinearity of the
constraints and objective functional has not serious effects on the solution. Also
this approach yields extremely significantly superior results in comparison with
the existing methods. Several issues for optimal control of constrained time delay
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systems, which could not adequately be addressed in this paper, require further
work. For example, optimal control for systems with multiple time lags, time-
delayed optimal control problems with time-varying delays, optimal control design
for discrete-time nonlinear time-delay systems, time optimal control problems for
time delay systems, infinite horizon time delay optimal control problems and other
related issues should be studied in more details.These issues are subject to current
researches.
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[9] L. Göllmann, D. Kern and H. Maurer, Optimal control problems with de-
lays in state and control variables subject to mixed control-state constraints,
Optimal Control Applications and Methods, 2008.

[10] A. V. Kamyad, J. E. Rubio and D. A. Wilson, The optimal control of the
multidimensional diffusion equation, JOTA, 70 (1991), 191-209.

[11] A. V. Kamyad, M. Keyanpour and M. H. Farahi, A new approach for solving
of optimal nonlinear control problems, Applied Mathematics and Computa-
tion, 187 (2007), 1461-1471.

115



Sara Barati

[12] GL. Kharatishvili, Maximum principle in the theory of optimal time-delay
processes, Doklady Akademii Nauk, USSR, 136 (1961), 39-42.

[13] GL. Kharatishvili, A Maximum Principle in External Problems with Delays,
Mathematical Theory on Control, Academic Press: New York, 1967.

[14] D. Luenberger, Linear and Nonlinear Programming, Kluwer Academic Pub-
lishers, Norwell, Addison-Wesley, 1984.

[15] J. E. Rubio, Control and Optimization: The Linear Treatment of Nonlinear
Problems, Manchester, U. K. , Manchester University Press, 1986.

116


