# STRONGLY LACUNARY SUMMABLE DOUBLE SEQUENCE SPACES IN $n$-NORMED SPACES DEFINED BY IDEAL CONVERGENCE AND AN ORLICZ FUNCTION 

AYHAN ESI


#### Abstract

In this paper we introduce some certain new double sequence spaces via ideal convergence, double lacunary sequence and an Orlicz function in n-normed spaces and examine some properties of the resulting these spaces.


## 1. INTRODUCTION

Let $X$ be a non-empty set, then a family of sets $I \subset 2^{X}$ (the class of all subsets of $X$ ) is called an ideal if and only if for each $A, B \in I$, we have $A \cup B \in I$ and for each $A \in I$ and each $B \subset A$, we have $B \in I$. A non-empty family of sets $F \subset 2^{X}$ is a filter on $X$ if and only if $\varnothing \notin F$, for each $A, B \in F$, we have $A \cap B \in F$ and each $A \in F$ and each $A \subset B$, we have $B \in F$. An ideal $I$ is called non-trivial ideal if $I \neq \varnothing$ and $X \notin I$. Clearly $I \subset 2^{X}$ is a non-trivial ideal if and only if $\mathcal{F}=\mathcal{F}(I)=\{X / A: A \in I\}$ is a filter on $X$. A non-trivial ideal $I \subset 2^{X}$ is called admissible if and only if $\{\{x\} . x \in X\} \subset I$. Further details on ideals of $2^{X}$ can be found in Kostyrko, et.al [3]. The notion was further investigated by Salat, et.al [4] and others.

By the convergence of a double sequence we mean the convergence on the Pringsheim sense that is, a double sequence $x=\left(x_{k, l}\right)$ has Pringsheim limit $L$ (denoted by $P-\lim x=L$ ) provided that given $\varepsilon>0$ there exists $n \in \mathbb{N}$ such that $\left|x_{k, l}-L\right|<\varepsilon$ whenever $k, l>n,[1]$. We shall write more briefly as " $P$-convergent".

The double sequence $x=\left(x_{k, l}\right)$ is bounded if there exists a positive number $M$ such that $\left|x_{k, l}\right|<M$ for all $k$ and $l$. Let $l_{\infty}^{2}$ the space of all bounded double such that

$$
\left\|x_{k, l}\right\|_{(\infty, 2)}=\sup _{k, l}\left|x_{k, l}\right|<\infty .
$$

The double sequence $\theta_{r, s}=\left\{\left(k_{r}, l_{s}\right)\right\}$ is called double lacunary sequence [5] if there exist two increasing of integers such that
$k_{o}=0, h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$ and $l_{o}=0, \bar{h}_{s}=l_{s}-l_{s-1} \rightarrow \infty$ as $s \rightarrow \infty$.

[^0]Notations: $k_{r, s}=k_{r} l_{s}, h_{r, s}=h_{r} \bar{h}_{s}, \theta_{r, s}$ is determined by

$$
I_{r, s}=\left\{(k, l): k_{r-1}<k \leq k_{r} \text { and } l_{s-1}<l \leq l_{s}\right\}, q_{r}=\frac{k_{r}}{k_{r-1}}, \bar{q}_{s}=\frac{l_{s}}{l_{s-1}} \text { and } q_{r, s}=q_{r} \bar{q}_{s} .
$$

Recall in [6] that an Orlicz function $M$ is continuous, convex, nondecreasing function define for $x>0$ such that $M(0)=0$ and $M(x)>0$. If convexity of Orlicz function is replaced by $M(x+y) \leq M(x)+M(y)$ then this function is called the modulus function and characterized by Ruckle [7]. An Orlicz function $M$ is said to satisfy $\Delta_{2}$-condition for all values $u$, if there exists $K>0$ such that $M(2 u) \leq K M(u), u \geq 0$.

Lemma 1. Let $M$ be an Orlicz function which satisfies $\Delta_{2}$-condition and let $0<\delta<1$. Then for each $t \geq \delta$, we have $M(t)<K t \delta^{-1} M(2)$ for some constant $K>0$.

A double sequence space $X$ is said to be solid or normal if $\left(\alpha_{k, l} x_{k, l}\right) \in X$, and for all double sequences $\alpha=\left(\alpha_{k, l}\right)$ of scalars with $\left|\alpha_{k, l}\right| \leq 1$ for all $k, l \in \mathbb{N}$.

Let $n \in \mathbb{N}$ and $X$ be a real vector space of dimension $d$, where $n \leq d$. A real-valued function $\|., \ldots,$.$\| on X$ satisfying the following four conditions:
(i) $\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|=0$ if and only if $x_{1}, x_{2}, \ldots, x_{n}$ are linearly dependent,
(ii) $\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|$ is invariant under permutation,
(iii) $\left\|\alpha x_{1}, x_{2}, \ldots, x_{n}\right\|=|\alpha|\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|, \alpha \in \mathbb{R}$,
(iv) $\left\|x_{1}+x_{1}^{\imath}, x_{2}, \ldots, x_{n}\right\| \leq\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|+\left\|x_{1}^{\imath}, x_{2}, \ldots, x_{n}\right\|$
is called an $n$-norm on $X$, and the pair $(X,\|., \ldots,\|$.$) is called an n$-normed space [2].

A trivial example of $n$-normed space is $X=\mathbb{R}$ equipped with the following Euclidean $n$-norm:

$$
\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|_{E}=a b s\left(\left|\begin{array}{c}
x_{11} \ldots x_{1 n} \\
\ldots \\
x_{n 1} \ldots x_{n n}
\end{array}\right|\right)
$$

where $x_{i}=\left(x_{i 1}, \ldots, x_{i n}\right) \in \mathbb{R}^{n}$ for each $i=1,2, \ldots, n$.

## 2. MAIN RESULTS

Let $I_{2}$ be an ideal of $2^{\mathbb{N} \times \mathbb{N}}, \theta_{r, s}$ be a double lacunary sequence, $M$ be an Orlicz function, $p=\left(p_{k, l}\right)$ be a bounded double sequence of strictly positive real numbers and $(X,\|, \ldots,\|$.$) be an n-$ normed space. Further $w(n-X)$ denotes $X$-valued sequence space. Now, we define the following double sequence spaces:

$$
\begin{aligned}
& w_{\theta_{r, s}}^{I_{2}} {[M, p,\|., \ldots, \cdot\|]_{o}=\left\{x=\left(x_{k, l}\right) \in w(n-X): \forall \varepsilon>0\right.} \\
&\left\{(r, s) \in I_{r, s}: \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \geq \varepsilon\right\} \in I_{2} \\
&\left.\quad \text { for some } \rho>0 \text { and for every } z_{1}, z_{2}, \ldots, z_{n-1} \in X\right\},
\end{aligned}
$$

$$
\begin{aligned}
& w_{\theta_{r, s}}^{I_{2}}[M, p,\|\cdot, \ldots, \cdot\|]=\left\{x=\left(x_{k, l}\right) \in w(n-X): \forall \varepsilon>0,\right. \\
& \left\{(r, s) \in I_{r, s}: \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}-L}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \geq \varepsilon\right\} \in I_{2} \\
& \left.\quad \text { for some } \rho>0, L \in X \text { and for every } z_{1}, z_{2}, \ldots, z_{n-1} \in X\right\}, \\
& w_{\theta_{r, s}}^{I_{2}}[M, p,\|\cdot, \ldots, \cdot\|]_{\infty}=\left\{x=\left(x_{k, l}\right) \in w(n-X): \exists K>0,\right. \\
& \\
& \left\{(r, s) \in I_{r, s}: \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \geq K\right\} \in I_{2} \\
& \left.\quad \text { for some } \rho>0 \text { and for every } z_{1}, z_{2}, \ldots, z_{n-1} \in X\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
w_{\theta_{r, s}}[M, p,\|\cdot, \ldots, .\|]_{\infty}=\{x & =\left(x_{k, l}\right) \in w(n-X): \exists K>0 \\
& \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \leq K
\end{aligned}
$$

$$
\text { for some } \left.\rho>0 \text { and for every } z_{1}, z_{2}, \ldots, z_{n-1} \in X\right\}
$$

The following well-known inequality will be used in this study: If $0 \leq \inf _{k, l} p_{k, l}=H_{o} \leq p_{k, l} \leq \sup _{k, l}=H<\infty, D=\max \left(1,2^{H-1}\right)$, then

$$
\left|x_{k, l}-y_{k, l}\right|^{p_{k, l}} \leq D\left\{\left|x_{k, l}\right|^{p_{k, l}}+\left|y_{k, l}\right|^{p_{k, l}}\right\}
$$

for all $k, l \in \mathbb{N}$ and $x_{k, l}, y_{k, l} \in \mathbb{C}$. Also $\left|x_{k, l}\right|^{p_{k, l}} \leq \max \left(1,\left|x_{k, l}\right|^{H}\right)$ for all $x_{k, l} \in \mathbb{C}$.
Theorem 1. The sets $w_{\theta_{r, s}}^{I_{2}}[M, p,\|, .,\|]_{o}, w_{\theta_{r, s}}^{I_{2}}[M, p,\|, .\|$,$] and w_{\theta_{r, s}}^{I_{2}}[M, p,\|, .,\|]_{\infty}$ are linear spaces over the complex field $\mathbb{C}$.

Proof. We will prove only for $w_{\theta_{r, s}}^{I_{2}}[M, p,\|, .,\|]_{o}$ and the others can be proved similarly. Let $x, y \in w_{\theta_{r, s}}^{I_{2}}[M, p,\|, .,\|]_{o}$ and $\alpha, \beta \in \mathbb{C}$. Then

$$
\left\{(r, s) \in I_{r, s}: \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}}{\rho_{1}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \geq \frac{\varepsilon}{2}\right\} \in I_{2}, \text { for some } \rho_{1}>0
$$

and

$$
\left\{(r, s) \in I_{r, s}: \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{y_{k, l}}{\rho_{2}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \geq \frac{\varepsilon}{2}\right\} \in I_{2}, \text { for some } \rho_{2}>0
$$

Since $\|., \ldots,$.$\| is a n$-norm and $M$ is an Orlicz function, the following inequality holds:

$$
\begin{aligned}
& \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{\alpha x_{k, l}+\beta y_{k, l}}{|\alpha| \rho_{1}+|\beta| \rho_{2}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \\
\leq & \frac{D}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[\frac{|\alpha|}{|\alpha| \rho_{1}+|\beta| \rho_{2}} M\left(\left\|\frac{x_{k, l}}{\rho_{1}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \\
& +\frac{D}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[\frac{|\beta|}{|\alpha| \rho_{1}+|\beta| \rho_{2}} M\left(\left\|\frac{y_{k, l}}{\rho_{2}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \\
\leq & \frac{D}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}}{\rho_{1}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \\
& +\frac{D}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{y_{k, l}}{\rho_{2}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}}
\end{aligned}
$$

From the above inequality we get

$$
\begin{aligned}
& \left\{(r, s) \in I_{r, s}: \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{\alpha x_{k, l}+\beta y_{k, l}}{|\alpha| \rho_{1}+|\beta| \rho_{2}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \geq \varepsilon\right\} \\
& \quad \subset\left\{(r, s) \in I_{r, s}: \frac{D}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}}{\rho_{1}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \geq \frac{\varepsilon}{2}\right\} \\
& \quad \cup\left\{(r, s) \in I_{r, s}: \frac{D}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{y_{k, l}}{\rho_{2}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \geq \frac{\varepsilon}{2}\right\}
\end{aligned}
$$

Two sets on the right hand side belong to $I_{2}$ and this completes the proof.
It is also easy verify that the space $w_{\theta_{r, s}}[M, p,\|., \ldots, .\|]_{\infty}$ is also a linear space.

Theorem 2. For fixed $(n, m) \in \mathbb{N} \times \mathbb{N}, w_{\theta_{r, s}}[M, p,\|., \ldots, .\|]_{\infty}$ paranormed space with respect to the paranorm defined by
$h_{(n, m)}(x)=\inf \left\{\rho^{\frac{p_{n, m}}{H}}>0:\left(\sup _{r, s} \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}}\right)^{\frac{1}{H}} \leq 1\right.$,
for some $\rho>0$ and for every $\left.z_{1}, z_{2}, \ldots, z_{n-1} \in X\right\}$.
Proof. $h_{(n, m)}(\theta)=0$ and $h_{(n, m)}(-x)=h_{(n, m)}(x)$ are easy to prove, so we omit them. Let us take $x, y \in w_{\theta_{r, s}}[M, p,\|\cdot, \ldots, \cdot\|]_{\infty}$. Let
$A(x)=\left\{\rho>0: \sup _{r, s} \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \leq 1, \forall z \in X\right\}$
and

$$
A(y)=\left\{\rho>0: \sup _{r, s} \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{y_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \leq 1, \forall z \in X\right\}
$$

Let $\rho_{1} \in A(x)$ and $\rho_{2} \in A(y)$. If $\rho=\rho_{1}+\rho_{2}$, then we have

$$
\begin{aligned}
& \sup _{r, s} \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}+y_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right] \\
\leq & \frac{\rho_{1}}{\rho_{1}+\rho_{2}} \sup _{r, s} \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}}{\rho_{1}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right] \\
& +\frac{\rho_{2}}{\rho_{1}+\rho_{2}} \sup _{r, s} \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{y_{k, l}}{\rho_{1}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right] .
\end{aligned}
$$

Thus

$$
\sup _{r, s} \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}+y_{k, l}}{\rho_{1}+\rho_{2}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \leq 1
$$

and

$$
\begin{aligned}
h_{(n, m)}(x+y) & =\inf \left\{\left(\rho_{1}+\rho_{2}\right)^{\frac{p_{n, m}}{H}}: \rho_{1} \in A(x) \text { and } \rho_{2} \in A(y)\right\} \\
& \leq \inf \left\{\left(\rho_{1}\right)^{\frac{p_{n, m}}{H}}: \rho_{1} \in A(x)\right\}+\inf \left\{\left(\rho_{2}\right)^{\frac{p_{n, m}}{H}}: \rho_{2} \in A(y)\right\} \\
& =h_{(n, m)}(x)+h_{(n, m)}(y) .
\end{aligned}
$$

Now, let $\lambda_{k, l}^{u} \rightarrow \lambda$, where $\lambda_{k, l}^{u}, \lambda \in \mathbb{C}$ and $h_{(n, m)}\left(x_{k, l}^{u}-x_{k, l}\right) \rightarrow 0$ as $u \rightarrow \infty$. We have to show that $h_{(n, m)}\left(\lambda_{k, l}^{u} x_{k, l}^{u}-\lambda x_{k, l}\right) \rightarrow 0$ as $u \rightarrow \infty$. Let $\lambda_{k, l} \rightarrow \alpha$, where $\lambda_{k, l}, \lambda \in \mathbb{C}$ and $h_{(n, m)}\left(x_{k, l}^{u}-x_{k, l}\right) \rightarrow 0$ as $u \rightarrow \infty$. Let

$$
\begin{aligned}
A\left(x^{u}\right)= & \left\{\rho_{u}>0: \sup _{r, s} \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}^{u}}{\rho_{u}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \leq 1,\right. \\
& \left.\forall z_{1}, z_{2}, \ldots, z_{n-1} \in X\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
A\left(x^{u}-x\right)= & \left\{\rho_{u}^{\imath}>0: \sup _{r, s} \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}^{u}-x_{k, l}}{\rho_{u}^{\imath}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \leq 1,\right. \\
& \left.\forall z_{1}, z_{2}, \ldots, z_{n-1} \in X\right\}
\end{aligned}
$$

If $\rho_{u} \in A\left(x^{u}\right)$ and $\rho_{u}^{u} \in A\left(x^{u}-x\right)$ then we observe that

$$
\begin{aligned}
& M\left(\left\|\frac{\lambda_{k, l}^{u} x_{k, l}^{u}-\lambda x_{k, l}}{\rho_{u}\left|\lambda_{k, l}^{u}-\lambda\right|+\rho_{u}^{u}|\lambda|}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right) \\
\leq & M\left(\left\|\frac{\lambda_{k, l}^{u} x_{k, l}^{u}-\lambda x_{k, l}^{u}}{\rho_{u}\left|\lambda_{k, l}^{u}-\lambda\right|+\rho_{u}^{u}|\lambda|}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|+\left\|\frac{\lambda x_{k, l}^{u}-\lambda x_{k, l}}{\rho_{u}\left|\lambda_{k, l}^{u}-\lambda\right|+\rho_{u}^{u}|\lambda|}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right) \\
\leq & \frac{\rho_{u}\left|\lambda_{k, l}^{u}-\lambda\right|}{\rho_{u}\left|\lambda_{k, l}^{u}-\lambda\right|+\rho_{u}^{u}|\lambda|} M\left(\left\|\frac{x_{k, l}^{u}}{\rho_{u}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right) \\
& +\frac{\rho_{u}^{u}|\lambda|}{\rho_{u}\left|\lambda_{k, l}^{u}-\lambda\right|+\rho_{u}^{u}|\lambda|} M\left(\left\|\frac{x_{k, l}^{u}-x_{k, l}}{\rho_{u}^{u}}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)
\end{aligned}
$$

From this inequality, it follows that

$$
\left[M\left(\left\|\frac{\lambda_{k, l}^{u} x_{k, l}^{u}-\lambda x_{k, l}}{\rho_{u}\left|\lambda_{k, l}^{u}-\lambda\right|+\rho_{u}^{u}|\lambda|}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \leq 1
$$

and consequently

$$
\begin{aligned}
h_{(n, m)}\left(\lambda_{k, l}^{u} x_{k, l}^{u}-\lambda x_{k, l}\right)= & \inf \left\{\left(\rho_{u}\left|\lambda_{k, l}^{u}-\lambda\right|+\rho_{u}^{\imath}|\lambda|\right)^{\frac{p_{n, m}}{H}}: \rho_{u} \in A\left(x^{u}\right)\right. \\
& \text { and } \left.\rho_{u}^{\imath} \in A\left(x^{u}-x\right)\right\} \\
\leq & \left(\left|\lambda_{k, l}^{u}-\lambda\right|\right)^{\frac{p_{n, m}}{H}} \inf \left\{\left(\rho_{u}\right)^{\frac{p_{n, m}}{H}}: \rho_{u} \in A\left(x^{u}\right)\right\} \\
& +(|\lambda|)^{\frac{p_{n}, m}{H}} \inf \left\{\left(\rho_{u}^{\imath}\right)^{\frac{p_{n, m}}{H}}: \rho_{u}^{u} \in A\left(x^{u}-x\right)\right\} \\
\leq & \max \left\{|\lambda|,(|\lambda|)^{\frac{p_{n, m}}{H}}\right\} h_{(n, m)}\left(x_{k, l}^{u}-x_{k, l}\right) .
\end{aligned}
$$

Hence by our assumption the right hand side tends to zero as $u \rightarrow \infty$. This completes the proof.
Corollary 1. It can be noted that $h=\inf _{n, m \in \mathbb{N}} h_{(n, m)}$ also gives a paranorm on the above sequence spaces. However if one consider the sequence space $w_{\theta_{r, s}}[M, p,\|., \ldots, \cdot\|]_{\infty}$ which is larger space than the space $w_{\theta_{r, s}}^{I_{2}}[M, p,\|, \ldots, .\|]_{\infty}$ the construction of the paranorm is not clear and we leave it as an open problem. However it should be noted that for a fixed $F \in I_{2}$, the space

$$
\begin{array}{r}
w_{\theta_{r, s}}^{F}[M, p,\|\cdot, \ldots, .\|]_{\infty}=\left\{x=\left(x_{k, l}\right) \in w(n-X): \exists K>0, \quad\{(n, m) \in \mathbb{N} \times \mathbb{N}:\right. \\
\left.\sup _{(r, s) \in \mathbb{N} \times \mathbb{N} / F} \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \geq K\right\} \in I_{2},
\end{array}
$$

for some $\rho>0$ and for every $\left.z_{1}, z_{2}, \ldots, z_{n-1} \in X\right\}$
which is subspace of the space $w_{\theta_{r, s}}^{I_{2}}[M, p,\|., \ldots, .\|]_{\infty}$ is a paranormed space with the paranorms $h_{(n, m)}$ for $(n, m) \notin F$ and $h_{F}=\inf _{(n, m) \in \mathbb{N} \times \mathbb{N} / F} h_{(n, m)}$.

Theorem 3. Let $M, M_{1}$ and $M_{2}$ be Orlicz functions. Then we have
(i) $w_{\theta_{r, s}}^{I_{2}}\left[M_{1}, p,\|., \ldots, .\|\right]_{o} \subset w_{\theta_{r, s}}^{I_{2}}\left[M o M_{1}, p,\|., \ldots, .\|\right]_{o}$ provided that $p=\left(p_{k, l}\right)$ is such that $H_{o}>0$.
(ii) $w_{\theta_{r, s}}^{I_{2}}\left[M_{1}, p,\|\cdot, \ldots, .\|\right]_{o} \cap w_{\theta_{r, s}}^{I_{2}}\left[M_{2}, p,\|\cdot, \ldots, .\|\right]_{o} \subset w_{\theta_{r, s}}^{I_{2}}\left[M_{1}+M_{2}, p,\|., \ldots, .\|\right]_{o}$.

Proof. (i). For given $\varepsilon>0$, we first choose $\varepsilon_{o}>0$ such that $\max \left\{\varepsilon_{o}^{H}, \varepsilon_{o}^{H_{o}}\right\}<\varepsilon$. Now using the continuity of $M$, choose $0<\delta<1$ such that $0<t<\delta$ implies $M(t)<\varepsilon_{o}$. Let $x \in w_{\theta_{r, s}}^{I_{2}}\left[M_{1}, p,\|\cdot, \ldots, \cdot\|\right]_{o}$. Now from the definition of the space $w^{I_{2}}\left[M_{1}, p,\|\cdot, \ldots, \cdot\|\right]_{o}$, for some $\rho>0$
$A(\delta)=\left\{(r, s) \in I_{r, s}: \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M_{1}\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \geq \delta^{H}\right\} \in I_{2}$.
Thus if $(n, m) \notin A(\delta)$ then

$$
\begin{aligned}
& \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M_{1}\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}}<\delta^{H} \\
\Rightarrow & \sum_{(k, l) \in I_{r, s}}\left[M_{1}\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}}<h_{r, s} \delta^{H} \\
\Rightarrow & {\left[M_{1}\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}}<\delta^{H} \text { for all }(k, l) \in I_{r, s} } \\
\Rightarrow & M_{1}\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)<\delta \text { for all }(k, l) \in I_{r, s} .
\end{aligned}
$$

Hence from above inequality and using continuity of $M$, we must have

$$
M\left(M_{1}\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right)<\varepsilon_{o} \text { for all }(k, l) \in I_{r, s}
$$

which consequently implies that

$$
\begin{aligned}
& \sum_{(k, l) \in I_{r, s}}\left[M\left(M_{1}\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right)\right]^{p_{k, l}}<h_{r, s} \max \left\{\varepsilon_{o}^{H}, \varepsilon_{o}^{H_{o}}\right\}<h_{r, s} \varepsilon, \\
\Rightarrow & \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(M_{1}\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right)\right]^{p_{k, l}}<\varepsilon .
\end{aligned}
$$

This shows that
$\left\{(r, s) \in I_{r, s}: \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(M_{1}\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right)\right]^{p_{k, l}} \geq \varepsilon\right\} \subset A(\delta)$
and so belongs to $I_{2}$. This completes the proof.
(ii) Let $x \in w_{\theta_{r, s}}^{I_{2}}\left[M_{1}, p,\|\cdot, \ldots, .\|\right]_{o} \cap w_{\theta_{r, s}}^{I_{2}}\left[M_{2}, p,\|\cdot, \ldots, .\|\right]_{o}$. Then the fact that

$$
\begin{aligned}
& \frac{1}{h_{r, s}}\left[\left(M_{1}+M_{2}\right)\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \\
\leq & \frac{D}{h_{r, s}}\left[M_{1}\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}}+\frac{D}{n m}\left[M_{2}\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}}
\end{aligned}
$$

gives us the result.

Theorem 4. (i) If $0<H_{o} \leq p_{k, l}<1$, then $w_{\theta_{r, s}}^{I_{2}}[M, p,\|., \ldots, .\|]_{o} \subset w_{\theta_{r, s}}^{I_{2}}[M,\|, \ldots, .\|]_{o}$.
(ii) If $1 \leq p_{k, l} \leq H<\infty$, then $w_{\theta_{r, s}}^{I_{2}}[M,\|., \ldots, .\|]_{o} \subset w_{\theta_{r, s}}^{I_{2}}[M, p,\|., \ldots, .\|]_{o}$.
(iii) If $0<p_{k, l}<q_{k, l}<\infty$ and $\frac{q_{k, l}}{p_{k, l}}$ is bounded, then $w_{\theta_{r, s}}^{I_{2}}[M, p,\|., \ldots, .\|]_{o} \subset$ $w_{\theta_{r, s}}^{I_{2}}[M, q,\|\cdot, \ldots, \cdot\|]_{o}$.
Proof. The proof is standard, so we omit it.
Theorem 5. The sequence spaces $w_{\theta_{r, s}}^{I_{2}}[M, p,\|., \ldots, .\|]_{o}, w_{\theta_{r, s}}^{I_{2}}[M, p,\|., \ldots,\|$.$] ,$ $w_{\theta_{r, s}}^{I_{2}}[M, p,\|\cdot, \ldots, \cdot\|]_{\infty}$ and $w_{\theta_{r, s}}[M, p,\|\cdot, \ldots, \cdot\|]_{\infty}$ are solid.
Proof. We give the proof for only $w_{\theta_{r, s}}^{I_{2}}[M, p,\|., \ldots, .\|]_{o}$. The others can be proved similarly. Let $x \in w_{\theta_{r, s}}^{I_{2}}\left[M_{1}, p,\|., \ldots, .\|\right]_{o}$ and $\alpha=\left(\alpha_{k, l}\right)$ be a double sequence of scalars such that $\left|\alpha_{k, l}\right| \leq 1$ for all $k, l \in \mathbb{N}$. Then we have

$$
\begin{aligned}
& \left\{(r, s) \in I_{r, s}: \frac{1}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{\alpha_{k, l} x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \leq \varepsilon\right\} \\
\subset & \left\{(r, s) \in I_{r, s}: \frac{T}{h_{r, s}} \sum_{(k, l) \in I_{r, s}}\left[M\left(\left\|\frac{x_{k, l}}{\rho}, z_{1}, z_{2}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k, l}} \leq \varepsilon\right\} \in I_{2},
\end{aligned}
$$

where $T=\max _{k, l}\left\{1,\left|\alpha_{k, l}\right|^{H}\right\}$. Hence $\alpha x \in w_{\theta_{r, s}}^{I_{2}}\left[M_{1}, p,\|., \ldots, .\|\right]_{o}$ for all double sequences $\alpha=\left(\alpha_{k, l}\right)$ with $\left|\alpha_{k, l}\right| \leq 1$ for all $k, l \in \mathbb{N}$ whenever $x \in w_{\theta_{r, s}}^{I_{2}}\left[M_{1}, p,\|., \ldots, .\|\right]_{o}$.

## References

[1] A. Pringsheim, Zur Theori der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289-321.
[2] H. Gunawan, On n-inner product, n-norms and the Cauchy-Schwarz Inequality, Scientiae Mathematicae Japonicae Online, 5(2001), 47-54.
[3] P. Kostyrko, T.Salat and W. Wilczynski, I-convergence, Real Analysis Exchange, 26(2)(2000/2001), 669-686.
[4] T. Salat, B. C. Tripathy and M. Ziman, On I-convergence field, Italian J. Pure and Appl. Math., 17(2005), 45-54.
[5] E. Savaş and R. F. Patterson, Some double lacunary sequence spaces defined by Orlicz functions, (preprint).
[6] M. A. Krasnoselski and Y. B. Rutickii, Convex function and Orlicz spaces, Groningen, Nederland, 1961.
[7] W. H. Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.

Adiyaman University, Science and Art Faculty, Department of Mathematics, 02040, Adiyaman, Turkey

E-mail address: aesi23@hotmail.com


[^0]:    *AMO - Advanced Modeling and Optimization. ISSN: 1841-4311 Date: September 19, 2011.
    2000 Mathematics Subject Classification. Primary 40A99; Secondary 40A05.
    Key words and phrases. P-convergent, Double lacunary sequence, n-normed space, Orlicz function.

