AMO — Advanced Modeling and Optimization, Volume 14, Number 1, 2012

STRONGLY LACUNARY SUMMABLE DOUBLE SEQUENCE SPACES IN *n*-NORMED SPACES DEFINED BY IDEAL CONVERGENCE AND AN ORLICZ FUNCTION

AYHAN ESI

ABSTRACT. In this paper we introduce some certain new double sequence spaces via ideal convergence, double lacunary sequence and an Orlicz function in n-normed spaces and examine some properties of the resulting these spaces.

1. INTRODUCTION

Let X be a non-empty set, then a family of sets $I \subset 2^X$ (the class of all subsets of X) is called an *ideal* if and only if for each $A, B \in I$, we have $A \cup B \in I$ and for each $A \in I$ and each $B \subset A$, we have $B \in I$. A non-empty family of sets $F \subset 2^X$ is a *filter* on X if and only if $\emptyset \notin F$, for each $A, B \in F$, we have $A \cap B \in F$ and each $A \in F$ and each $A \subset B$, we have $B \in F$. An ideal I is called *non-trivial ideal* if $I \neq \emptyset$ and $X \notin I$. Clearly $I \subset 2^X$ is a non-trivial ideal if and only if $\mathcal{F} = \mathcal{F}(I) = \{X/A : A \in I\}$ is a filter on X. A non-trivial ideal $I \subset 2^X$ is called *admissible* if and only if $\{x\} . x \in X\} \subset I$. Further details on ideals of 2^X can be found in Kostyrko, et.al [3]. The notion was further investigated by Salat, et.al [4] and others.

By the convergence of a double sequence we mean the convergence on the Pringsheim sense that is, a double sequence $x = (x_{k,l})$ has Pringsheim limit L (denoted by $P - \lim x = L$) provided that given $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that $|x_{k,l} - L| < \varepsilon$ whenever k, l > n, [1]. We shall write more briefly as "P-convergent".

The double sequence $x = (x_{k,l})$ is bounded if there exists a positive number M such that $|x_{k,l}| < M$ for all k and l. Let l_{∞}^2 the space of all bounded double such that

$$||x_{k,l}||_{(\infty,2)} = \sup_{k,l} |x_{k,l}| < \infty.$$

The double sequence $\theta_{r,s} = \{(k_r, l_s)\}$ is called *double lacunary sequence* [5] if there exist two increasing of integers such that

$$k_o = 0, \ h_r = k_r - k_{r-1} \to \infty \text{ as } r \to \infty \text{ and } l_o = 0, \ h_s = l_s - l_{s-1} \to \infty \text{ as } s \to \infty.$$

*AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

Date: September 19, 2011.

²⁰⁰⁰ Mathematics Subject Classification. Primary 40A99; Secondary 40A05.

Key words and phrases. P-convergent, Double lacunary sequence, n-normed space, Orlicz function.

AYHAN ESI

Notations: $k_{r,s} = k_r l_s$, $h_{r,s} = h_r h_s$, $\theta_{r,s}$ is determined by

$$I_{r,s} = \{(k,l): k_{r-1} < k \le k_r \text{ and } l_{s-1} < l \le l_s\}, q_r = \frac{k_r}{k_{r-1}}, \bar{q}_s = \frac{l_s}{l_{s-1}} \text{ and } q_{r,s} = q_r \bar{q}_s.$$

Recall in [6] that an Orlicz function M is continuous, convex, nondecreasing function define for x > 0 such that M(0) = 0 and M(x) > 0. If convexity of Orlicz function is replaced by $M(x + y) \leq M(x) + M(y)$ then this function is called the modulus function and characterized by Ruckle [7]. An Orlicz function M is said to satisfy Δ_2 -condition for all values u, if there exists K > 0 such that $M(2u) \leq KM(u), u \geq 0$.

Lemma 1. Let M be an Orlicz function which satisfies Δ_2 -condition and let $0 < \delta < 1$. Then for each $t \ge \delta$, we have $M(t) < Kt\delta^{-1}M(2)$ for some constant K > 0.

A double sequence space X is said to be *solid* or *normal* if $(\alpha_{k,l}x_{k,l}) \in X$, and for all double sequences $\alpha = (\alpha_{k,l})$ of scalars with $|\alpha_{k,l}| \leq 1$ for all $k, l \in \mathbb{N}$.

Let $n \in \mathbb{N}$ and X be a real vector space of dimension d, where $n \leq d$. A real-valued function $\|.,..,.\|$ on X satisfying the following four conditions:

(i) $||x_1, x_2, ..., x_n|| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent,

(ii) $||x_1, x_2, ..., x_n||$ is invariant under permutation,

(iii) $\|\alpha x_1, x_2, ..., x_n\| = |\alpha| \|x_1, x_2, ..., x_n\|, \alpha \in \mathbb{R},$

(iv) $||x_1 + x_1^i, x_2, ..., x_n|| \le ||x_1, x_2, ..., x_n|| + ||x_1^i, x_2, ..., x_n||$

is called an n-norm on X, and the pair $(X, \|., ..., .\|)$ is called an n-normed space [2].

A trivial example of *n*-normed space is $X = \mathbb{R}$ equipped with the following Euclidean *n*-norm:

$$||x_1, x_2, ..., x_n||_E = abs \left(\begin{vmatrix} x_{11}...x_{1n} \\ ... \\ x_{n1}...x_{nn} \end{vmatrix} \right)$$

where $x_i = (x_{i1}, ..., x_{in}) \in \mathbb{R}^n$ for each i = 1, 2, ..., n.

2. MAIN RESULTS

Let I_2 be an ideal of $2^{\mathbb{N}\times\mathbb{N}}$, $\theta_{r,s}$ be a double lacunary sequence, M be an Orlicz function, $p = (p_{k,l})$ be a bounded double sequence of strictly positive real numbers and $(X, \|, \dots, \|)$ be an *n*-normed space. Further w(n-X) denotes X-valued sequence space. Now, we define the following double sequence spaces:

$$\begin{split} w_{\theta_{r,s}}^{I_2} \left[M, p, \|., ..., .\|\right]_o &= \left\{ x = (x_{k,l}) \in w \left(n - X\right) : \forall \varepsilon > 0, \\ &\left\{ (r, s) \in I_{r,s} : \ \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M \left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge \varepsilon \right\} \in I_2 \\ &\text{for some } \rho > 0 \text{ and for every } z_1, z_2, ..., z_{n-1} \in X \right\} \end{split}$$

80

$$\begin{split} w_{\theta_{r,s}}^{I_2} \left[M, p, \|., ..., .\| \right] &= \left\{ x = (x_{k,l}) \in w \left(n - X \right) : \forall \varepsilon > 0, \\ &\left\{ (r,s) \in I_{r,s} : \ \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M \left(\left\| \frac{x_{k,l} - L}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge \varepsilon \right\} \in I_2 \\ &\text{for some } \rho > 0, L \in X \text{ and for every } z_1, z_2, ..., z_{n-1} \in X \right\}, \end{split}$$

$$\begin{split} w_{\theta_{r,s}}^{I_2} \left[M, p, \|., ..., .\| \right]_{\infty} &= \left\{ x = (x_{k,l}) \in w \left(n - X \right) : \exists K > 0, \\ &\left\{ (r,s) \in I_{r,s} : \ \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M \left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge K \right\} \in I_2 \\ &\text{for some } \rho > 0 \text{ and for every } z_1, z_2, ..., z_{n-1} \in X \right\}, \end{split}$$

and

$$\begin{split} w_{\theta_{r,s}} \left[M, p, \|., ..., .\| \right]_{\infty} &= \left\{ x = (x_{k,l}) \in w \left(n - X \right) : \exists K > 0, \\ & \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M \left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \leq K \\ & \text{for some } \rho > 0 \text{ and for every } z_1, z_2, ..., z_{n-1} \in X \right\}. \end{split}$$

The following well-known inequality will be used in this study: If $0 \leq \inf_{k,l} p_{k,l} = H_o \leq p_{k,l} \leq \sup_{k,l} = H < \infty$, $D = \max(1, 2^{H-1})$, then

$$|x_{k,l} - y_{k,l}|^{p_{k,l}} \le D\{|x_{k,l}|^{p_{k,l}} + |y_{k,l}|^{p_{k,l}}\}$$

for all $k, l \in \mathbb{N}$ and $x_{k,l}, y_{k,l} \in \mathbb{C}$. Also $|x_{k,l}|^{p_{k,l}} \leq \max\left(1, |x_{k,l}|^H\right)$ for all $x_{k,l} \in \mathbb{C}$.

Theorem 1. The sets $w_{\theta_{r,s}}^{I_2}[M, p, \|, ., \|]_o$, $w_{\theta_{r,s}}^{I_2}[M, p, \|, ., \|]$ and $w_{\theta_{r,s}}^{I_2}[M, p, \|, ., \|]_\infty$ are linear spaces over the complex field \mathbb{C} .

Proof. We will prove only for $w_{\theta_{r,s}}^{I_2}[M, p, \|, ., \|]_o$ and the others can be proved similarly. Let $x, y \in w_{\theta_{r,s}}^{I_2}[M, p, \|, ., \|]_o$ and $\alpha, \beta \in \mathbb{C}$. Then

$$\left\{ (r,s) \in I_{r,s}: \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{x_{k,l}}{\rho_1}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge \frac{\varepsilon}{2} \right\} \in I_2, \text{ for some } \rho_1 > 0$$

and

$$\left\{ (r,s) \in I_{r,s}: \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{y_{k,l}}{\rho_2}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge \frac{\varepsilon}{2} \right\} \in I_2, \text{ for some } \rho_2 > 0.$$

Since $\|.,..,.\|$ is a *n*-norm and *M* is an Orlicz function, the following inequality holds:

$$\begin{split} & \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{\alpha x_{k,l} + \beta y_{k,l}}{|\alpha| \rho_1 + |\beta| \rho_2}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \\ & \leq \frac{D}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[\frac{|\alpha|}{|\alpha| \rho_1 + |\beta| \rho_2} M\left(\left\| \frac{x_{k,l}}{\rho_1}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \\ & + \frac{D}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[\frac{|\beta|}{|\alpha| \rho_1 + |\beta| \rho_2} M\left(\left\| \frac{y_{k,l}}{\rho_2}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \\ & \leq \frac{D}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{x_{k,l}}{\rho_1}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \\ & + \frac{D}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{y_{k,l}}{\rho_2}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \end{split}$$

From the above inequality we get

$$\left\{ (r,s) \in I_{r,s} : \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{\alpha x_{k,l} + \beta y_{k,l}}{|\alpha| \rho_1 + |\beta| \rho_2}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge \varepsilon \right\}$$

$$\subset \left\{ (r,s) \in I_{r,s} : \frac{D}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{x_{k,l}}{\rho_1}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge \frac{\varepsilon}{2} \right\}$$

$$\cup \left\{ (r,s) \in I_{r,s} : \frac{D}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{y_{k,l}}{\rho_2}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge \frac{\varepsilon}{2} \right\}.$$

Two sets on the right hand side belong to ${\cal I}_2$ and this completes the proof.

It is also easy verify that the space $w_{\theta_{r,s}}[M, p, \|., ..., .\|]_{\infty}$ is also a linear space.

Theorem 2. For fixed $(n,m) \in \mathbb{N} \times \mathbb{N}$, $w_{\theta_{r,s}}[M, p, \|., ..., .\|]_{\infty}$ paranormed space with respect to the paranorm defined by

$$\begin{split} h_{(n,m)}(x) \! = \! \inf \left\{ \rho^{\frac{p_{n,m}}{H}} > 0 \! : \! \left(\! \sup_{r,s} \frac{1}{h_{r,s}} \! \sum_{(k,l) \in I_{r,s}} \! \left[M \! \left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \right)^{\frac{1}{H}} \! \le \! 1, \\ for \ some \ \rho > 0 \ and \ for \ every \ z_1, z_2, ..., z_{n-1} \in X \right\}. \end{split}$$

Proof. $h_{(n,m)}(\theta) = 0$ and $h_{(n,m)}(-x) = h_{(n,m)}(x)$ are easy to prove, so we omit them. Let us take $x, y \in w_{\theta_{r,s}}[M, p, \|., ..., .\|]_{\infty}$. Let

$$A(x) = \left\{ \rho > 0 : \sup_{r,s} \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \le 1, \forall z \in X \right\}$$

82

$$A(y) = \left\{ \rho > 0 : \sup_{r,s} \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{y_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \le 1, \forall z \in X \right\}$$

Let $\rho_1 \in A(x)$ and $\rho_2 \in A(y)$. If $\rho = \rho_1 + \rho_2$, then we have

$$\sup_{r,s} \frac{1}{h_{r,s}} \sum_{(k,l)\in I_{r,s}} \left[M\left(\left\| \frac{x_{k,l} + y_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]$$

$$\leq \frac{\rho_1}{\rho_1 + \rho_2} \sup_{r,s} \frac{1}{h_{r,s}} \sum_{(k,l)\in I_{r,s}} \left[M\left(\left\| \frac{x_{k,l}}{\rho_1}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]$$

$$+ \frac{\rho_2}{\rho_1 + \rho_2} \sup_{r,s} \frac{1}{h_{r,s}} \sum_{(k,l)\in I_{r,s}} \left[M\left(\left\| \frac{y_{k,l}}{\rho_1}, z_1, z_2, ..., z_{n-1} \right\| \right) \right] .$$

Thus

$$\sup_{r,s} \frac{1}{h_{r,s}} \sum_{(k,l)\in I_{r,s}} \left[M\left(\left\| \frac{x_{k,l} + y_{k,l}}{\rho_1 + \rho_2}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \le 1$$

and

$$h_{(n,m)}(x+y) = \inf \left\{ \left(\rho_1 + \rho_2\right)^{\frac{p_{n,m}}{H}} : \rho_1 \in A(x) \text{ and } \rho_2 \in A(y) \right\}$$

$$\leq \inf \left\{ \left(\rho_1\right)^{\frac{p_{n,m}}{H}} : \rho_1 \in A(x) \right\} + \inf \left\{ \left(\rho_2\right)^{\frac{p_{n,m}}{H}} : \rho_2 \in A(y) \right\}$$

$$= h_{(n,m)}(x) + h_{(n,m)}(y).$$

Now, let $\lambda_{k,l}^u \to \lambda$, where $\lambda_{k,l}^u, \lambda \in \mathbb{C}$ and $h_{(n,m)}\left(x_{k,l}^u - x_{k,l}\right) \to 0$ as $u \to \infty$. We have to show that $h_{(n,m)}\left(\lambda_{k,l}^u x_{k,l}^u - \lambda x_{k,l}\right) \to 0$ as $u \to \infty$. Let $\lambda_{k,l} \to \alpha$, where $\lambda_{k,l}, \lambda \in \mathbb{C}$ and $h_{(n,m)}\left(x_{k,l}^u - x_{k,l}\right) \to 0$ as $u \to \infty$. Let

$$\begin{split} A\left(x^{u}\right) = \left\{ \rho_{u} > 0: \sup_{r,s} \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{x_{k,l}^{u}}{\rho_{u}}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \leq 1, \\ \forall z_{1}, z_{2}, ..., z_{n-1} \in X \right\}. \end{split}$$

and

$$A(x^{u} - x) = \left\{ \rho_{u}^{i} > 0 : \sup_{r,s} \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{x_{k,l}^{u} - x_{k,l}}{\rho_{u}^{i}}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \le 1, \\ \forall z_{1}, z_{2}, ..., z_{n-1} \in X \right\}.$$

、

If $\rho_{u} \in A(x^{u})$ and $\rho_{u}^{i} \in A(x^{u} - x)$ then we observe that

$$\begin{split} M\left(\left\|\frac{\lambda_{k,l}^{u}x_{k,l}^{u} - \lambda x_{k,l}}{\rho_{u}\left|\lambda_{k,l}^{u} - \lambda\right| + \rho_{u}^{i}\left|\lambda\right|}, z_{1}, z_{2}, ..., z_{n-1}\right\|\right) \\ \leq & M\left(\left\|\frac{\lambda_{k,l}^{u}x_{k,l}^{u} - \lambda x_{k,l}}{\rho_{u}\left|\lambda_{k,l}^{u} - \lambda\right| + \rho_{u}^{i}\left|\lambda\right|}, z_{1}, z_{2}, ..., z_{n-1}\right\| + \left\|\frac{\lambda x_{k,l}^{u} - \lambda x_{k,l}}{\rho_{u}\left|\lambda_{k,l}^{u} - \lambda\right| + \rho_{u}^{i}\left|\lambda\right|}, z_{1}, z_{2}, ..., z_{n-1}\right\|\right) \\ \leq & \frac{\rho_{u}\left|\lambda_{k,l}^{u} - \lambda\right|}{\rho_{u}\left|\lambda_{k,l}^{u} - \lambda\right| + \rho_{u}^{i}\left|\lambda\right|} M\left(\left\|\frac{x_{k,l}^{u}}{\rho_{u}}, z_{1}, z_{2}, ..., z_{n-1}\right\|\right) \\ & + \frac{\rho_{u}^{i}\left|\lambda\right|}{\rho_{u}\left|\lambda_{k,l}^{u} - \lambda\right| + \rho_{u}^{i}\left|\lambda\right|} M\left(\left\|\frac{x_{k,l}^{u} - x_{k,l}}{\rho_{u}^{i}}, z_{1}, z_{2}, ..., z_{n-1}\right\|\right). \end{split}$$

From this inequality, it follows that

$$\left[M\left(\left\|\frac{\lambda_{k,l}^{u}x_{k,l}^{u}-\lambda x_{k,l}}{\rho_{u}\left|\lambda_{k,l}^{u}-\lambda\right|+\rho_{u}^{i}\left|\lambda\right|},z_{1},z_{2},...,z_{n-1}\right\|\right)\right]^{p_{k,l}} \leq 1$$

and consequently

$$\begin{split} h_{(n,m)}\left(\lambda_{k,l}^{u}x_{k,l}^{u}-\lambda x_{k,l}\right) &= \inf\left\{\left(\rho_{u}\left|\lambda_{k,l}^{u}-\lambda\right|+\rho_{u}^{i}\left|\lambda\right|\right)^{\frac{p_{n,m}}{H}}:\rho_{u}\in A\left(x^{u}\right)\right.\\ &\quad \text{ and }\rho_{u}^{i}\in A\left(x^{u}-x\right)\right\}\\ &\leq \left(\left|\lambda_{k,l}^{u}-\lambda\right|\right)^{\frac{p_{n,m}}{H}}\inf\left\{\left(\rho_{u}\right)^{\frac{p_{n,m}}{H}}:\rho_{u}\in A\left(x^{u}\right)\right.\right\}\\ &\quad +\left(\left|\lambda\right|\right)^{\frac{p_{n,m}}{H}}\inf\left\{\left(\rho_{u}^{i}\right)^{\frac{p_{n,m}}{H}}:\rho_{u}^{i}\in A\left(x^{u}-x\right)\right.\right\}\\ &\leq \max\left\{\left|\lambda\right|,\left(\left|\lambda\right|\right)^{\frac{p_{n,m}}{H}}\right\}h_{(n,m)}\left(x_{k,l}^{u}-x_{k,l}\right). \end{split}$$

Hence by our assumption the right hand side tends to zero as $u \to \infty$. This completes the proof.

Corollary 1. It can be noted that $h = \inf_{n,m\in\mathbb{N}} h_{(n,m)}$ also gives a paranorm on the above sequence spaces. However if one consider the sequence space $w_{\theta_{r,s}}[M,p,\|.,...,\|]_{\infty}$ which is larger space than the space $w_{\theta_{r,s}}^{I_2}[M,p,\|.,...,\|]_{\infty}$ the construction of the paranorm is not clear and we leave it as an open problem. However it should be noted that for a fixed $F \in I_2$, the space

$$\begin{split} w^{F}_{\theta_{r,s}} \left[M, p, \|., ..., .\| \right]_{\infty} &= \left\{ x = (x_{k,l}) \in w \left(n - X \right) : \exists K > 0, \ \left\{ (n,m) \in \mathbb{N} \times \mathbb{N} : \right. \\ &\left. \sup_{(r,s) \in \mathbb{N} \times \mathbb{N}/F} \ \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M \left(\left\| \frac{x_{k,l}}{\rho}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge K \right\} \in I_{2}, \\ & \text{for some } \rho > 0 \text{ and for every } z_{1}, z_{2}, ..., z_{n-1} \in X \right\} \end{split}$$

which is subspace of the space $w_{\theta_{r,s}}^{I_2}[M, p, \|., ..., .\|]_{\infty}$ is a paranormed space with the paranorms $h_{(n,m)}$ for $(n,m) \notin F$ and $h_F = \inf_{(n,m) \in \mathbb{N} \times \mathbb{N} / F} h_{(n,m)}$.

Theorem 3. Let M, M_1 and M_2 be Orlicz functions. Then we have (i) $w_{\theta_{r,s}}^{I_2} [M_1, p, \|., ..., .\|]_o \subset w_{\theta_{r,s}}^{I_2} [MoM_1, p, \|., ..., .\|]_o$ provided that $p = (p_{k,l})$ is such that $H_o > 0$. (ii) $w_{\theta_{r,s}}^{I_2} [M_1, p, \|., ..., .\|]_o \cap w_{\theta_{r,s}}^{I_2} [M_2, p, \|., ..., .\|]_o \subset w_{\theta_{r,s}}^{I_2} [M_1 + M_2, p, \|., ..., .\|]_o$.

Proof. (i). For given $\varepsilon > 0$, we first choose $\varepsilon_o > 0$ such that $\max \{\varepsilon_o^H, \varepsilon_o^{H_o}\} < \varepsilon$. Now using the continuity of M, choose $0 < \delta < 1$ such that $0 < t < \delta$ implies $M(t) < \varepsilon_o$. Let $x \in w_{\theta_{r,s}}^{I_2}[M_1, p, \|., ..., .\|]_o$. Now from the definition of the space $w^{I_2}[M_1, p, \|., ..., .\|]_o$, for some $\rho > 0$

$$A(\delta) = \left\{ (r,s) \in I_{r,s} : \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M_1\left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \ge \delta^H \right\} \in I_2.$$

Thus if $(n, m) \notin A(\delta)$ then

$$\begin{aligned} \frac{1}{h_{r,s}} \sum_{(k,l)\in I_{r,s}} \left[M_1\left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} < \delta^H \\ \Rightarrow \sum_{(k,l)\in I_{r,s}} \left[M_1\left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} < h_{r,s}\delta^H, \\ \Rightarrow \left[M_1\left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} < \delta^H \text{ for all } (k,l) \in I_{r,s}, \\ \Rightarrow M_1\left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) < \delta \text{ for all } (k,l) \in I_{r,s}. \end{aligned}$$

Hence from above inequality and using continuity of M, we must have

$$M\left(M_1\left(\left\|\frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1}\right\|\right)\right) < \varepsilon_o \text{ for all } (k,l) \in I_{r,s}$$

which consequently implies that

$$\sum_{(k,l)\in I_{r,s}} \left[M\left(M_1\left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right) \right]^{p_{k,l}} < h_{r,s} \max\left\{ \varepsilon_o^H, \varepsilon_o^{H_o} \right\} < h_{r,s}\varepsilon,$$
$$\Rightarrow \frac{1}{h_{r,s}} \sum_{(k,l)\in I_{r,s}} \left[M\left(M_1\left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right) \right]^{p_{k,l}} < \varepsilon.$$

This shows that

$$\left\{ (r,s) \in I_{r,s} : \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(M_1\left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right) \right]^{p_{k,l}} \ge \varepsilon \right\} \subset A\left(\delta\right)$$

and so belongs to I_2 . This completes the proof.

(ii) Let
$$x \in w_{\theta_{r,s}}^{I_2}[M_1, p, \|., ..., .\|]_o \cap w_{\theta_{r,s}}^{I_2}[M_2, p, \|., ..., .\|]_o$$
. Then the fact that

$$\frac{1}{h_{r,s}} \left[(M_1 + M_2) \left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{r_{k,l}} \\ \leq \frac{D}{h_{r,s}} \left[M_1 \left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} + \frac{D}{nm} \left[M_2 \left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \\ \text{gives us the result.} \qquad \Box$$

g

AYHAN ESI

Theorem 4. (i) If $0 < H_o \le p_{k,l} < 1$, then $w_{\theta_{r,s}}^{I_2}[M, p, \|.,...,\|]_o \subset w_{\theta_{r,s}}^{I_2}[M, \|.,...,\|]_o$. (ii) If $1 \le p_{k,l} \le H < \infty$, then $w_{\theta_{r,s}}^{I_2}[M, \|.,...,\|]_o \subset w_{\theta_{r,s}}^{I_2}[M, p, \|.,...,\|]_o$.

 $\begin{array}{l} (iii) \ If \ 0 < p_{k,l} < q_{k,l} < \infty \ and \ \frac{q_{k,l}}{p_{k,l}} \ is \ bounded, \ then \ w_{\theta_{r,s}}^{I_2} \left[M, p, \|., ..., .\|\right]_o \subset \\ w_{\theta_{r,s}}^{I_2} \left[M, q, \|., ..., .\|\right]_o. \end{array}$

Proof. The proof is standard, so we omit it.

Theorem 5. The sequence spaces $w_{\theta_{r,s}}^{I_2}[M, p, \|., ..., .\|]_o$, $w_{\theta_{r,s}}^{I_2}[M, p, \|., ..., .\|]$, $w_{\theta_{r,s}}^{I_2}[M, p, \|., ..., .\|]_\infty$ and $w_{\theta_{r,s}}[M, p, \|., ..., .\|]_\infty$ are solid.

Proof. We give the proof for only $w_{\theta_{r,s}}^{I_2}[M, p, \|, ..., .\|]_o$. The others can be proved similarly. Let $x \in w_{\theta_{r,s}}^{I_2}[M_1, p, \|, ..., .\|]_o$ and $\alpha = (\alpha_{k,l})$ be a double sequence of scalars such that $|\alpha_{k,l}| \leq 1$ for all $k, l \in \mathbb{N}$. Then we have

$$\left\{ (r,s) \in I_{r,s} : \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{\alpha_{k,l} x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \le \varepsilon \right\}$$

$$\subset \left\{ (r,s) \in I_{r,s} : \frac{T}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} \left[M\left(\left\| \frac{x_{k,l}}{\rho}, z_1, z_2, ..., z_{n-1} \right\| \right) \right]^{p_{k,l}} \le \varepsilon \right\} \in I_2,$$

where $T = \max_{k,l} \left\{ 1, |\alpha_{k,l}|^H \right\}$. Hence $\alpha x \in w_{\theta_{r,s}}^{I_2} [M_1, p, \|., ..., .\|]_o$ for all double sequences $\alpha = (\alpha_{k,l})$ with $|\alpha_{k,l}| \leq 1$ for all $k, l \in \mathbb{N}$ whenever $x \in w_{\theta_{r,s}}^{I_2} [M_1, p, \|., ..., .\|]_o$.

References

- A. Pringsheim, Zur Theori der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289-321.
- [2] H. Gunawan, On n-inner product, n-norms and the Cauchy-Schwarz Inequality, Scientiae Mathematicae Japonicae Online, 5(2001), 47-54.
- [3] P. Kostyrko, T.Salat and W. Wilczynski, I-convergence, Real Analysis Exchange, 26(2)(2000/2001), 669-686.
- [4] T. Salat, B. C. Tripathy and M. Ziman, On I-convergence field, Italian J. Pure and Appl. Math., 17(2005), 45-54.
- [5] E. Savaş and R. F. Patterson, Some double lacunary sequence spaces defined by Orlicz functions, (preprint).
- [6] M. A. Krasnoselski and Y. B. Rutickii, Convex function and Orlicz spaces, Groningen, Nederland, 1961.
- [7] W. H. Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.

Adiyaman University, Science and Art Faculty, Department of Mathematics, 02040, Adiyaman, Turkey

E-mail address: aesi23@hotmail.com

86